JP3493937B2 - How to blow pulverized coal into the blast furnace - Google Patents

How to blow pulverized coal into the blast furnace

Info

Publication number
JP3493937B2
JP3493937B2 JP06038897A JP6038897A JP3493937B2 JP 3493937 B2 JP3493937 B2 JP 3493937B2 JP 06038897 A JP06038897 A JP 06038897A JP 6038897 A JP6038897 A JP 6038897A JP 3493937 B2 JP3493937 B2 JP 3493937B2
Authority
JP
Japan
Prior art keywords
pulverized coal
lance
oxygen
combustion
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06038897A
Other languages
Japanese (ja)
Other versions
JPH10251715A (en
Inventor
道貴 佐藤
亮太 村井
達郎 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP06038897A priority Critical patent/JP3493937B2/en
Publication of JPH10251715A publication Critical patent/JPH10251715A/en
Application granted granted Critical
Publication of JP3493937B2 publication Critical patent/JP3493937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高炉の羽口から微
粉炭を吹込む方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for blowing pulverized coal from tuyere of a blast furnace.

【0002】[0002]

【従来の技術】微粉炭吹込みは、コークスとの価格差に
基づくコストメリットが大きいことから多くの高炉で採
用され、経済性向上に大きく寄与している。近年は、コ
ークス炉の炉命延長の観点からもその重要性が再認識さ
れ、益々、微粉炭の多量吹込みが指向されるようになっ
た。
2. Description of the Related Art Pulverized coal injection is used in many blast furnaces because it has a great cost advantage based on the price difference from coke, and it greatly contributes to the improvement of economic efficiency. In recent years, the importance of the extension of the life of a coke oven has been re-recognized, and more and more pulverized coal is being injected.

【0003】高炉に吹込む微粉炭量を増していくと、種
々の問題点が顕在化してくるが、その内の一つに未燃チ
ャーの炉内排出に起因した問題がある。すなわち、微粉
炭吹込み量を増すに従い、酸素過剰係数が低下するため
微粉炭の燃焼量(燃焼率)が低下し、レースウエイ内で
燃焼しきれない未燃チャーが多量に炉内に排出される。
この未燃チャーは、炉下部でソルーションロス反応によ
り優先的に消費される可能性もあるが、炉内消費量には
自ずと限界値が存在する。そのため、消費限界値以上に
チャーが発生すると、ダストとして炉頂から排出されて
置換率の低下や燃料比上昇を招く恐れがある。加えて、
これが炉芯や融着帯根部に蓄積すると、通気、通液性の
阻害による炉況不安定や生産性低下の原因となる。
When the amount of pulverized coal blown into the blast furnace is increased, various problems become apparent, one of which is a problem caused by discharge of unburned char into the furnace. That is, as the amount of pulverized coal injected increases, the oxygen excess coefficient decreases, so the combustion amount (combustion rate) of pulverized coal decreases, and a large amount of unburned char that cannot be completely burned in the raceway is discharged into the furnace. It
There is a possibility that this unburned char will be preferentially consumed in the lower part of the furnace due to the solution loss reaction, but there is naturally a limit value for the amount consumed in the furnace. Therefore, if char is generated above the consumption limit value, it may be discharged from the furnace top as dust, resulting in a decrease in the replacement rate and an increase in the fuel ratio. in addition,
Accumulation of this in the core of the furnace or the root of the cohesive zone causes instability of the furnace and deterioration of productivity due to obstruction of ventilation and liquid permeability.

【0004】そこで、安定した微粉炭多量吹込み操業を
実現するためには、未燃チャーの発生量を炉内消費量限
界以下に抑えることが不可欠であり、このためには、レ
ースウエイ部における微粉炭の燃焼率を一層向上させる
ことが必要である。
Therefore, in order to realize a stable operation of blowing a large amount of pulverized coal, it is indispensable to suppress the amount of unburned char generated within the furnace consumption limit. For this purpose, in the raceway section It is necessary to further improve the burning rate of pulverized coal.

【0005】通常の微粉炭吹込み操業では、微粉炭吹込
み用の単管ランス先端部をブローパイプ内に突出させ、
ランス先端の開口部から吹込む方法が一般的である。こ
の方法は、一本のランスから全量の微粉炭を噴出させる
ため、ランスから噴出直後の固体濃度は高く、また、熱
風の慣性力も大きいことから径方向にあまり拡散できな
い。このため微粉炭と熱風の混合および酸素との接触効
率が低く、固体の昇温が遅れる。また、燃焼の進行に伴
い微粉炭周囲の酸素が急激に消費され、微粉炭の周囲は
酸素不足の状態となるが、熱風は基本的に一方向流れで
あるため、酸素の拡散も容易でなく燃焼率上昇も見込め
ないという欠点があった。
In a normal pulverized coal blowing operation, the tip of a single pipe lance for blowing pulverized coal is projected into the blow pipe,
The method of blowing from the opening at the tip of the lance is common. In this method, since the entire amount of pulverized coal is ejected from one lance, the solid concentration immediately after being ejected from the lance is high, and the inertial force of hot air is large, so that it cannot be diffused so much in the radial direction. Therefore, the mixing efficiency of pulverized coal and hot air and the contact efficiency with oxygen are low, and the temperature rise of the solid is delayed. Also, as combustion progresses, oxygen around the pulverized coal is rapidly consumed, and the surroundings of the pulverized coal are in an oxygen-deficient state, but since hot air is basically one-way flow, diffusion of oxygen is not easy. There was a drawback that it could not be expected to raise the burning rate.

