JPH08157916A - Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal - Google Patents

Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal

Info

Publication number
JPH08157916A
JPH08157916A JP29847994A JP29847994A JPH08157916A JP H08157916 A JPH08157916 A JP H08157916A JP 29847994 A JP29847994 A JP 29847994A JP 29847994 A JP29847994 A JP 29847994A JP H08157916 A JPH08157916 A JP H08157916A
Authority
JP
Japan
Prior art keywords
pulverized coal
lance
pipe
blowing
inner pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29847994A
Other languages
Japanese (ja)
Inventor
Michitaka Satou
道貴 佐藤
Tatsuro Ariyama
達郎 有山
Yuichi Yamakawa
裕一 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP29847994A priority Critical patent/JPH08157916A/en
Publication of JPH08157916A publication Critical patent/JPH08157916A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve the combustion efficiency of blown pulverized fine coal by arranging plural pieces of double pipe structural lances to the side wall of a blow pipe connected to a tuyere of a blast furnace and controlling air or mixed gas quantity blown from an inner pipe at a fixed value, when blowing the pulverized coal together with gas for carrying from a gap between an inner pipe and an outer pipe of the lance. CONSTITUTION: When blowing pulverized fine coal, the flow rate of air or oxygen or the mixed gas thereof blown from the inner pipe of the lance is made to be 2-5 times that of the pulverized fine coal and the carrier gas blown between the inner pipe and the outer pipe in the double pipe structural lance and the mixing efficiency of the pulverized fine coal and the oxygen during blasting is risen to improve the combustion efficiency. At this time, it is desirable that spiral-state blade is arranged in t inner pipe near the tip part of the using double pipe structural lance or the inner pipe is projected from the tip part of the outer pipe and the tip part of the inner pipe is closed, and also, slits are arranged to the tip part side wall of the inner pipe projected from the outer pipe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉の羽口より微粉炭
を吹き込む方法と微粉炭の吹き込み用ランスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for blowing pulverized coal from tuyere of a blast furnace and a lance for blowing pulverized coal.

【0002】[0002]

【従来の技術】高炉への微粉炭吹き込みは、コークスと
の価格差に基づくコストメリットが大きいことから多く
の高炉で採用されており、高炉操業の経済性向上に大き
く寄与している。 近年、コークス炉の炉命延長の観点
からもその重要性が再認識され、その多量吹き込みを指
向した技術開発が活発に行われている。
2. Description of the Related Art Blowing pulverized coal into a blast furnace is used in many blast furnaces because it has a great cost advantage due to a price difference with coke, and contributes greatly to improving the economical efficiency of blast furnace operation. In recent years, the importance of the extension of the life of a coke oven has been re-recognized, and technical development aiming for large-scale injection of the coke oven has been actively carried out.

【0003】高炉内に吹き込む微粉炭量を増していく
と、種々の問題が顕在化してくるが、そのひとつに未燃
チャーに起因した問題がある。すなわち微粉炭吹き込み
量を増すにしたがい酸素過剰係数が低下するため微粉炭
の燃焼率が低下し、レースウェイ内で燃焼しきれない未
燃チャーが多量に生成される。この未燃チャーは融着帯
または高炉炉下部でソルーションロス反応により優先的
に消費される可能性もあるが、炉内消費量には自ずと限
界値が存在するので、炉内消費量限界以上にチャーが発
生すると、ダストとして炉頂から排出されて置換率の低
下や燃料比の上昇を招く。またチャーが炉芯や融着帯根
部に蓄積すると、通気、通液性の阻害による炉況不安定
や生産性低下の原因となる。
As the amount of pulverized coal blown into the blast furnace increases, various problems become apparent, one of which is a problem caused by unburned char. That is, as the amount of pulverized coal injected increases, the oxygen excess coefficient decreases, so the combustion rate of pulverized coal decreases, and a large amount of unburned char that cannot be completely burned in the raceway is generated. This unburned char may be preferentially consumed due to the solution loss reaction in the cohesive zone or in the lower part of the blast furnace, but there is a limit value in the in-reactor consumption, so it exceeds the in-reactor limit. When char is generated, it is discharged from the furnace top as dust, causing a decrease in the replacement rate and an increase in the fuel ratio. Further, if char accumulates in the core of the furnace or the root of the cohesive zone, it may cause unstable furnace conditions and reduced productivity due to obstruction of ventilation and liquid permeability.

【0004】そこで安定した微粉炭多量吹き込み操業を
実現するためには、未燃チャーの発生量を炉内消費量限
界以下に抑えることが不可欠であり、そのためにはレー
スウェイ部における微粉炭の燃焼率をより一層向上させ
ることが必要である。
Therefore, in order to realize a stable blast operation of a large amount of pulverized coal, it is indispensable to keep the amount of unburned char generated below the in-furnace consumption limit. For that purpose, combustion of pulverized coal in the raceway section is required. It is necessary to further improve the rate.

