JP4341131B2 - Pulverized coal blowing burner - Google Patents

Pulverized coal blowing burner Download PDF

Info

Publication number
JP4341131B2
JP4341131B2 JP2000014000A JP2000014000A JP4341131B2 JP 4341131 B2 JP4341131 B2 JP 4341131B2 JP 2000014000 A JP2000014000 A JP 2000014000A JP 2000014000 A JP2000014000 A JP 2000014000A JP 4341131 B2 JP4341131 B2 JP 4341131B2
Authority
JP
Japan
Prior art keywords
pulverized coal
nozzle
tuyere
oxygen gas
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000014000A
Other languages
Japanese (ja)
Other versions
JP2001200308A (en
Inventor
武 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000014000A priority Critical patent/JP4341131B2/en
Publication of JP2001200308A publication Critical patent/JP2001200308A/en
Application granted granted Critical
Publication of JP4341131B2 publication Critical patent/JP4341131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02E20/344

Landscapes

  • Air Supply (AREA)
  • Blast Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、微粉炭を酸素ガスで燃焼させるバーナーに関するものであり、微粉炭を高炉その他の広範囲の工業用反応炉ないし工業用反応容器、あるいは工業用加熱炉等において安価な燃料あるいは還元剤として、効率よく燃焼させるための微粉炭バーナーに関するものである。
【0002】
【従来の技術】
高炉製錬において使用されるコークスは、高炉内での燃料及び鉄鉱石の還元剤として作用し、このコークスの原料は、高品質の粘結炭である。しかしながら、この粘結炭は高価であり、埋蔵量も多くない。そこで高炉コークス用の原料炭の使用量を節減するために、その代替として安価で埋蔵量も豊富な非粘結炭を微粉炭の形態で直接高炉に吹き込む、いわゆる微粉炭吹込み操業が各所で行なわれ、できるだけ多量の微粉炭を吹き込むための技術開発が行なわれている。
【0003】
従来、微粉炭を高炉へ吹き込む方法として、高炉下部の羽口手前の送風支管の直管部にその外側から斜めにいわゆる微粉炭バーナーを差し込み、熱風中に微粉炭を吹込み、これを酸素ガスで燃焼させつつ炉内に吹き込む方法が知られている。
【0004】
ところが微粉炭は粉状の固体燃料であるから、例えば、重油等の液体燃料と比べると燃焼性に劣る。そこで、その燃焼性改善のために、送風中の酸素濃度を高めたり、送風温度を高め、更にバーナーをできるだけ羽口から手前に離れた位置に設置することにより、羽口から炉内に流入するまでの間に微粉炭の燃焼を促進する等の対策がとられている。
【0005】
しかしながら、微粉炭に含まれる灰分は、微粉炭の燃焼に伴う高温状態において溶融状態になり、羽口内面に付着して羽口口径を狭くしたり変形させたりして、羽口からの送風の制御性を損ない、そのために炉内の反応制御が困難になり、高炉操業の安定性を損なう。また、未燃微粉炭の炉内蓄積により炉内の通風性を低下させ、炉況の悪化を招く。
【0006】
従って、微粉炭バーナーの設計とその適切な使用は、微粉炭の燃焼性を向上させて未燃微粉炭の発生を防止し、高炉操業の安定性を確保しつつ、微粉炭吹込量を増やすために極めて重要な課題である。
【0007】
上記課題に対して、例えば、特開平7−23489号公報には、微粉炭の燃焼性向上と羽口内面への灰分の付着防止を図りつつ微粉炭を大量に吹き込むことができる微粉炭バーナーの開発を目的として、バーナーの軸芯線を含む中央部から微粉炭を噴出させ、その周りを取り囲んで複数の孔から酸素ガスを噴出させ、微粉炭と酸素ガスの噴出軸芯線が当該バーナーのノズルの先端より前方で交わるようにして両者を混合し、燃焼させる微粉炭バーナーを提案し、この微粉炭バーナーを高炉下部羽口に連設する送風支管の直管部に、その外側から斜めに差し込み、熱風中に上記混合流体を噴射して燃焼させる技術を開示している(以下、「先行技術1」という)。
【0008】
また、特開平1−268890号公報には、高酸素濃度送風ガスによる高炉操業において、微粉炭バーナーの軸芯部に炉内観察用の窓を設け、これより得られた情報を炉熱制御もしくは高炉の計算制御のために入力して、高炉の安定操業を図り、炉況を悪化させることなく、且つ羽口寿命を短くすることなく大量の微粉炭を吹き込むことを目的として、微粉炭バーナーに上記炉内観察用の管を設け、その外側に、順次、微粉炭吹込み管、羽口先の温度を調整するためのガスを吹き込む羽口先温度調整ガス管、及び酸素ガス管を同心円状にスリット形態のノズル管を配した微粉炭バーナーが開示されている。そして、微粉炭と各種ガスとの混合流体の進行方向を、羽口出口の手前の所定距離の位置よりも炉の内側に向けた構造に設計して燃焼性の向上を図っている(以下、「先行技術2」という)。