【0006】上記問題を解決する手段として、ランスを
2重管構造とし、酸素と微粉炭の接触効率を向上させる
方法の開発が行われている。例えば、特開平2−213
406号公報、特開平6−100912号公報では、同
心2重管ランスの内側に微粉炭、外部に酸素あるいは酸
素と空気の混合気(酸素富化空気)を流し、微粉炭周囲
の酸素濃度を高めることによって燃焼速度の向上と酸素
不足の問題の解消を図っている。また、特開平1−92
304号公報では酸素の導入効率を高めるため、ランス
を3重管構造とし、最外管は水冷し、微粉炭を最内管に
流し、その周りを取り囲むように配置した複数個のノズ
ルから酸素を微粉炭に向かって噴出させる方法を開示し
ている。一方、羽口1個につきランスを2本設置する、
いわゆるダブルランス化によって燃焼性を向上させる試
みもなされている。鉄と鋼vol.80(1994),
p288によれば、単管のランス2本をブローパイプ内
に挿入し、各ランスから吹込み微粉炭量の半量ずつを吹
込む実験を実施している。この方法では、微粉炭の噴出
起点を複数個にできるため、吹込み直後から微粉炭をよ
り広い空間領域に分布させることが可能で比較的均一な
分散性が達成される。このため微粉炭と熱風中の酸素と
の接触効率が高まり、昇温および揮発分の熱分解が速ま
り、結果的に燃焼が速く進行して高い燃焼率を達成でき
るとされている。
As a means for solving the above problems, a method of improving the contact efficiency between oxygen and pulverized coal by forming the lance with a double tube structure has been developed. For example, Japanese Patent Laid-Open No. 2-213
In Japanese Patent Application Laid-Open No. 406 and Japanese Patent Application Laid-Open No. 6-100912, pulverized coal is flown inside a concentric double tube lance, and oxygen or a mixture of oxygen and air (oxygen-enriched air) is flowed outside to adjust the oxygen concentration around the pulverized coal. By increasing it, the burning rate is improved and the problem of oxygen deficiency is solved. In addition, JP-A-1-92
In JP 304, in order to improve the efficiency of introducing oxygen, the lance has a triple tube structure, the outermost tube is water-cooled, the pulverized coal is flown to the innermost tube, and oxygen is supplied from a plurality of nozzles arranged so as to surround it. It discloses a method of ejecting the powder toward a pulverized coal. On the other hand, install two lances for each tuyere,
Attempts have been made to improve the combustibility by so-called double lance. Iron and steel vol. 80 (1994),
According to p288, two single lances are inserted into the blow pipe, and an experiment is performed in which half of the amount of pulverized coal blown is blown from each lance. In this method, since the pulverized coal can be ejected from a plurality of starting points, it is possible to distribute the pulverized coal in a wider space immediately after the injection, and a relatively uniform dispersibility is achieved. Therefore, it is said that the contact efficiency between the pulverized coal and oxygen in the hot air is increased, the temperature rise and the thermal decomposition of volatile matter are accelerated, and as a result, the combustion proceeds rapidly and a high combustion rate can be achieved.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開平
2−213406号公報、特開平6−100912号公
報では、微粉炭とガス(酸素あるいは酸素と空気の混合
気)を一本のランスから全量吹込み、かつガスが微粉炭
を取り囲むように流す方法であるが、導入したガスは微
粉炭と混合する前に周囲の熱風と急速に混合し、微粉炭
近傍の酸素濃度を高める効果が半減してしまう可能性が
ある。また仮に、微粉炭と混合できたとしても、導入し
た高濃度酸素が消費されるまでの初期の燃焼性は向上す
るが、それ以降は鉄と鋼vol.80(1994),p
288の方法とは異なり、微粉炭の分散性を本質的に向
上させることはできないため、熱風中の酸素を燃焼に有
効に利用することができず、燃焼性は抑制される。特開
平1−92304号公報では酸素を微粉炭に向かって噴
出させるため比較的効率良く微粉炭に酸素を導入するこ
とができるが、酸素は最外管により水冷されているた
め、導入酸素自身の冷却効果により微粉炭の昇温遅れが
生じる等の問題を有する。また、鉄と鋼vol.80
(1994),p288の方法は、微粉炭の分散性の改
善による熱風中酸素の利用率では優れているものの、燃
焼速度の観点から見ると熱風中の酸素濃度(一般に、2
1〜25%程度)に対応した数値が限界であるため、理
想的な分散条件を満たしたとしても燃焼率には限界値が
存在する。
However, in JP-A-2-213406 and JP-A-6-100912, the entire amount of pulverized coal and gas (oxygen or a mixture of oxygen and air) is blown from one lance. In this method, the gas is introduced so that it surrounds the pulverized coal, but the introduced gas is rapidly mixed with the hot air around it before mixing with the pulverized coal, and the effect of increasing the oxygen concentration near the pulverized coal is halved. There is a possibility that it will end up. Even if it could be mixed with pulverized coal, the initial combustibility before the high concentration oxygen introduced was improved, but after that, iron and steel vol. 80 (1994), p
Unlike the method of No. 288, since the dispersibility of pulverized coal cannot be essentially improved, oxygen in hot air cannot be effectively used for combustion, and combustibility is suppressed. In Japanese Patent Laid-Open No. 1-92304, oxygen is jetted toward pulverized coal, so that oxygen can be introduced into pulverized coal relatively efficiently. However, since oxygen is water-cooled by the outermost pipe, the amount of introduced oxygen itself is reduced. There is a problem that the temperature rise of the pulverized coal is delayed due to the cooling effect. In addition, iron and steel vol. 80
Although the method of (1994), p288 is excellent in the utilization factor of oxygen in hot air by improving the dispersibility of pulverized coal, from the viewpoint of the combustion rate, the oxygen concentration in hot air (generally, 2
Since the numerical value corresponding to (1 to 25%) is the limit, there is a limit value in the combustion rate even if the ideal dispersion condition is satisfied.