【0005】通常の微粉炭吹き込み操業では、微粉炭吹
き込み用の単管ランス先端部をブローパイプ内に突出さ
せ、ランス先端の開孔部から微粉炭を吹き込む方法が一
般的である。この方法では、1本のランスから全量の微
粉炭を噴出させるためランスから噴出直後の微粉炭濃度
は高く、また熱風の慣性力も大きいことから、微粉炭を
ブローパイプの径方向に十分に拡散させることができな
い。そのため微粉炭と熱風との混合効率および微粉炭と
酸素との接触効率が低くなり、微粉炭の昇温が遅れると
ともに高い燃焼率の達成が困難になる。
In a normal pulverized coal blowing operation, it is common to inject a pulverized coal blowing single pipe lance tip into the blow pipe and blow pulverized coal from the opening of the lance tip. In this method, since the entire amount of pulverized coal is ejected from one lance, the concentration of pulverized coal immediately after being ejected from the lance is high, and the inertial force of hot air is also large, so that the pulverized coal is sufficiently diffused in the radial direction of the blow pipe. I can't. Therefore, the mixing efficiency of the pulverized coal and hot air and the contact efficiency of the pulverized coal and oxygen are lowered, the temperature rise of the pulverized coal is delayed, and it becomes difficult to achieve a high burning rate.

【0006】そこで微粉炭の燃焼率を向上させるため
に、特開平2ー213406号公報や特開平6ー100
912号公報には、ランスを同心2重管構造として、内
管内より微粉炭を吹き込み、内管と外管の間にある隙間
より空気または酸素あるいはこれらの混合ガスを流し、
微粉炭と酸素の接触効率を改善する方法が提案されてい
る。また特開平1ー92304号公報には、ランスを3
重管構造として、内管内より微粉炭を吹き込み、最外殻
にある隙間を水冷し、中殻にある隙間には内管の回りを
取り囲むように複数個のノズルを設け、そのノズルから
酸素を噴出させる方法が開示されている。さらにまた技
術文献「鉄と鋼」〔vol.80(1994)P28
8〕には、各羽口に単管ランスを2本設置する、いわゆ
るダブルランス化の方法が提案されている。この方法で
は、微粉炭の噴出起点が2つあるので、吹き込み直後か
ら微粉炭をより広い空間領域に比較的均一に分散させる
ことが可能で、微粉炭と熱風および熱風中の酸素との接
触効率が高まる。そのため昇温および揮発分の熱分解が
速まるとともに速やかに揮発分の燃焼が行われ、さらに
揮発分の燃焼熱を微粉炭が受けることによって揮発分の
熱分解を促進するなど、連鎖的に燃焼が進行して高い微
粉炭の燃焼率を達成し得る。
Therefore, in order to improve the burning rate of pulverized coal, JP-A-2-213406 and JP-A-6-100.
In Japanese Patent No. 912, the lance has a concentric double pipe structure, pulverized coal is blown from the inside of the inner pipe, and air or oxygen or a mixed gas thereof is flowed through a gap between the inner pipe and the outer pipe.
A method for improving the contact efficiency between pulverized coal and oxygen has been proposed. Further, in Japanese Patent Laid-Open No. 1-92304, a lance is
As a heavy pipe structure, pulverized coal is blown from the inner pipe, the gap in the outermost shell is water-cooled, and a plurality of nozzles are provided in the gap in the inner shell so as to surround the inner pipe, and oxygen is discharged from the nozzle. A method of ejecting is disclosed. Furthermore, the technical document “Iron and Steel” [vol. 80 (1994) P28
8] proposes a so-called double lance method in which two single tube lances are installed at each tuyere. In this method, since there are two pulverized coal ejection points, it is possible to disperse the pulverized coal relatively uniformly in a wider space immediately after injection, and the contact efficiency between the pulverized coal and hot air and oxygen in hot air Will increase. Therefore, the temperature rise and the thermal decomposition of the volatile matter are accelerated, the volatile matter is quickly burned, and the pulverized coal receives the heat of combustion of the volatile matter to accelerate the thermal decomposition of the volatile matter. It is possible to proceed to achieve a high pulverized coal burning rate.

【0007】[0007]

【発明が解決しようとする課題】しかしながら特開平2
ー213406号公報や特開平6ー100912号公報
に記載された方法では、多量の冷えたガスの導入により
微粉炭が冷却され易く、また微粉炭の多量吹き込み時に
は微粉炭の流速も大きくなるため着火遅れの生じる恐れ
がある。また固体に比べガスは拡散し易いので、微粉炭
近くに吹き込まれた酸素はすぐに熱風と混合してしまう
ため、微粉炭粒子近傍の酸素濃度増大効果はランス噴出
直後の僅かの距離でしか期待できない。そのため微粉炭
の燃焼率は微粉炭近傍の初期の酸素過剰係数から見込ま
れる値より著しく低くなり、場合によっては酸素導入の
効果が全く現れないこともある。
[Patent Document 1] Japanese Unexamined Patent Application Publication No.
In the methods described in JP-A-213406 and JP-A-6-100912, the pulverized coal is easily cooled by the introduction of a large amount of cold gas, and when a large amount of pulverized coal is blown, the flow rate of the pulverized coal is increased, so that ignition occurs. There may be a delay. In addition, since the gas diffuses more easily than solids, the oxygen blown near the pulverized coal is immediately mixed with the hot air, so the effect of increasing the oxygen concentration near the pulverized coal particles is expected only at a short distance immediately after the lance ejection. Can not. Therefore, the burning rate of the pulverized coal becomes significantly lower than the value expected from the initial oxygen excess coefficient in the vicinity of the pulverized coal, and in some cases, the effect of introducing oxygen may not appear at all.