【0009】
【発明が解決しようとする課題】
コークスの代替として高炉に微粉炭を吹き込む場合には、高炉の安定操業を確保しつつ、安価に微粉炭の吹込み量を増やすことができる微粉炭吹込み用バーナーの開発が重要である。そのために、微粉炭バーナーが備えるべき性能として、上述した微粉炭の燃焼特性を向上させることにより未燃微粉炭の発生を防止して炉内の通風性の悪化を防止すると共に、一定量の酸素ガスにより燃焼する微粉炭量(以下、「微粉炭酸素比」)を上げて酸素使用量を低減しつつ、且つ多量の微粉炭を吹き込むことができることが重要である。更に、羽口内面への微粉炭中灰分の融着・堆積による羽口断面形状・寸法の縮小変形を防止する設計が必要である。
【0010】
上記課題に対して、先行技術1及び先行技術2ではいずれも十分な解決をすることができない。即ち、先行技術1では、羽口への灰分の融着・堆積なしに微粉炭吹込みが可能である微粉炭酸素比は十分満足すべきレベルに達していない。例えば、羽口への灰分の融着・堆積が発生しない条件下で微粉炭吹込み量が最大となったときの微粉炭酸素比を、同公報記載の実施例での数値を用いて算出すると、0.70kg−微粉炭/Nm3−O2ガスとなる。先行技術2では、同心円状スリットノズルの均一加工が難しく、特に300〜350m/s程度の高速で噴出する酸素ガス流は円周方向に不均一になり易い。このように、ガス流速を大きくすると噴出ガスに偏流が発生し、微粉炭と各ガスとの混合性が低下し、燃焼特性が低下する。従って、酸素ガスの流速を十分に大きくできないので、微粉炭吹込量増加にも限界がある。
【0011】
この発明の目的は、上述した問題を解決して、燃焼性が良好で、大量の微粉炭吹込みができ、且つ微粉炭酸素比が大きく酸素ガス使用量を低減することができる、微粉炭吹込み燃焼用のバーナーを開発することにある。
【0012】
【課題を解決するための手段】
本願発明者等は、上述した観点から鋭意研究を重ねた結果、微粉炭を円環状スリットノズルから円筒状流体で吹き込み、高速酸素ガスをノズル孔から吹き込んで混合流体を形成することにより、微粉炭の燃焼性を向上させることができ、更に羽口先温度調整用ガスを、上記混合流体の形成を乱さないように噴射させ、その燃焼状態を適切に設けられた炉内観察管を通して観察しつつ燃焼状態を制御すれば、微粉炭と純酸素ガスとの混合燃焼による高効率燃焼が行なわれることを知見した。更に、上記混合流体の形成領域を、バーナーの先端に取り付ける羽口よりも炉の内側方向に設定すれば、羽口に融着灰分が堆積して操業トラブルを起こすこともないことがわかった。
【0013】
この発明は、上記知見に基づきなされたものであり、その要旨は、以下の通りである。
【0014】
請求項1記載の微粉炭吹込みバーナーは、バーナーの軸芯線を含む中央部に炉内観察孔が設けられ、前記炉内観察孔の外側に同心円状に、微粉炭を吹き込むためのスリット形態の微粉炭吹込みノズルが設けられ、前記微粉炭吹込みノズルの外側の同心円上に、前記炉の羽口先の温度を調整するためのガスを噴出させるための羽口先温度調整ガスノズルが複数個並べて設けられ、前記羽口先温度調整ガスノズルの外側の同心円上に、酸素ガスを噴出させるための酸素ガスノズルが複数個並べて設けられ、前記羽口先温度調整ガスノズル及び前記酸素ガスノズルの少なくとも一方は、円管で構成され、そして、前記微粉炭吹込みノズル及び前記酸素ガスノズルは、前記微粉炭吹込みノズルから噴射される円筒状微粉炭流体の噴射方向と前記酸素ガスの噴射方向軸芯線との交点が、当該微粉炭バーナーの前方先端に設けられる前記羽口の内面先端位置よりも前記炉の内側方向に位置するように調整されていることに特徴を有するものである。
【0015】
請求項2記載の微粉炭吹込みバーナーは、請求項1に記載の微粉炭吹込みバーナーにおいて、前記微粉炭吹込みノズルの外側の同心円上に、前記酸素ガスノズルが複数個並べて設けられており、前記酸素ガスノズルの外側の同心円上に、前記羽口先温度調整ガスノズルが複数個並べて設けられていることに特徴を有するものである。
【0018】
【発明の実施の形態】
次に、この発明を図面を参照しながら説明する。
【0019】
図1〜図3は、本発明の微粉炭吹込みノズルの構造例を説明する図である。
【0020】
図1は、本発明の微粉炭吹込みバーナーの一例の基部側の縦断面を示す図である。
【0021】
図1において、右端側の炉内観察管1、微粉炭管2、羽口先温度調整ガス管3、酸素ガス管4及び冷却水管5は、すべてバーナー先端側のノズル部分まで延びている。微粉炭吹込みバーナー6の外周は水冷構造になっており、また基部には、冷却水入口7と出口8、微粉炭供給口9、羽口先温度調整ガス供給口10、及び酸素ガス供給口11が設けられている。炉内観察管1の基部には、その炉内観察管の先端への付着物を除去するパージガスの入口12等の付帯設備が設けられている。パージガスとしては、例えば、空気を用いる。
【0022】
図2は、図1の本発明の微粉炭吹込みバーナーの基部の他端側、即ち先端側のノズル部分及びこれに連設された羽口部分の縦断面拡大図である。
【0023】