【0008】そこで、本発明は、微粉炭吹込み後の燃焼
性を全空間に亘って維持し、高い燃焼率を得る微粉炭吹
込み方法を提供することを目的とする。
[0008] Therefore, it is an object of the present invention to provide a pulverized coal blowing method which maintains the combustibility after pulverized coal injection over the entire space and obtains a high combustion rate.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を以下
の方法によって達成する。
The present invention achieves the above object by the following method.

【0010】第1の方法は、高炉羽口に連結するブロー
パイプの壁を貫通させて設けた2重管構造のランスの内
管より微粉炭を、外管から酸素または酸素富化空気を吹
込む方法において、このようなランスを羽口1個につき
2本挿入し、それぞれの中心軸の延長線が相互に交差せ
ず、かつ、ブローパイプの中心軸とも交差しないように
非対称に設置する高炉への微粉炭吹込み方法である。
In the first method, pulverized coal is blown from the inner tube of a lance having a double tube structure provided through the wall of a blow pipe connected to the tuyere of the blast furnace, and oxygen or oxygen-enriched air is blown from the outer tube. In this method, two such lances are inserted per tuyere and installed asymmetrically so that the extension lines of the respective central axes do not intersect with each other and do not intersect with the central axis of the blow pipe. It is a method of blowing pulverized coal into.

【0011】第2の方法は、第1の方法において、2重
管ランスの外管のガスの噴出方向とランス中心軸とのな
す角度が30°以上でかつ、ガスの線速度が30m/s
以上60m/s以下になるように噴出させる高炉への微
粉炭吹込み方法である。
The second method is the same as the first method, except that the angle formed between the jet direction of the gas of the outer tube of the double tube lance and the central axis of the lance is 30 ° or more, and the linear velocity of the gas is 30 m / s.
It is a method for injecting pulverized coal into a blast furnace in which it is jetted at a rate of 60 m / s or less.

【0012】「作用」2重ランスを1本だけ使用した場
合には、前述のように初期の燃焼速度は、酸素の局所的
な富化によって一旦向上するが、これ以降は微粉炭の分
散性が低いため周囲の熱風中の酸素を有効に利用するこ
とができず、燃焼性は急激に悪化する。これに対し、2
重管ランスを2本使用すると、分散起点の複数化により
空間分散性が改善され、さらにランスを上述のように非
対称に配置させているので、2本の微粉炭の主流同士の
相互干渉が防止でき、微粉炭吹込み直後のみならず、下
流側でも高度な分散が達成できる。よって、初期の燃焼
速度は、上述の2重管ランス1本の場合と同様に改善さ
れ、それ以降も分散強化によって周囲のガスとの接触が
維持できるので、燃焼性の悪化を招くことなく高い燃焼
性を達成することができる。従って、2重ランス1本か
ら吹込み、または単管ランス2本からの吹込み時に比べ
て、本発明の方法は軸方向全体に亘って燃焼を促進で
き、結果的に燃焼率を大きく向上させることができる。
[Operation] When only one double lance is used, the initial burning rate is once improved by the local enrichment of oxygen as described above, but thereafter the dispersibility of pulverized coal is increased. Since oxygen is low, the oxygen in the surrounding hot air cannot be effectively used, and the flammability rapidly deteriorates. On the other hand, 2
When two heavy pipe lances are used, spatial dispersion is improved due to the multiple dispersion starting points, and the lances are arranged asymmetrically as described above, so mutual interference between the two main streams of pulverized coal is prevented. It is possible to achieve a high degree of dispersion not only immediately after blowing pulverized coal but also on the downstream side. Therefore, the initial combustion speed is improved similarly to the case of the above-mentioned single double tube lance, and thereafter, the contact with the surrounding gas can be maintained by the dispersion strengthening, so that the combustibility is not deteriorated and is high. Flammability can be achieved. Therefore, the method of the present invention can promote combustion over the entire axial direction as compared with the case of injection from one double lance or the case of injection from two single tube lances, and as a result, the combustion rate is greatly improved. be able to.