【0008】特開平1ー92304号公報に記載された
方法においては、微粉炭の外側の酸素は拡散して燃焼に
有効に活用されなかったり微粉炭の昇温が遅れるなど、
上記の方法と同様な問題がある。
In the method described in Japanese Patent Application Laid-Open No. 1-92304, the oxygen outside the pulverized coal diffuses and is not effectively used for combustion, and the temperature rise of the pulverized coal is delayed.
There are similar problems to the above method.

【0009】技術文献「鉄と鋼」〔vol.80(19
94)P288〕に記載の方法では、比較的高い微粉炭
の燃焼率を達成できるが、単管ランスを用いているので
ランス噴出直後の微粉炭のブローパイプの径方向への拡
散には限界があり、したがって燃焼率向上にも限界があ
る。
The technical document "Iron and Steel" [vol. 80 (19
94) P288], a relatively high pulverized coal combustion rate can be achieved, but since a single pipe lance is used, there is a limit to the diffusion of pulverized coal in the radial direction of the blow pipe immediately after the lance ejection. Therefore, there is a limit to improving the combustion rate.

【0010】本発明はこのような課題を解決するために
なされたもので、ランスから吹き込まれた微粉炭の分散
性を改善し、微粉炭と熱風との混合効率を上げるととも
に同時に吹き込む酸素を有効に活用して、微粉炭の燃焼
率をより一層向上させることのできる微粉炭吹き込み方
法および微粉炭吹き込み用ランスを提供することを目的
とする。
The present invention has been made to solve the above problems, and improves the dispersibility of pulverized coal blown from a lance, improves the mixing efficiency of the pulverized coal and hot air, and at the same time makes oxygen blown in effective. It is an object of the present invention to provide a pulverized coal blowing method and a pulverized coal blowing lance capable of further improving the burning rate of pulverized coal by utilizing the above.

【0011】[0011]

【課題を解決するための手段】上記課題は、高炉の各羽
口に連結されたブローパイプの側壁に同心2重管構造の
ランスを複数個設け、前記ランスの内管と外管の間にあ
る隙間より微粉炭を微粉炭搬送用ガスとともに吹き込
み、内管内には空気または酸素あるいはまたこれらの混
合ガスを前記微粉炭搬送用ガスの流量の2倍以上5倍以
下の流量になるように流すことを特徴とする高炉への微
粉炭吹き込み方法により解決される。
SUMMARY OF THE INVENTION The above problem is that a plurality of lances having a concentric double pipe structure are provided on the side wall of a blow pipe connected to each tuyere of a blast furnace, and the lance is provided between an inner pipe and an outer pipe. Pulverized coal is blown together with the pulverized coal transporting gas from a certain gap, and air or oxygen or a mixed gas of these is flowed in the inner pipe so as to have a flow rate not less than 2 times and not more than 5 times the flow rate of the pulverized coal carrying gas. This is solved by a method of blowing pulverized coal into a blast furnace, which is characterized in that

【0012】また高炉の各羽口に連結されたブローパイ
プの側壁に設けられる同心2重管構造のランスとして、
その先端部近傍の内管内に螺旋状の羽を設けたランス
や、内管を外管の先端部より突出させて、内管の先端部
を閉塞し、かつ外管より突出した内管の先端部側壁にス
リットを設けたランスを用いると微粉炭の燃焼率をより
一層向上させることが可能である。
Further, as a lance having a concentric double pipe structure provided on the side wall of the blow pipe connected to each tuyere of the blast furnace,
A lance with spiral wings provided in the inner tube near the tip, or the tip of the inner tube that projects from the tip of the outer tube to close the tip of the inner tube and projects from the outer tube If a lance provided with a slit on the side wall of the portion is used, the burning rate of pulverized coal can be further improved.

【0013】[0013]