図2において、バーナーの軸芯線中央部には炉内観察管1が設けられ、この外側にバーナーの軸芯線を中心とする同心円状に微粉炭吹込みノズル2が設けられ、更にこの外側に内側から順次、羽口先温度調整ガスノズル3及び酸素ガスノズル4が設けられている。
【0024】
各ノズル形態は、微粉炭吹込みノズル2は円環状のスリットノズルであるのに対して、羽口先温度調整ガスノズル3及び酸素ガスノズル4は、多孔ノズル、即ち、複数個のノズル孔が上記同心円上に配置されたものである。両ガスノズル3、4の横断面形状は所定直径の円形であるものが望ましい。円形であれば製作精度を容易に高水準に維持できる。図3は、図2の微粉炭吹込みバーナーの部分のA−A線矢視図であり、バーナー部分の正面図に相当する。
【0025】
各ノズル2、3、4先端部の形状・寸法は、それぞれ、微粉炭、羽口先温度調整ガス及び酸素ガスの流量及びノズル先端部での線速度を適切に決定すること、及び各流体の噴射方向にあわせて設計する。ここで、各流体の噴射方向は、この発明における重要事項であり、次の通りとする。
【0026】
図4は、各流体がそれぞれのノズルから噴射された方向を説明する図である。微粉炭吹込みノズル2から吹き込まれる微粉炭の流体2aは、微粉炭吹込みバーナー6の軸芯線Lを軸芯とした円筒状形態で進むが、羽口15の内面に衝突しないようにして炉内側に向ける。
【0027】
酸素ガスノズルから噴射する酸素ガスジェットの軸芯線4aは、バーナー6の軸芯線Lの方向に傾斜しており、微粉炭の流体2aと点Qで交わらせる。点Qを中心にした領域で微粉炭と酸素ガスとを混合する。点Qの位置は、羽口15の内面先端Pよりも炉内側にくるようにする。
【0028】
羽口先温度調整ガスは、微粉炭の支燃性ガスとして純酸素ガスを用いるために羽口先温度が従来よりも高くなるので、これを調整するために吹き込むものであり、炉頂ガスの酸素ガス濃度が30%程度以上の場合に必要なものである。そして、羽口先温度調整ノズル3から噴射する羽口先温度調整ガス流体3aは、羽口先の炉内空間、高炉の場合にはレースウェイに向ける。
【0029】
この際、羽口先温度調整ガス流体3aの噴射方向は、微粉炭と酸素ガスとの上記混合領域の方向に向けないようにする。これは微粉炭をできるだけ高濃度の酸素ガスと混合させて燃焼性を高めるためである。
【0030】
微粉炭吹込み用キャリアーガスは、酸素ガスが望ましいが、酸素ガスはハンドリングが面倒であるから、空気、酸素富化空気あるいはCO2ガス等を用いるのがよい。また、羽口先温度調整ガスとしては、水蒸気、高炉ガス、コークス炉ガス、N2ガス、CO2ガス、その他当該ガスの分解反応が吸熱を伴なうようなガスであって、炉内反応、高炉の場合には鉄鉱石の還元に悪影響を及ぼさないものであればいずれでもよい。
【0031】
微粉炭吹込みノズルを円管状のスリットノズルにする理由は、バーナーの軸芯線の同心円上に多数のノズル孔を設けた場合には、微粉炭によるノズル詰まりが生じやすいと共に、多量の微粉炭の吹込みが可能となるからである。また、微粉炭と酸素ガスとの混合流体が羽口内面に衝突すると、混合流体中の未燃微粉炭により羽口内面が著しく磨耗して羽口の寿命が著しく低下する。更に、混合流体の燃焼により微粉炭中灰分が溶融して羽口内面に付着・堆積すると、羽口の寿命が著しく低下し、コストがかかる以外に高炉の生産性が低下する。
【0032】
羽口先温度調整ガスノズル3及び酸素ガスノズル4を多孔ノズルとしたのは、加工しやすく且つ均一吹込みが可能であるからである。なお、多孔ノズルに代えて円管としても良く、この場合には、各孔毎の流量制御が可能となる。
【0033】
図5は、本発明の微粉炭吹込みバーナーの他の例のノズル部分及びこれに連設された羽口部分の縦断面拡大図である。バーナーの軸芯線中央部に設けられた炉内観察孔1’の外側に同心円状にスリットノズルからなる微粉炭吹込みノズル2を設け、その外側に同心円上に複数個の酸素ガスノズル4(多孔ノズル)を設け、そして、その外側に同心円上に複数個の羽口先温度調整ガスノズル3(多孔ノズル)を配置した微粉炭吹込みバーナー6’である。
【0034】
この場合も、図1〜3に示した微粉炭吹込みバーナーと同じような性能を発揮する。そして、各ノズル孔の設計については、図1〜図3の場合と同様にそれらの形状・寸法、及び各流体の噴射方向を調整することが望ましい。
【0035】
なお、羽口先温度調整ガスとして、水蒸気のように温度低下に伴い凝縮する性質のあるガスを用いた場合には、これが水冷管近傍の羽口の下部領域にたまり、微粉炭が堆積して羽口を閉塞するに至る。これを防止するためには、凝縮液体を他のガスで振り払って羽口先に当該液体を溜めないようにする必要がある。
【0036】
従って、羽口先温度調整ガスとして上記凝縮性ガスを用いる場合であって、羽口先温度調整ガスノズルの位置よりも下方に、酸素ガスノズルを設けることにより、この凝縮液体を羽口先から除去するようにするのが効果的である。即ち、例えば、図3中で、酸素ガスノズル40が羽口先温度調整ガスノズル30の下方にあることにより問題は解決される。従って、酸素ガスノズル4の方が羽口先温度調整ガスノズル3よりもバーナーの外周側にあることが必要である。
【0037】
【発明の効果】
以上述べたように、この発明によれば、微粉炭を高炉その他の広範囲の工業用反応炉ないし工業用反応容器、あるいは工業用加熱炉等において安価な燃料あるいは還元剤として、効率よく燃焼させることができるといった工業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】この発明の微粉炭吹込みバーナーの一例の基部側の縦断面を示す図である。