【0013】さらに、2重管ランスの外管から導入する
酸素または酸素富化空気の噴出条件について検討を行っ
た結果、酸素または酸素富化空気の噴出方向とランス中
心軸とのなす角度θが30°以上でかつ、ガスの線速度
が30m/s以上60m/s以下になるように噴出させ
ることが必要であることが分かった。θを30°以上と
する理由は、30°以下だと微粉炭の主流線に到達する
前に周囲の熱風と混合してしまい、微粉炭近傍の酸素濃
度を局所的に高めることができないためである。ただ
し、60°を越えると着火点がランスに近づきランス先
端の溶損の問題が生じ易いため、60°以下であるのが
望ましい。
Further, as a result of investigating the ejection conditions of oxygen or oxygen-enriched air introduced from the outer pipe of the double pipe lance, the angle θ formed by the ejection direction of oxygen or oxygen-enriched air and the central axis of the lance is determined. It has been found that it is necessary to eject gas at a temperature of 30 ° or more and a linear velocity of gas of 30 m / s or more and 60 m / s or less. The reason why θ is set to 30 ° or more is that if it is 30 ° or less, the oxygen concentration in the vicinity of the pulverized coal cannot be locally increased because it mixes with the hot air before reaching the main streamline of the pulverized coal. is there. However, if it exceeds 60 °, the ignition point approaches the lance and the problem of melting damage at the tip of the lance is likely to occur. Therefore, it is preferably 60 ° or less.

【0014】また、ガスの線速度が30m/s以上60
m/s以下とする理由は、30m/s以下の場合は、微
粉炭の慣性力に打ち勝って酸素を微粉炭近傍に十分供給
することができないためであり、60m/sを越えると
燃焼火炎の吹き消えが生じ、安定した燃焼を持続できな
くなるためである。
Further, the linear velocity of the gas is 30 m / s or more 60
The reason for setting m / s or less is that when it is 30 m / s or less, the inertial force of the pulverized coal cannot be overcome and oxygen cannot be sufficiently supplied in the vicinity of the pulverized coal. This is because blowout occurs and stable combustion cannot be maintained.

【0015】[0015]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【0016】[0016]

【実施例】以下に本発明の実施例を比較例とともに説明
する。 「実施例1」微粉炭の燃焼実験を図1に示す微粉炭燃焼
炉を用いて行った。3は微粉炭燃焼炉のコークスの充填
層である。微粉炭燃焼炉は内径90φのブローパイプ2
一本と内径65φの羽口4一本を有している。ブローパ
イプ2の後部には、上下に斜めに設けたランスガイド管
5が設けられており、このランスガイド管5を介して2
本のランス1a,1bの先端を突出してブローパイプ2
の内部に挿入されている。そして、図2に示すように、
ランス1a,1bの中心軸線がブローパイプ2の中心軸
と交差しないように、かつその先端位置がブローパイプ
2の中心軸に対して非対称となるように取り付けた。ラ
ンス1a,1bの先端位置から羽口先までの距離は12
00mmとした。使用したランスの縦断面図を図3に示
す。図3に示すように、ランス1は内管10および外管
11からなる2重管構造となっている。ランス1の先端
に、外管11から内管10の先端にかけて斜めにガス噴
出孔12が開けられている。ガス噴出孔12のガスの噴
出方向とランス中心軸とのなす角度θは45°とした。
図4は図3のA−A矢視図であり、8個のガス噴出孔1
2が、ランス1の先端の内管10の円周に等角度で開口
している。
EXAMPLES Examples of the present invention will be described below together with comparative examples. [Example 1] A pulverized coal combustion experiment was conducted using the pulverized coal combustion furnace shown in Fig. 1. Reference numeral 3 is a coke packed bed of the pulverized coal combustion furnace. The pulverized coal combustion furnace has a blow pipe 2 with an inner diameter of 90φ.
It has one tuyere and one tuyere with an inner diameter of 65φ. At the rear of the blow pipe 2, there is provided a lance guide pipe 5 which is provided obliquely up and down.
Blow pipe 2 by protruding the ends of books lances 1a, 1b
Has been inserted inside. Then, as shown in FIG.
The lances 1a and 1b were attached so that the central axes of the lances 1a and 1b do not intersect with the central axis of the blow pipe 2 and the tip positions thereof are asymmetric with respect to the central axis of the blow pipe 2. The distance from the tip of the lances 1a and 1b to the tuyere is 12
It was set to 00 mm. A longitudinal sectional view of the lance used is shown in FIG. As shown in FIG. 3, the lance 1 has a double pipe structure including an inner pipe 10 and an outer pipe 11. A gas ejection hole 12 is obliquely formed at the tip of the lance 1 from the outer tube 11 to the tip of the inner tube 10. The angle θ formed by the gas ejection direction of the gas ejection hole 12 and the lance center axis was 45 °.
FIG. 4 is a view on arrow AA of FIG. 3, showing eight gas ejection holes 1
2 are opened at an equal angle on the circumference of the inner tube 10 at the tip of the lance 1.