【作用】同心2重管構造のランスを用い、内管と外管の
間にある隙間より微粉炭を吹き込み、内管内より空気ま
たは酸素あるいはまたこれらの混合ガスを流して微粉炭
吹き込みを行うと、ランスから噴出直後の微粉炭主流の
密度を、従来の単管ランスや2重、3重管ランスで行わ
れている内管内より微粉炭を全量噴出させる方法に比べ
て、大幅に低減することができる。このことは微粉炭粒
子間の距離が拡大し、単位重量の微粉炭が有効に利用で
きる熱風の顕熱および酸素の絶対量が増加することを意
味し、微粉炭の昇温速度の上昇ひいては燃焼速度の上昇
に結びつき、微粉炭の燃焼率が向上する。また上記方法
に加え、上記ランスをブローパイプの側壁に複数個設け
て微粉炭吹き込みを行うと、微粉炭の吹き込み起点が増
え、微粉炭のブローパイプ内への分散性が著しく向上
し、微粉炭の燃焼率がさらに向上する。前記したように
従来にも単管ランスのダブルランス化で微粉炭の燃焼率
向上を図る方法が提案されているが、同心2重管構造の
ランスを用いた本発明方法で微粉炭吹き込みを行うと、
従来方法に比べその効果は著しく大きい。さらに上記方
法に加え、ランス内管に流す空気または酸素あるいはま
たこれらの混合ガスの流量を、ランスの内管と外管の間
にある隙間より微粉炭を吹き込みために流す搬送用ガス
の流量の2倍以上5倍以下にして微粉炭吹き込みを行う
と、微粉炭粒子の大きな温度低下を招くことなく、微粉
炭主流をより外側へ拡散させることができるので、微粉
炭の分散性がさらに向上し、従来法に比べ高い微粉炭の
燃焼率を達成できる。上記のガス流量比が2倍未満の場
合は、微粉炭主流を外側へ拡散させる効果がそれほど大
きくなく、また5倍を越えると微粉炭粒子の温度低下を
招く。
[Function] When a lance having a concentric double pipe structure is used, pulverized coal is blown from the gap between the inner pipe and the outer pipe, and air or oxygen or a mixed gas of these is flowed from the inner pipe to blow pulverized coal. , The density of the pulverized coal main flow immediately after being ejected from the lance should be significantly reduced compared to the conventional method of ejecting the entire amount of pulverized coal from the inner pipe, which is performed with a single pipe lance or a double or triple pipe lance. You can This means that the distance between the pulverized coal particles increases, the sensible heat of hot air and the absolute amount of oxygen that can effectively use a unit weight of pulverized coal increase, and the increase in the temperature rising rate of pulverized coal and eventually combustion This will lead to an increase in speed and improve the burning rate of pulverized coal. In addition to the above method, when a plurality of lances are provided on the side wall of the blow pipe for blowing pulverized coal, the starting point of pulverized coal injection increases, and the dispersibility of the pulverized coal in the blow pipe is significantly improved. Further improves the burning rate. As described above, there has been conventionally proposed a method of improving the burning rate of pulverized coal by using a single tube lance with a double lance. However, pulverized coal is injected by the method of the present invention using a lance having a concentric double tube structure. When,
The effect is remarkably large as compared with the conventional method. Furthermore, in addition to the above method, the flow rate of air or oxygen or a mixed gas thereof flowing in the inner tube of the lance is set to the flow rate of the carrier gas flowing for blowing the pulverized coal from the gap between the inner tube and the outer tube of the lance. When pulverized coal is blown into the pulverized coal at a ratio of 2 times or more and 5 times or less, the pulverized coal main flow can be diffused to the outside without causing a large temperature drop of the pulverized coal particles, so that the dispersibility of the pulverized coal is further improved. A higher burning rate of pulverized coal can be achieved as compared with the conventional method. When the gas flow rate ratio is less than 2 times, the effect of diffusing the pulverized coal main flow outward is not so great, and when it exceeds 5 times, the temperature of the pulverized coal particles is lowered.

【0014】上記方法に用いられる同心2重管構造のラ
ンスにおいて、その先端部近傍の内管内に螺旋状の羽を
設けたり、あるいは内管を外管の先端部より突出させ
て、内管の先端部を閉塞し、かつ外管より突出した内管
の先端部側壁にスリットを設けたランスを用いると、微
粉炭主流の外側への拡散が著しく促進され、微粉炭の分
散性がより一層向上するので、その燃焼率をさらに高め
ることができる。
In the lance having the concentric double pipe structure used in the above method, spiral wings are provided in the inner pipe near the tip of the lance, or the inner pipe is protruded from the front end of the outer pipe, Use of a lance with a slit on the side wall of the tip of the inner tube that blocks the tip and protrudes from the outer tube significantly promotes the diffusion of the pulverized coal main flow to the outside, further improving the dispersibility of the pulverized coal. Therefore, the combustion rate can be further increased.

【0015】[0015]

【実施例】【Example】

(実施例1)微粉炭の燃焼実験を、図1に示す微粉炭燃
焼炉を用いて行った。図1で、1は微粉炭吹き込み用ラ
ンス、2はブローパイプ、3はコークス充填層、4は羽
口、5はランスガイド管、6はサンプリングプローブガ
イド管、7は微粉炭切出しホッパー、8は微粉炭供給
管、9はランス内管用ガス供給管である。微粉炭燃焼炉
はコークス充填層3と内径65φの羽口4に連結された
内径90φのブローパイプ2で構成されている。ブロー
パイプ2の後端部には、ブローパイプ2の軸心に対して
対称に2本のランス1がランスガイド管5を介して斜め
に設けられている。ランス1の先端から羽口4の先端ま
での距離は1200mmである。
(Example 1) A pulverized coal combustion experiment was conducted using the pulverized coal combustion furnace shown in FIG. In FIG. 1, 1 is a lance for blowing pulverized coal, 2 is a blow pipe, 3 is a coke packed layer, 4 is a tuyere, 5 is a lance guide pipe, 6 is a sampling probe guide pipe, 7 is a pulverized coal cutting hopper, and 8 is Pulverized coal supply pipe, 9 is a gas supply pipe for lance inner pipe. The pulverized coal combustion furnace is composed of a coke packed bed 3 and a blow pipe 2 having an inner diameter of 90φ connected to a tuyere 4 having an inner diameter of 65φ. At the rear end of the blow pipe 2, two lances 1 are provided obliquely via a lance guide pipe 5 symmetrically with respect to the axis of the blow pipe 2. The distance from the tip of the lance 1 to the tip of the tuyere 4 is 1200 mm.