【図2】図1の微粉炭吹込みバーナーの基部の他端側である先端部のノズル部分及びこれに連設された羽口部分の縦断面拡大図である。
【図3】図2の微粉炭吹込みバーナーの部分のAA線矢視図である。
【図4】この発明の微粉炭吹込みバーナーの一例における各流体のノズルからの噴射方向を説明する図である。
【図5】この発明の微粉炭吹込みバーナーの他の例のノズル部分及びこれに連設された羽口部分の縦断面拡大図である。
【符号の説明】
1:炉内観察管
1’:炉内観察孔
2:微粉炭管
2a:微粉炭の流体
3:羽口先温度調整ガス管
3a:羽口先温度調整ガス流体
4:酸素ガス管
4a:酸素ガスジェットの軸芯線
5:冷却水管
6、6’:微粉炭吹込みバーナー
7:冷却水入口
8:冷却水排出口
9:微粉炭供給口
10:羽口先温度調整ガス供給口
11:酸素ガス供給口
12:空気入口
13:仕切弁
14:覗窓
15:羽口
30:羽口先温度調整ガスノズル
40:酸素ガスノズル
L:微粉炭吹込みバーナーの軸芯線
P:羽口内面の先端
Q:微粉炭の流体と酸素ガスジェットの軸芯線とが交わる位置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a burner that burns pulverized coal with oxygen gas. The pulverized coal is used as an inexpensive fuel or reducing agent in a blast furnace and other wide-ranging industrial reaction furnaces or industrial reaction vessels, or industrial heating furnaces. The present invention relates to a pulverized coal burner for efficient combustion.
[0002]
[Prior art]
Coke used in blast furnace smelting acts as a fuel and iron ore reducing agent in the blast furnace, and the raw material for this coke is high-quality caking coal. However, this caking coal is expensive and does not have much reserves. Therefore, in order to reduce the amount of coking coal used for blast furnace coke, a so-called pulverized coal injection operation in which non-caking coal with a low price and abundant reserves is directly injected into the blast furnace in the form of pulverized coal as an alternative. Technical development is being carried out to inject as much pulverized coal as possible.
[0003]
Conventionally, as a method of blowing pulverized coal into the blast furnace, a so-called pulverized coal burner is inserted obliquely from the outside into the straight pipe portion of the blast branch pipe in front of the tuyere at the bottom of the blast furnace, and pulverized coal is blown into hot air, which is oxygen gas A method of blowing into the furnace while burning is known.
[0004]
However, since pulverized coal is a pulverized solid fuel, it is inferior in combustibility compared with, for example, liquid fuel such as heavy oil. Therefore, in order to improve the combustibility, the oxygen concentration in the blower is increased, the blower temperature is raised, and the burner is installed as far as possible from the tuyere to flow into the furnace from the tuyere. In the meantime, measures such as promoting the combustion of pulverized coal have been taken.