【0017】図1に示すように、7は微粉炭切出しホッ
パー、8は微粉炭供給管であり、微粉炭は窒素ガスをキ
ャリアガスとして、ランス1a,1bからブローパイプ
2内に吹き込まれる。
As shown in FIG. 1, 7 is a pulverized coal cutting hopper and 8 is a pulverized coal supply pipe. The pulverized coal is blown into the blow pipe 2 from the lances 1a and 1b using nitrogen gas as a carrier gas.

【0018】燃焼実験に使用した微粉炭の工業分析を表
1に示す。微粉炭の粒度は、−74μmが80%であ
る。
An industrial analysis of the pulverized coal used in the combustion experiment is shown in Table 1. The particle size of pulverized coal is 80% at -74 μm.

【0019】[0019]

【表1】 [Table 1]

【0020】実験は、先ず、ブローパイプ2にLPGの
燃焼ガスに酸素を混入して酸素濃度21%になるように
調整した疑似空気を350Nm3 /hを送風し、羽口先
温度を1200℃に昇温した。羽口先温度が1200℃
で安定したところで、微粉炭切出しホッパー7から微粉
炭を65kg/hで切出し、12Nm3 /hの窒素ガス
をキャリアガスとして微粉炭供給管8によって供給し、
ランスの手前で2つに分岐した後、2本のランス1a,
1bの内管10からブローパイプ2内に供給した。同時
に、2本のランス1a,1bの外管11に酸素14Nm
3 /hを供給した。この実験における酸素富化率は3.
0%、酸素過剰係数は0.78である。
In the experiment, first, 350 Nm 3 / h was blown into the blow pipe 2 by mixing artificial air into the combustion gas of LPG to adjust the oxygen concentration to 21%, and the tuyere temperature was set to 1200 ° C. The temperature was raised. Tuyere temperature is 1200 ℃
When stabilized at, pulverized coal is cut out from the pulverized coal cutting hopper 7 at 65 kg / h, and nitrogen gas of 12 Nm 3 / h is supplied as a carrier gas by the pulverized coal supply pipe 8.
After branching into two before the lance, two lances 1a,
It was supplied into the blow pipe 2 from the inner pipe 10 of 1b. At the same time, the outer tube 11 of the two lances 1a and 1b has oxygen of 14 Nm.
3 / h was supplied. The oxygen enrichment in this experiment was 3.
The oxygen excess coefficient is 0% and 0.78.

【0021】微粉炭の吹込み量は、実高炉の微粉炭吹込
み量換算で、200kg/tに相当する。内管先端から
噴出する微粉炭/キャリアガスの流速は、流路の断面積
から計算すると16m/sであり、一方の外管を経由し
てガス噴出孔先端における酸素ガスの流速は40mであ
った(いずれも、25℃換算)。
The pulverized coal injection rate corresponds to 200 kg / t in terms of the pulverized coal injection rate in the actual blast furnace. The flow velocity of pulverized coal / carrier gas ejected from the tip of the inner pipe was 16 m / s calculated from the cross-sectional area of the flow path, and the flow velocity of oxygen gas at the tip of the gas ejection hole was 40 m via one outer pipe. (All converted to 25 ° C).