【0016】図2には、本実験で用いた本発明の一実施
例であるランスの断面図を示す。図2で、10は内管、
11は外管、12は螺旋状の羽である。
FIG. 2 shows a cross-sectional view of a lance used in this experiment, which is one embodiment of the present invention. In FIG. 2, 10 is an inner pipe,
Reference numeral 11 is an outer tube, and 12 is a spiral wing.

【0017】使用した微粉炭の工業分析値を表1に示
す。その粒度は−74μmが80%である。
Table 1 shows industrial analysis values of the pulverized coal used. The particle size is 80% at -74 μm.

【0018】ブローパイプ2にLPGの燃焼ガスに酸素
を混入して酸素濃度21%になるように調整した疑似空
気を350Nm3 で送風し、羽口4の先端の温度を12
00℃に昇温した。温度が1200℃で安定したところ
で微粉炭切出しホッパー7から微粉炭を65kg/hで
切出し、搬送用ガスとして12Nm3 /hの窒素ガスを
用いて、微粉炭供給管8を介して2本のランス1の内管
と外管の間にある隙間から吹き込んだ。また同時に冷空
気を40Nm3 /hでランス内管用ガス供給管9を介し
て2本のランス1の内管へ供給した。外管先端から噴出
する微粉炭/搬送用ガスの流速は、流路の面積から計算
すると16Nm/sであり、内管先端におけるガス流速
は48Nm/sであった。本条件における酸素過剰係数
は0.78と計算され、これは実高炉の微粉炭吹き込み
量換算で200kg/tに相当する。微粉炭の燃焼中に
サンプリングプローブガイド管6からサンプリングプロ
ーブを挿入し、ランス1の先端から300、600、9
00mmの各位置で微粉炭ダストのサンプリングを行っ
た。そして化学分析により微粉炭の燃焼率を求めた。
Pseudo air adjusted to have an oxygen concentration of 21% by mixing oxygen into the combustion gas of LPG was blown into the blow pipe 2 at 350 Nm 3 , and the temperature at the tip of the tuyere 4 was adjusted to 12%.
The temperature was raised to 00 ° C. When the temperature is stable at 1200 ° C, the pulverized coal cutting hopper 7 cuts the pulverized coal at 65 kg / h, and nitrogen gas of 12 Nm 3 / h is used as a carrier gas, and two lances are provided via the pulverized coal supply pipe 8. It was blown in through the gap between the inner tube and the outer tube of No. 1. At the same time, cold air was supplied to the inner pipes of the two lances 1 through the lance inner pipe gas supply pipe 9 at 40 Nm 3 / h. The flow velocity of pulverized coal / transporting gas ejected from the tip of the outer pipe was 16 Nm / s calculated from the area of the flow passage, and the gas flow velocity at the end of the inner pipe was 48 Nm / s. The oxygen excess coefficient under these conditions was calculated to be 0.78, which corresponds to 200 kg / t in terms of the pulverized coal blowing rate of the actual blast furnace. Insert the sampling probe from the sampling probe guide pipe 6 during the combustion of pulverized coal, and insert 300, 600, 9 from the tip of the lance 1.
Pulverized coal dust was sampled at each position of 00 mm. Then, the burning rate of pulverized coal was obtained by chemical analysis.

【0019】[0019]

【表1】 [Table 1]

【0020】図4にランス先端からの距離と微粉炭の燃
焼率の関係を示す。ランス先端から300mmの位置で
は50%の、また900mmの位置では80%の高い燃
焼率が得られ、燃焼速度の増大が確認できる。
FIG. 4 shows the relationship between the distance from the lance tip and the burning rate of pulverized coal. A high burning rate of 50% was obtained at a position of 300 mm from the lance tip, and a high burning rate of 80% was obtained at a position of 900 mm, and an increase in the burning rate can be confirmed.

【0021】ランスの数を3、4本と増やすとさらに燃
焼率を高められるが、本装置のブローパイプの径90φ
を考慮すると、それ以上増やしてもその効果は飽和する
と推察される。
The combustion rate can be further increased by increasing the number of lances to three or four, but the diameter of the blow pipe of this device is 90φ.
Considering the above, it is presumed that the effect will be saturated even if it is increased more.

【0022】(実施例2)図3に、本発明の別の一実施
例であるランスの断面図を示す。図3で、10は内管、
11は外管、13はスリットである。本ランスは内管1
0の先端を閉塞し、外管11の先端に対して10mm突
出させており、内管の先端から3mmの位置に円周上に
スリット13を設けている。
(Embodiment 2) FIG. 3 shows a sectional view of a lance which is another embodiment of the present invention. In FIG. 3, 10 is an inner pipe,
Reference numeral 11 is an outer tube, and 13 is a slit. This lance has an inner tube 1
The tip of No. 0 is closed so as to project 10 mm from the tip of the outer tube 11, and a slit 13 is provided on the circumference at a position 3 mm from the tip of the inner tube.

【0023】このランスを図1に示す微粉炭燃焼炉のブ
ローパイプの側壁にブローパイプの軸心に対して対称に
2本設けて、実施例1と同様な実験を行った。なお外管
に流す微粉炭搬送用窒素ガス量および内管に流す冷空気
ガス量と、外管および内管の先端におけるガス流速が実
施例1の場合と同じになるようにスリット13の幅を調
整した。
Two similar lances were provided on the side wall of the blow pipe of the pulverized coal combustion furnace shown in FIG. 1 symmetrically with respect to the axis of the blow pipe, and the same experiment as in Example 1 was conducted. In addition, the width of the slit 13 is set so that the amount of pulverized coal carrying nitrogen gas to flow to the outer pipe and the amount of cold air gas to flow to the inner pipe and the gas flow velocity at the tips of the outer pipe and the inner pipe are the same as those in the first embodiment. It was adjusted.