[0005]
However, the ash contained in the pulverized coal becomes a molten state at a high temperature associated with the combustion of the pulverized coal, adheres to the inner surface of the tuyere, narrows or deforms the tuyere diameter, and blows air from the tuyere. This impairs controllability, which makes it difficult to control the reaction in the furnace and impairs the stability of blast furnace operation. In addition, accumulation of unburned pulverized coal in the furnace lowers the ventilation of the furnace, leading to deterioration of the furnace condition.
[0006]
Therefore, the design of pulverized coal burner and its proper use is to improve the flammability of pulverized coal, prevent the generation of unburned pulverized coal, increase the amount of pulverized coal injection while ensuring the stability of blast furnace operation This is an extremely important issue.
[0007]
For example, Japanese Patent Application Laid-Open No. 7-23489 discloses a pulverized coal burner that can blow a large amount of pulverized coal while improving flammability of pulverized coal and preventing ash from adhering to the inner surface of the tuyere. For the purpose of development, pulverized coal is ejected from the central part including the axis line of the burner, oxygen gas is ejected from a plurality of holes surrounding the periphery, and the axis line of the pulverized coal and oxygen gas is connected to the nozzle of the burner. Propose a pulverized coal burner to mix and burn both in front of the tip, and insert this pulverized coal burner diagonally from the outside into the straight pipe part of the blast branch pipe connected to the blast furnace lower tuyere, A technique for injecting and burning the mixed fluid into hot air (hereinafter referred to as “prior art 1”) is disclosed.
[0008]
Further, in JP-A-1-268890, in blast furnace operation with high oxygen concentration blast gas, a window for observation inside the furnace is provided in the shaft core portion of the pulverized coal burner, and information obtained from this is controlled in the furnace heat or Input for blast furnace calculation control to ensure stable operation of the blast furnace, and to inject a large amount of pulverized coal without deteriorating the furnace condition and shortening the tuyere life, The furnace observation tube is provided, and on the outside, a pulverized coal injection tube, a tuyere tip temperature adjustment gas tube for injecting gas for adjusting the temperature of the tuyere tip, and an oxygen gas tube are slit concentrically. A pulverized coal burner having a nozzle tube in the form is disclosed. And the traveling direction of the mixed fluid of pulverized coal and various gases is designed in a structure directed to the inside of the furnace from the position of a predetermined distance before the tuyere outlet to improve combustibility (hereinafter, "Prior art 2").
[0009]
[Problems to be solved by the invention]
When pulverized coal is blown into a blast furnace as an alternative to coke, it is important to develop a burner for pulverized coal injection that can increase the amount of pulverized coal injected at low cost while ensuring stable operation of the blast furnace. Therefore, the performance that the pulverized coal burner should have is to improve the combustion characteristics of the pulverized coal described above, thereby preventing the generation of unburned pulverized coal and preventing the deterioration of air permeability in the furnace, and a certain amount of oxygen It is important that a large amount of pulverized coal can be blown in while reducing the amount of oxygen used by increasing the amount of pulverized coal combusted by gas (hereinafter referred to as “pulverized carbon dioxide ratio”). Furthermore, it is necessary to design to prevent the deformation and reduction of the tuyere cross-sectional shape and dimensions due to fusion / deposition of ash in pulverized coal on the inner surface of the tuyere.
[0010]
Neither the prior art 1 nor the prior art 2 can sufficiently solve the above problem. That is, in the prior art 1, the pulverized carbon dioxide ratio that enables pulverized coal injection without fusion / deposition of ash to the tuyere does not reach a sufficiently satisfactory level. For example, when calculating the pulverized carbon dioxide ratio when the amount of pulverized coal injection is maximized under the condition that no ash fusion / deposition occurs at the tuyere, using the numerical values in the examples described in the publication 0.70 kg-pulverized coal / Nm 3 —O 2 gas. In Prior Art 2, uniform processing of concentric slit nozzles is difficult, and in particular, the oxygen gas flow ejected at a high speed of about 300 to 350 m / s tends to be uneven in the circumferential direction. In this way, when the gas flow rate is increased, a drift occurs in the ejected gas, the miscibility of pulverized coal and each gas is reduced, and the combustion characteristics are deteriorated. Therefore, since the flow rate of oxygen gas cannot be increased sufficiently, there is a limit in increasing the amount of pulverized coal injection.
[0011]
The object of the present invention is to solve the above-mentioned problems, to achieve good flammability, to enable a large amount of pulverized coal injection, to increase the pulverized carbon dioxide ratio, and to reduce the amount of oxygen gas used. The aim is to develop burners for burn-in combustion.