【0022】微粉炭の燃焼中に、図1に示すサンプリン
グプローブ挿入ガイド管6から、サンプリングプローブ
を挿入し、ランス先端から300,600,900mm
の各位置で微粉炭ダストのサンプリングを行った。得ら
れたダストを化学分析して燃焼率を求めた。ランス先端
からの各距離位置における燃焼率の変化を図5に示す。
300mm位置で燃焼率は既に60%まで向上してお
り、900mm位置では80%まで上昇した。このこと
は、微粉炭の燃焼速度が大きいことを示している。
During the combustion of pulverized coal, the sampling probe is inserted from the sampling probe insertion guide tube 6 shown in FIG. 1, and 300, 600, 900 mm from the tip of the lance.
Pulverized coal dust was sampled at each position. The obtained dust was chemically analyzed to determine the burning rate. FIG. 5 shows changes in the combustion rate at various distances from the tip of the lance.
The burning rate has already improved to 60% at the 300 mm position, and has risen to 80% at the 900 mm position. This indicates that the burning rate of pulverized coal is high.

【0023】「比較例1」実施例1で使用した2重管ラ
ンス1本を用いて実施例1と同様、微粉炭吹込み量換算
で200kg/t相当の実験を行った。ランス先端にお
けるキャリアガス流速およびガス噴出孔先端におけるガ
ス流速は、実施例1と同一になるようにランス内径およ
び外径を調整した。燃焼率測定結果を図5に併せて示
す。ランス先端から300mm位置での燃焼率は、50
%程度まで上昇するが、900mmにおける燃焼率は6
0%程度までしか向上しなかった。これは、微粉炭吹込
み直後には、ランスから導入した酸素の富化効果が現
れ、燃焼速度が向上したと考えられるが、これ以降は粒
子の分散性が低いため、熱風との効率良い接触が達成さ
れず、微粉炭流内部の酸素不足の状態が解消できなかっ
たためと考えられる。
"Comparative Example 1" Using one double tube lance used in Example 1, an experiment equivalent to 200 kg / t in terms of pulverized coal blowing rate was conducted in the same manner as in Example 1. The inner diameter and outer diameter of the lance were adjusted so that the carrier gas flow rate at the tip of the lance and the gas flow rate at the tip of the gas ejection hole were the same as in Example 1. The burning rate measurement results are also shown in FIG. The burning rate at the position of 300 mm from the tip of the lance is 50
%, But the burning rate at 900 mm is 6
It improved only to about 0%. It is considered that the effect of enriching the oxygen introduced from the lance appeared immediately after the injection of pulverized coal, and the combustion speed improved, but after that, since the dispersibility of particles was low, efficient contact with hot air was achieved. It is considered that this was not achieved and the lack of oxygen inside the pulverized coal flow could not be resolved.

【0024】「比較例2」外管を有しない単管ランス二
本を使用して実施例1と同様な実験を行った。ランス先
端のキャリアガス流速は、実施例1と同一になるように
ランス径を調整した。また、酸素は実施例1と同量をL
PGの燃焼ガスである熱風中に富化した。燃焼率測定結
果を図5に併せて示す。ランス先端から300mm位置
での燃焼率は、比較例1の場合に比べて低いが、600
mm位置で逆転し、900mm位置で75%程度まで向
上できることが分かった。しかしながら、実施例1には
及ばなかった。このことは、吹込み箇所の複数化は微粉
炭の空間内への分散性を改善し、空間全体に亘って燃焼
性を維持できることを示しているが、実施例1の場合よ
りも着火が遅れ、しかも燃焼温度が低いことが、実施例
1ほど燃焼率が向上しなかった原因と考えられる。
"Comparative Example 2" The same experiment as in Example 1 was conducted using two single tube lances having no outer tube. The lance diameter was adjusted so that the carrier gas flow velocity at the tip of the lance was the same as in Example 1. In addition, the same amount of oxygen as in Example 1 is L
It was enriched in the hot air that is the combustion gas of PG. The burning rate measurement results are also shown in FIG. The burning rate at the position of 300 mm from the tip of the lance is lower than that of Comparative Example 1, but 600
It was found that it was reversed at the mm position and could be improved to about 75% at the 900 mm position. However, it did not reach Example 1. This indicates that the use of multiple injection points improves the dispersibility of the pulverized coal in the space and maintains the combustibility over the entire space, but ignition is delayed compared to the case of the first embodiment. Moreover, it is considered that the low combustion temperature is the reason why the combustion rate was not improved as much as Example 1.