【0024】結果を図4に示す。この場合も実施例1と
ほぼ同様な高い燃焼率と燃焼速度が得られる。
The results are shown in FIG. In this case as well, a high combustion rate and a high combustion speed similar to those of the first embodiment can be obtained.

【0025】なお内管10の先端の外管11の先端に対
する突出長さは、スリット13を設ける必要から、1m
m以上である必要があり、また突出長さが長すぎると微
粉炭燃焼の輻射熱により先端が溶融する恐れがあるの
で、20mm以下にすることが望ましい。
The projection length of the tip of the inner tube 10 with respect to the tip of the outer tube 11 is 1 m because it is necessary to provide the slit 13.
It is necessary to be at least m, and if the protruding length is too long, the tip may melt due to the radiant heat of pulverized coal combustion, so it is desirable to be 20 mm or less.

【0026】(比較例1)図1に示す微粉炭燃焼炉のブ
ローパイプの側壁に単管ランスを1本設け、実施例1と
同様な実験を行った。先端ガス流速は実施例1と同一に
なるようにランス径を調整した。
(Comparative Example 1) A single tube lance was provided on the side wall of the blow pipe of the pulverized coal combustion furnace shown in FIG. The lance diameter was adjusted so that the tip gas flow rate was the same as in Example 1.

【0027】結果を図4に示す。ランス先端から300
mmの位置では25%の低い燃焼率しか得られず、また
900mmの位置でも燃焼率は高々45%程度までしか
向上しない。これは微粉炭吹き込み直後の分散性が悪
く、熱風との接触効率が低いためと考えられる。
The results are shown in FIG. 300 from the tip of the lance
At a position of mm, only a low burning rate of 25% is obtained, and at a position of 900 mm, the burning rate is improved to about 45% at most. It is considered that this is because the dispersibility immediately after blowing pulverized coal is poor and the contact efficiency with hot air is low.

【0028】(比較例2)図1に示す微粉炭燃焼炉のブ
ローパイプの側壁にブローパイプの軸心に対して対称に
単管ランスを2本設け、実施例1と同様な実験を行っ
た。先端ガス流速は実施例1と同一になるようにランス
径を調整した。
(Comparative Example 2) Two single pipe lances were provided symmetrically with respect to the axis of the blow pipe on the side wall of the blow pipe of the pulverized coal combustion furnace shown in FIG. 1, and the same experiment as in Example 1 was conducted. . The lance diameter was adjusted so that the tip gas flow rate was the same as in Example 1.

【0029】結果を図4に示す。ランス先端から300
mmの位置では40%の、また900mmの位置では7
5%の比較的高い燃焼率が得られるが、実施例1、2に
示す本発明方法による燃焼率には至らない。このことは
微粉炭の吹き込み起点の複数化は、微粉炭の空間内への
分散性を著しく高めるが、単管ランスではそれにも限界
があることを示している。
The results are shown in FIG. 300 from the tip of the lance
40% at mm position and 7 at 900 mm position
Although a relatively high burning rate of 5% is obtained, it does not reach the burning rate according to the method of the present invention shown in Examples 1 and 2. This indicates that the use of multiple pulverized coal blowing starting points significantly enhances the dispersibility of the pulverized coal into the space, but the single pipe lance also has a limit.

【0030】(比較例3)図1に示す微粉炭燃焼炉のブ
ローパイプの側壁に図2に示す同心2重管ランスを1本
設け、実施例1と同様な実験を行った。
Comparative Example 3 An experiment similar to that of Example 1 was carried out by providing one concentric double tube lance shown in FIG. 2 on the side wall of the blow pipe of the pulverized coal combustion furnace shown in FIG.

【0031】結果を図4に示す。各位置での燃焼率は比
較例1と2の中間の値を示す。比較例1より高いのは、
本発明である同心2重管ランスを用いて本発明方法によ
り微粉炭吹き込みを行うことが、従来の単管ランスによ
る方法に比べ、微粉炭の空間内への分散性をより向上さ
せていることを示している。しかし単管ランスを2本用
いた比較例2の場合に比べると、その分散性にはおよば
ない。
The results are shown in FIG. The burning rate at each position shows an intermediate value between Comparative Examples 1 and 2. Higher than Comparative Example 1 is
Injecting pulverized coal by the method of the present invention using the concentric double tube lance of the present invention improves the dispersibility of the pulverized coal in the space more than the conventional method using a single tube lance. Is shown. However, compared with the case of Comparative Example 2 in which two single tube lances are used, the dispersibility thereof is not reached.