[0012]
[Means for Solving the Problems]
As a result of intensive research from the viewpoints described above, the inventors of the present application have pulverized coal by blowing a pulverized coal with a cylindrical fluid from an annular slit nozzle and blowing a high-speed oxygen gas from a nozzle hole to form a mixed fluid. In addition, the tuyere tip temperature adjusting gas is injected without disturbing the formation of the mixed fluid, and the combustion state is observed through an appropriately provided observation tube in the furnace. It has been found that if the state is controlled, high-efficiency combustion is performed by mixed combustion of pulverized coal and pure oxygen gas. Furthermore, it was found that if the formation region of the mixed fluid is set in the inner side of the furnace than the tuyere attached to the tip of the burner, the fused ash is accumulated in the tuyere and does not cause an operation trouble.
[0013]
The present invention has been made based on the above findings, and the gist thereof is as follows.
[0014]
The pulverized coal blowing burner according to claim 1 is provided with an in-furnace observation hole in a central portion including an axial core line of the burner, and in a slit form for blowing pulverized coal concentrically outside the in-furnace observation hole. A pulverized coal injection nozzle is provided, and a plurality of tuyere tip temperature adjustment gas nozzles are provided on a concentric circle outside the pulverized coal injection nozzle to jet gas for adjusting the temperature of the tuyere tip of the furnace. A plurality of oxygen gas nozzles for injecting oxygen gas are arranged side by side on a concentric circle outside the tuyere tip temperature control gas nozzle, and at least one of the tuyere tip temperature control gas nozzle and the oxygen gas nozzle is configured by a circular pipe And the pulverized coal injection nozzle and the oxygen gas nozzle are provided with an injection direction of a cylindrical pulverized coal fluid injected from the pulverized coal injection nozzle and the oxygen gas nozzle. In which the intersection between the injection axis core wires, having a particular characteristic than the inner surface tip position of the tuyere provided in the front tip of the pulverized coal burner is adjusted so as to be located inwardly of the furnace is there.
[0015]
The pulverized coal blowing burner according to claim 2 is the pulverized coal blowing burner according to claim 1, wherein a plurality of the oxygen gas nozzles are arranged side by side on a concentric circle outside the pulverized coal blowing nozzle. A plurality of tuyere tip temperature adjusting gas nozzles are arranged side by side on a concentric circle outside the oxygen gas nozzle.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described with reference to the drawings.
[0019]
1-3 is a figure explaining the structural example of the pulverized coal injection nozzle of this invention.
[0020]
FIG. 1 is a view showing a longitudinal section on the base side of an example of the pulverized coal blowing burner of the present invention.
[0021]
In FIG. 1, the furnace observation tube 1, the pulverized coal tube 2, the tuyere tip temperature control gas tube 3, the oxygen gas tube 4 and the cooling water tube 5 on the right end side all extend to the nozzle portion on the burner tip side. The outer periphery of the pulverized coal blowing burner 6 has a water cooling structure, and the cooling water inlet 7 and outlet 8, the pulverized coal supply port 9, the tuyere tip temperature adjustment gas supply port 10, and the oxygen gas supply port 11 are provided at the base. Is provided. At the base of the in-furnace observation tube 1, ancillary facilities such as a purge gas inlet 12 for removing the deposits on the tip of the in-furnace observation tube are provided. For example, air is used as the purge gas.
[0022]
FIG. 2 is an enlarged longitudinal sectional view of the nozzle portion on the other end side, that is, the tip end side of the base portion of the pulverized coal blowing burner of the present invention shown in FIG.
[0023]
In FIG. 2, an in-furnace observation tube 1 is provided at the center of the burner axis, and a pulverized coal injection nozzle 2 is provided concentrically around the axis of the burner. The tuyere tip temperature adjusting gas nozzle 3 and the oxygen gas nozzle 4 are sequentially provided.
[0024]
In each nozzle configuration, the pulverized coal injection nozzle 2 is an annular slit nozzle, whereas the tuyere tip temperature adjustment gas nozzle 3 and the oxygen gas nozzle 4 are perforated nozzles, that is, a plurality of nozzle holes are concentrically arranged. Is arranged. The cross sectional shape of the gas nozzles 3 and 4 is preferably circular with a predetermined diameter. If it is circular, the manufacturing accuracy can be easily maintained at a high level. FIG. 3 is an AA arrow view of the portion of the pulverized coal blowing burner of FIG. 2 and corresponds to a front view of the burner portion.
[0025]
The shape and size of each nozzle 2, 3, 4 tip is determined appropriately for the flow rate of pulverized coal, tuyere tip temperature control gas and oxygen gas, and the linear velocity at the nozzle tip, and the injection of each fluid. Design according to the direction. Here, the ejection direction of each fluid is an important matter in the present invention and is as follows.
[0026]
FIG. 4 is a diagram illustrating directions in which each fluid is ejected from each nozzle. The pulverized coal fluid 2a blown from the pulverized coal blowing nozzle 2 proceeds in a cylindrical form with the axial line L of the pulverized coal blowing burner 6 as the axis, but the furnace does not collide with the inner surface of the tuyere 15 Turn inside.