【0025】「実施例2」図3に示す2重管ランスの外
管からの酸素ガスの噴出角度θおよびガス噴出孔の断面
積を各種変更し、実施例1と同様な実験を行った。θは
30°から75°まで15°おきに変更し、ガス噴出孔
先端のガス流速は20m/sから80m/sまで20m
/sおきに変更できるように各θにつき、ガス噴出孔の
断面積の異なる4本のランスを製作した。図6は、ガス
噴出角度と300mm位置における燃焼率の関係をガス
流速ごとに示したグラフである。図より、θが30°か
ら60°の範囲では、θの上昇とともに燃焼率が上昇す
ることがわかる。また、ガス流速の上昇によっても燃焼
率は上昇する。しかしながら、ガス流速が20m/sの
ときはθを大きくしても燃焼率はせいぜい50%前後で
効果が低い。熱風中に酸素を富化した比較例2の場合と
比較し明らかな効果を得るためには30m/s以上のガ
ス流速にする必要があると思われる。一方、θおよびガ
ス流速が共に大きい領域では、ランス先端部の溶損や火
炎の吹き消え現象が認められるようになり、燃焼率も変
わらないか低下傾向にあるため、あまり好ましくないこ
とが分かった。従って、θは30°以上、望ましくは6
0°以下であり、ガス流速は30m/s以上、60m/
s以下を同時に満足できれば、燃焼率は比較例1または
比較例2に比べて高くなり、本発明の方法が有効に実施
されることになる。
[Example 2] The same experiment as in Example 1 was carried out by changing the ejection angle θ of oxygen gas from the outer tube of the double tube lance shown in Fig. 3 and the cross-sectional area of the gas ejection hole. θ is changed from 30 ° to 75 ° at intervals of 15 °, and the gas flow velocity at the tip of the gas ejection hole is 20 m from 80 m / s to 20 m / s.
For each θ, four lances with different cross-sectional areas of the gas ejection holes were manufactured so that they could be changed every / s. FIG. 6 is a graph showing the relationship between the gas ejection angle and the combustion rate at the 300 mm position for each gas flow velocity. From the figure, it can be seen that in the range of θ from 30 ° to 60 °, the combustion rate increases as θ increases. Further, the combustion rate also rises as the gas flow velocity increases. However, when the gas flow velocity is 20 m / s, even if θ is increased, the combustion rate is at most about 50% and the effect is low. It is considered necessary to set the gas flow velocity to 30 m / s or more in order to obtain a clear effect as compared with the case of Comparative Example 2 in which hot air is enriched with oxygen. On the other hand, in the region where both θ and the gas flow velocity are large, melting loss at the tip of the lance and flame blowout phenomenon are observed, and the burning rate is unchanged or tends to decrease. . Therefore, θ is 30 ° or more, preferably 6
0 ° or less, gas flow velocity is 30 m / s or more, 60 m / s
If s or less is satisfied at the same time, the combustion rate becomes higher than that of Comparative Example 1 or Comparative Example 2, and the method of the present invention is effectively carried out.

【0026】[0026]

【発明の効果】本発明によれば、燃焼初期においては、
微粉炭近傍の酸素濃度を局所的に高めることができるこ
とおよび微粉炭の分散性改善により、微粉炭の燃焼性を
向上させることができ、また、それ以降は微粉炭の分散
性の維持により熱風中の酸素と混合を持続できるから高
い燃焼率が得られる。すなわち、本発明方法は、微粉炭
吹込み後、全空間に亘って燃焼性を停滞させることなく
進行させ得るので、微粉炭の最終燃焼率を大幅に向上さ
せることができる。
According to the present invention, in the early stage of combustion,
The oxygen concentration near the pulverized coal can be locally increased and the dispersibility of the pulverized coal can be improved to improve the combustibility of the pulverized coal, and thereafter, the dispersibility of the pulverized coal can be maintained in hot air. A high combustion rate can be obtained because the mixing with the oxygen of the above can be continued. That is, according to the method of the present invention, after the pulverized coal is blown, the combustibility can be advanced over the entire space without stagnation, so that the final combustion rate of the pulverized coal can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る微粉炭燃焼実験に用いた微粉炭燃
焼炉の縦断面図である。
FIG. 1 is a vertical sectional view of a pulverized coal combustion furnace used in a pulverized coal combustion experiment according to the present invention.

【図2】本発明に係るランスの配置の説明図である。FIG. 2 is an explanatory view of an arrangement of lances according to the present invention.

【図3】微粉炭燃焼実験に使用したランスの縦断面図で
ある。
FIG. 3 is a vertical sectional view of a lance used in a pulverized coal combustion experiment.

【図4】図3のA−A矢視図である。FIG. 4 is a view on arrow AA of FIG.

【図5】ランス先端からの距離と微粉炭の燃焼率の関係
を示すグラフである。
FIG. 5 is a graph showing the relationship between the distance from the tip of the lance and the burning rate of pulverized coal.

【図6】ガス噴出角度と300mm位置における燃焼率
の関係をガス流速ごとに示したグラフである。
FIG. 6 is a graph showing a relationship between a gas ejection angle and a combustion rate at a position of 300 mm for each gas flow velocity.