【0032】(実施例3)図1に示す微粉炭燃焼炉のブ
ローパイプの側壁にブローパイプの軸心に対して対称に
図2に示す同心2重管ランスを2本設け、ランス内管内
に流すガス量を0、12、24、36、48、60、7
2、84Nm3 /hに変化させて、その燃焼率への影響
を調査した。この場合、ガスの流路の断面積は外管、内
管とも同一であり、外管先端のガス流速は16Nm/s
であった。そして燃焼が安定した後、ランス先端から3
00mmの位置でサンプリングを行い化学分析により微
粉炭の燃焼率を求めた。なおランス内管内に流すガス量
およびサンプリング位置以外の条件は実施例1の場合と
同一である。
(Embodiment 3) Two concentric double pipe lances shown in FIG. 2 are provided on the side wall of the blow pipe of the pulverized coal combustion furnace shown in FIG. 1 symmetrically with respect to the axis of the blow pipe, and inside the lance inner pipe. The amount of gas to flow is 0, 12, 24, 36, 48, 60, 7
The effect on the combustion rate was investigated by changing the value to 2,84 Nm 3 / h. In this case, the cross-sectional area of the gas flow path is the same for both the outer pipe and the inner pipe, and the gas flow velocity at the tip of the outer pipe is 16 Nm / s.
Met. Then, after combustion is stabilized, 3 from the tip of the lance.
Sampling was performed at a position of 00 mm, and the burning rate of pulverized coal was determined by chemical analysis. The conditions other than the amount of gas flowing into the lance inner tube and the sampling position are the same as in the first embodiment.

【0033】図5に内管内に流すガス量(以後、内管ガ
ス量と呼ぶ。)と内管と外管の間にある隙間から流す微
粉炭搬送用ガス量(以後、外管ガス量と呼ぶ。)の比と
微粉炭の燃焼率との関係を示す。内管ガス量と外管ガス
量の比が2以上5以下で燃焼率の向上が認められる。特
に3以上5以下でその効果が著しい。ガス流量比がこの
範囲にあると、微粉炭粒子の大きな温度低下を招くこと
なく、微粉炭主流をより外側へ拡散させることができる
ので、微粉炭の分散性が向上したためと考えられる。
FIG. 5 shows the amount of gas flowing into the inner pipe (hereinafter referred to as the inner pipe gas amount) and the amount of pulverized coal carrying gas flowing from the gap between the inner pipe and the outer pipe (hereinafter referred to as the outer pipe gas amount). ) And the burning rate of pulverized coal. When the ratio of the inner pipe gas amount to the outer pipe gas amount is 2 or more and 5 or less, the improvement of the burning rate is recognized. Particularly, the effect is remarkable when it is 3 or more and 5 or less. When the gas flow rate ratio is within this range, it is considered that the pulverized coal main flow can be diffused further outward without causing a large temperature drop of the pulverized coal particles, and therefore the dispersibility of the pulverized coal is improved.

【0034】[0034]

【発明の効果】本発明は以上説明したように構成されて
いるので、ランスから吹き込まれた微粉炭の分散性を改
善し、微粉炭と熱風との混合効率を上げるとともに同時
に吹き込む酸素を有効に活用して、微粉炭の燃焼率をよ
り一層向上させることのできる微粉炭吹き込み方法およ
び微粉炭吹き込み用ランスを提供できる。
EFFECTS OF THE INVENTION Since the present invention is constituted as described above, the dispersibility of pulverized coal blown from a lance is improved, the mixing efficiency of pulverized coal and hot air is improved, and the oxygen blown at the same time is made effective. By utilizing this, it is possible to provide a pulverized coal blowing method and a pulverized coal blowing lance that can further improve the burning rate of the pulverized coal.

【図面の簡単な説明】[Brief description of drawings]

【図1】微粉炭燃焼炉を示す図である。FIG. 1 is a diagram showing a pulverized coal combustion furnace.

【図2】本発明の一実施例であるランスの断面図であ
る。
FIG. 2 is a cross-sectional view of a lance that is an embodiment of the present invention.

【図3】本発明の別の一実施例であるランスの断面図で
ある。
FIG. 3 is a sectional view of a lance that is another embodiment of the present invention.

【図4】ランス先端からの距離と微粉炭の燃焼率の関係
を示す図である。
FIG. 4 is a diagram showing the relationship between the distance from the tip of the lance and the burning rate of pulverized coal.

【図5】内管ガス量と外管ガス量の比と微粉炭の燃焼率
との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a ratio of an inner pipe gas amount and an outer pipe gas amount and a burning rate of pulverized coal.