[0027]
The axial line 4a of the oxygen gas jet injected from the oxygen gas nozzle 4 is inclined in the direction of the axial line L of the burner 6, and intersects the pulverized coal fluid 2a at the point Q. Pulverized coal and oxygen gas are mixed in a region centered on the point Q. The position of the point Q is located inside the furnace from the inner surface tip P of the tuyere 15.
[0028]
The tuyere tip temperature adjustment gas is used to adjust the tuyere tip temperature because pure oxygen gas is used as the combustion supporting gas of pulverized coal. This is necessary when the concentration is about 30% or more. Then, the tuyere tip temperature adjusting gas fluid 3a sprayed from the tuyere tip temperature adjusting nozzle 3 is directed to the raceway in the case of a furnace interior space at the tip of the tuyere, or a blast furnace.
[0029]
At this time, the injection direction of the tuyere tip temperature adjustment gas fluid 3a should not be directed to the direction of the mixing region of pulverized coal and oxygen gas. This is because pulverized coal is mixed with oxygen gas at a concentration as high as possible to enhance combustibility.
[0030]
The carrier gas for injecting pulverized coal is preferably oxygen gas. However, since oxygen gas is troublesome to handle, it is preferable to use air, oxygen-enriched air, CO 2 gas, or the like. In addition, as the tuyere tip temperature adjusting gas, steam, blast furnace gas, coke oven gas, N 2 gas, CO 2 gas, and other gases that cause endothermic decomposition reaction of the gas, In the case of a blast furnace, any one that does not adversely affect the reduction of iron ore may be used.
[0031]
The reason why the pulverized coal injection nozzle is a circular slit nozzle is that when a large number of nozzle holes are provided on the concentric circle of the burner shaft core, nozzle clogging with pulverized coal tends to occur, and a large amount of pulverized coal This is because blowing is possible. Further, when the mixed fluid of pulverized coal and oxygen gas collides with the inner surface of the tuyere, the inner surface of the tuyere is significantly worn by the unburned pulverized coal in the mixed fluid, and the life of the tuyere is significantly reduced. Furthermore, if the ash in the pulverized coal melts and adheres to and accumulates on the inner surface of the tuyere due to the combustion of the mixed fluid, the life of the tuyere is significantly reduced, and the productivity of the blast furnace is reduced in addition to cost.
[0032]
The reason why the tuyere tip temperature adjusting gas nozzle 3 and the oxygen gas nozzle 4 are perforated nozzles is that they are easy to process and can be blown uniformly. In addition, it is good also as a circular pipe instead of a perforated nozzle, and in this case, the flow rate control for each hole becomes possible.
[0033]
FIG. 5 is an enlarged vertical cross-sectional view of a nozzle portion of another example of the pulverized coal blowing burner of the present invention and a tuyere portion continuously provided therewith. A pulverized coal injection nozzle 2 consisting of slit nozzles is provided concentrically outside the in-furnace observation hole 1 ′ provided in the central part of the axial center line of the burner, and a plurality of oxygen gas nozzles 4 (perforated nozzles) are provided outside the concentric circle. ) And a plurality of tuyere tip temperature control gas nozzles 3 (perforated nozzles) arranged concentrically outside thereof.
[0034]
In this case, the same performance as the pulverized coal blowing burner shown in FIGS. And about the design of each nozzle hole, it is desirable to adjust those shapes and dimensions, and the injection direction of each fluid similarly to the case of FIGS.
[0035]
In addition, when a gas that condenses as the temperature decreases, such as water vapor, is used as the tuyere tip temperature adjustment gas, this accumulates in the lower region of the tuyere near the water-cooled pipe, and pulverized coal accumulates and the tuyere The mouth is closed. In order to prevent this, it is necessary to shake off the condensed liquid with another gas so that the liquid is not accumulated in the tuyere.
[0036]
Therefore, in the case where the condensable gas is used as the tuyere tip temperature adjusting gas, the condensed liquid is removed from the tuyere tip by providing the oxygen gas nozzle below the position of the tuyere tip temperature regulating gas nozzle. Is effective. That is, for example, in FIG. 3, the problem is solved when the oxygen gas nozzle 40 is located below the tuyere tip temperature adjusting gas nozzle 30. Therefore, it is necessary that the oxygen gas nozzle 4 is on the outer peripheral side of the burner than the tuyere tip temperature adjusting gas nozzle 3.
[0037]
【The invention's effect】
As described above, according to the present invention, pulverized coal can be efficiently burned as an inexpensive fuel or reducing agent in a blast furnace or other wide-ranging industrial reactor or industrial reactor, or industrial heating furnace. This is an industrially useful effect that can be achieved.
[Brief description of the drawings]
FIG. 1 is a view showing a longitudinal section on the base side of an example of a pulverized coal blowing burner according to the present invention.
FIG. 2 is an enlarged vertical cross-sectional view of a nozzle portion at a tip portion which is the other end side of the base portion of the pulverized coal blowing burner of FIG. 1 and a tuyere portion provided continuously therewith.