【符号の説明】[Explanation of symbols]

1,1a,1b ランス 2 ブローパイプ 3 コークス充填層 4 羽口 5 ランスガイド管 6 サンプリングプローブ挿入ガイド管 7 微粉炭切出しホッパー 8 微粉炭供給管 10 内管 11 外管 12 ガス噴出孔 1,1a, 1b Lance 2 blow pipe 3 Coke packed bed 4 tuyere 5 Lance guide tube 6 Sampling probe insertion guide tube 7 Pulverized coal cutting hopper 8 Pulverized coal supply pipe 10 inner tube 11 outer tube 12 gas ejection holes

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21B 7/00 309 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C21B 7/00 309

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高炉羽口に連結するブローパイプの壁を
貫通させて設けた2重管構造のランスの内管より微粉炭
を、外管から酸素または酸素富化空気を吹込む方法にお
いて、このようなランスを羽口1個につき2本挿入し、
それぞれの中心軸の延長線が相互に交差せず、かつ、ブ
ローパイプの中心軸とも交差しないように非対称に設置
することを特徴とする高炉への微粉炭吹込み方法。
1. A method of injecting pulverized coal from an inner tube of a lance having a double-tube structure provided by penetrating a wall of a blow pipe connected to a tuyere of a blast furnace, and oxygen or oxygen-enriched air from an outer tube, Insert two such lances for each tuyere,
A method for injecting pulverized coal into a blast furnace, characterized in that the extension lines of the respective central axes are installed asymmetrically so that they do not intersect with each other and also with the central axes of the blow pipes.
【請求項2】 2重管ランスの外管のガスの噴出方向と
ランス中心軸とのなす角度が30°以上でかつ、ガスの
線速度が30m/s以上60m/s以下になるように噴
出させることを特徴とする請求項1記載の高炉への微粉
炭吹込み方法。
2. The double pipe lance is jetted so that the angle between the gas jetting direction of the outer pipe and the central axis of the lance is 30 ° or more and the linear velocity of the gas is 30 m / s or more and 60 m / s or less. The method for injecting pulverized coal into a blast furnace according to claim 1, wherein
JP06038897A 1997-03-14 1997-03-14 How to blow pulverized coal into the blast furnace Expired - Lifetime JP3493937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06038897A JP3493937B2 (en) 1997-03-14 1997-03-14 How to blow pulverized coal into the blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06038897A JP3493937B2 (en) 1997-03-14 1997-03-14 How to blow pulverized coal into the blast furnace

Publications (2)

Publication Number Publication Date
JPH10251715A JPH10251715A (en) 1998-09-22
JP3493937B2 true JP3493937B2 (en) 2004-02-03

Family

ID=13140722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06038897A Expired - Lifetime JP3493937B2 (en) 1997-03-14 1997-03-14 How to blow pulverized coal into the blast furnace

Country Status (1)

Country Link
JP (1) JP3493937B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720260B2 (en) * 2005-04-06 2011-07-13 Jfeスチール株式会社 Method and apparatus for injecting reducing material into blast furnace
JP5923968B2 (en) * 2010-12-27 2016-05-25 Jfeスチール株式会社 Blast furnace operation method
WO2013094229A1 (en) 2011-12-21 2013-06-27 Jfeスチール株式会社 Blast furnace operation method
EP4283233A1 (en) * 2011-12-21 2023-11-29 JFE Steel Corporation Double wall lance

Also Published As

Publication number Publication date
JPH10251715A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
KR100537700B1 (en) Pulverized coal combustion burner and combustion method thereby
US20070205543A1 (en) Oxidant-swirled fossil fuel injector for a shaft furnace
JP2006312757A (en) Injection lance for gaseous reducing material, blast furnace and blast furnace operation method
JP4341131B2 (en) Pulverized coal blowing burner
JP3493937B2 (en) How to blow pulverized coal into the blast furnace
KR101629123B1 (en) Blast furnace operation method
JP3733601B2 (en) Apparatus for injecting pulverized coal for blast furnace and method for injecting pulverized coal in blast furnace
JP4506337B2 (en) Pulverized coal blowing burner for metallurgical furnace and method for blowing pulverized coal into metallurgical furnace
JPH08157916A (en) Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal
JP2000192119A (en) Method for blowing auxiliary fuel into blast furnace
JPH11315310A (en) Method for blowing pulverized coal into blast furnace
JPH11343511A (en) Method for blowing pulverized coal into blast furnace
JP4747662B2 (en) Lance for blowing gas reducing material, blast furnace and blast furnace operating method
JP2986244B2 (en) Pulverized coal injection lance for blast furnace
JP2002121609A (en) Method for operating blast furnace by injecting large quantity of pulverized coal
JPH1112613A (en) Lance for injecting pulverized fine coal into blast furnace
JP2009097051A (en) Lance for blowing-in dust coal for blast furnace
JP3613902B2 (en) Burner with pulverized coal injection into blast furnace
KR20170107569A (en) Blast furnace operating method
KR200278277Y1 (en) Pulverized coal injection lance
JPH06100912A (en) Lance for blowing powdery fuel for blast furnace
JPH1112612A (en) Lance for injecting pulverized fine coal into blast furnace
JP2004091921A (en) Method for blowing solid fuel into blast furnace and blown lance
JP2005264189A (en) Method for blowing solid fuel into blast furnace
KR101629122B1 (en) Blast furnace operation method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term