【符号の説明】 1 ランス 2 ブローパイプ 4 羽口 10 内管 11 外管 12 螺旋上の羽 13 スリット[Explanation of symbols] 1 Lance 2 Blow pipe 4 Tuyere 10 Inner tube 11 Outer tube 12 Spiral blade 13 Slit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高炉の各羽口に連結されたブローパイプ
の側壁に同心2重管構造のランスを複数個設け、前記ラ
ンスの内管と外管の間にある隙間より微粉炭を微粉炭搬
送用ガスとともに吹き込み、内管内には空気または酸素
あるいはまたこれらの混合ガスを前記微粉炭搬送用ガス
の流量の2倍以上5倍以下の流量になるように流すこと
を特徴とする高炉への微粉炭吹き込み方法。
1. A plurality of lances having a concentric double pipe structure are provided on a side wall of a blow pipe connected to each tuyere of a blast furnace, and pulverized coal is pulverized coal from a gap between an inner pipe and an outer pipe of the lance. A blast furnace characterized by being blown together with a carrier gas and flowing air or oxygen or a mixed gas thereof into the inner pipe so as to have a flow rate which is 2 times or more and 5 times or less the flow rate of the pulverized coal carrying gas. Pulverized coal blowing method.
【請求項2】 高炉の各羽口に連結されたブローパイプ
の側壁に設けられる同心2重管構造のランスにおいて、
その先端部近傍の内管内に螺旋状の羽を設けたことを特
徴とする微粉炭吹き込み用ランス。
2. A lance having a concentric double pipe structure provided on a side wall of a blow pipe connected to each tuyere of a blast furnace,
A lance for blowing pulverized coal, characterized in that a spiral blade is provided in the inner pipe near the tip thereof.
【請求項3】 高炉の各羽口に連結されたブローパイプ
の側壁に設けられる同心2重管構造のランスにおいて、
内管を外管の先端部より突出させて、内管の先端部を閉
塞し、かつ外管より突出した内管の先端部側壁にスリッ
トを設けることを特徴とする微粉炭吹き込み用ランス。
3. A lance having a concentric double pipe structure provided on a side wall of a blow pipe connected to each tuyere of a blast furnace,
A lance for blowing pulverized coal, characterized in that the inner tube is projected from the tip of the outer tube to close the tip of the inner tube, and a slit is provided on the side wall of the tip of the inner tube protruding from the outer tube.
JP29847994A 1994-12-01 1994-12-01 Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal Pending JPH08157916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29847994A JPH08157916A (en) 1994-12-01 1994-12-01 Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29847994A JPH08157916A (en) 1994-12-01 1994-12-01 Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal

Publications (1)

Publication Number Publication Date
JPH08157916A true JPH08157916A (en) 1996-06-18

Family

ID=17860236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29847994A Pending JPH08157916A (en) 1994-12-01 1994-12-01 Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal

Country Status (1)

Country Link
JP (1) JPH08157916A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040028258A (en) * 2002-09-30 2004-04-03 주식회사 포스코 Pick-up apparatus in a pulverized- coal supply line of a blast furnace
JP2009542913A (en) * 2006-07-12 2009-12-03 ポール ヴルス エス.エイ. Pulverized coal injection lance
JP2011168882A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Method for operating blast furnace
JP2012188743A (en) * 2010-12-27 2012-10-04 Jfe Steel Corp Method for operating blast furnace
WO2013094230A1 (en) * 2011-12-21 2013-06-27 Jfeスチール株式会社 Blast furnace operation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040028258A (en) * 2002-09-30 2004-04-03 주식회사 포스코 Pick-up apparatus in a pulverized- coal supply line of a blast furnace
JP2009542913A (en) * 2006-07-12 2009-12-03 ポール ヴルス エス.エイ. Pulverized coal injection lance
KR101374562B1 (en) * 2006-07-12 2014-03-13 풀 부르스 에스.에이. Pulverized Coal Injection Lance
JP2011168882A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Method for operating blast furnace
JP2012188743A (en) * 2010-12-27 2012-10-04 Jfe Steel Corp Method for operating blast furnace
WO2013094230A1 (en) * 2011-12-21 2013-06-27 Jfeスチール株式会社 Blast furnace operation method
CN104024440A (en) * 2011-12-21 2014-09-03 杰富意钢铁株式会社 Blast furnace operation method
AU2012355194B2 (en) * 2011-12-21 2015-09-03 Jfe Steel Corporation Blast furnace operation method

Similar Documents

Publication Publication Date Title
KR100537700B1 (en) Pulverized coal combustion burner and combustion method thereby
JP5087955B2 (en) Melting reduction method
JP4341131B2 (en) Pulverized coal blowing burner
JPH08157916A (en) Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal
KR101629123B1 (en) Blast furnace operation method
JP3493937B2 (en) How to blow pulverized coal into the blast furnace
JP4506337B2 (en) Pulverized coal blowing burner for metallurgical furnace and method for blowing pulverized coal into metallurgical furnace
KR102021870B1 (en) Method for operating blast furnace
JP2000192119A (en) Method for blowing auxiliary fuel into blast furnace
JP4747662B2 (en) Lance for blowing gas reducing material, blast furnace and blast furnace operating method
JP3613902B2 (en) Burner with pulverized coal injection into blast furnace
JPH11343511A (en) Method for blowing pulverized coal into blast furnace
JPH11315310A (en) Method for blowing pulverized coal into blast furnace
JP3733601B2 (en) Apparatus for injecting pulverized coal for blast furnace and method for injecting pulverized coal in blast furnace
JPH1112613A (en) Lance for injecting pulverized fine coal into blast furnace
JPH1112612A (en) Lance for injecting pulverized fine coal into blast furnace
JPH06100912A (en) Lance for blowing powdery fuel for blast furnace
JP2004091921A (en) Method for blowing solid fuel into blast furnace and blown lance
JP3132312B2 (en) How to blow pulverized coal into the blast furnace
JP2005264189A (en) Method for blowing solid fuel into blast furnace
JP2963422B2 (en) Pulverized coal burner for blast furnace operation
JP2004285425A (en) Method for blowing pulverized coal into blast furnace
KR101629122B1 (en) Blast furnace operation method
JPH09256012A (en) Method for blowing pulverized fine coal into blast furnace and pipe for blowing pulverized fine coal
JP2001115202A (en) Operation method for blowing of auxiliary fuel into blast furnace

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010306