FIG. 3 is a view taken along the line AA of the portion of the pulverized coal blowing burner of FIG. 2;
FIG. 4 is a view for explaining the injection direction of each fluid from a nozzle in an example of a pulverized coal blowing burner according to the present invention.
FIG. 5 is an enlarged longitudinal sectional view of a nozzle portion of another example of the pulverized coal blowing burner according to the present invention and a tuyere portion continuously provided therewith.
[Explanation of symbols]
1: In-furnace observation tube 1 ′: Furnace observation hole 2: Pulverized coal tube 2a: Fluid of pulverized coal 3: Tuyere tip temperature adjustment gas tube 3a: Tuyere tip temperature adjustment gas fluid 4: Oxygen gas tube 4a: Oxygen gas jet Axis line 5: cooling water pipes 6, 6 ': pulverized coal blowing burner 7: cooling water inlet 8: cooling water discharge port 9: pulverized coal supply port 10: tuyere tip temperature adjustment gas supply port 11: oxygen gas supply port 12 : Air inlet 13: gate valve 14: viewing window 15: tuyere 30: tuyere tip temperature adjustment gas nozzle 40: oxygen gas nozzle L: axis line P of pulverized coal blowing burner Q: tip Q of tuyere inner surface Q: pulverized coal fluid Position where the axis of the oxygen gas jet intersects

Claims (2)

バーナーの軸芯線を含む中央部に炉内観察孔が設けられ、前記炉内観察孔の外側に同心円状に、微粉炭を吹き込むためのスリット形態の微粉炭吹込みノズルが設けられ、前記微粉炭吹込みノズルの外側の同心円上に、前記炉の羽口先の温度を調整するためのガスを噴出させるための羽口先温度調整ガスノズルが複数個並べて設けられ、前記羽口先温度調整ガスノズルの外側の同心円上に、酸素ガスを噴出させるための酸素ガスノズルが複数個並べて設けられ、前記羽口先温度調整ガスノズル及び前記酸素ガスノズルの少なくとも一方は、円管で構成され、そして、前記微粉炭吹込みノズル及び前記酸素ガスノズルは、前記微粉炭吹込みノズルから噴射される円筒状微粉炭流体の噴射方向と前記酸素ガスの噴射方向軸芯線との交点が、当該微粉炭バーナーの前方先端に設けられる前記羽口の内面先端位置よりも前記炉の内側方向に位置するように調整されていることを特徴とする微粉炭吹込みバーナー。An in-furnace observation hole is provided in the central portion including the axial line of the burner, and a slit-shaped pulverized coal injection nozzle for injecting pulverized coal is provided concentrically outside the in-furnace observation hole. A plurality of tuyere tip temperature adjusting gas nozzles for injecting gas for adjusting the temperature of the furnace tuyere tip are arranged side by side on a concentric circle outside the blowing nozzle, and concentric circles outside the tuyere tip temperature regulating gas nozzle are provided. A plurality of oxygen gas nozzles for ejecting oxygen gas are provided side by side , at least one of the tuyere tip temperature adjustment gas nozzle and the oxygen gas nozzle is formed of a circular pipe, and the pulverized coal injection nozzle and the The oxygen gas nozzle is such that the intersection of the injection direction of the cylindrical pulverized coal fluid injected from the pulverized coal injection nozzle and the axial line of the oxygen gas injection direction is the pulverized powder. Pulverized coal blown burner, characterized in that from the inner surface the tip position of the tuyere provided in the front tip of the burner is adjusted so as to be located inwardly of the furnace. 前記微粉炭吹込みノズルの外側の同心円上に、前記酸素ガスノズルが複数個並べて設けられており、前記酸素ガスノズルの外側の同心円上に、前記羽口先温度調整ガスノズルが複数個並べて設けられていることを特徴とする、請求項1に記載の微粉炭吹込みバーナー。 A plurality of the oxygen gas nozzles are arranged side by side on a concentric circle outside the pulverized coal blowing nozzle, and a plurality of the tuyere tip temperature adjusting gas nozzles are arranged on a concentric circle outside the oxygen gas nozzle. The pulverized coal blowing burner according to claim 1, characterized in that:
JP2000014000A 2000-01-19 2000-01-19 Pulverized coal blowing burner Expired - Fee Related JP4341131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014000A JP4341131B2 (en) 2000-01-19 2000-01-19 Pulverized coal blowing burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000014000A JP4341131B2 (en) 2000-01-19 2000-01-19 Pulverized coal blowing burner

Publications (2)

Publication Number Publication Date
JP2001200308A JP2001200308A (en) 2001-07-24
JP4341131B2 true JP4341131B2 (en) 2009-10-07

Family

ID=18541520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014000A Expired - Fee Related JP4341131B2 (en) 2000-01-19 2000-01-19 Pulverized coal blowing burner

Country Status (1)

Country Link
JP (1) JP4341131B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328657A (en) * 2011-01-18 2013-09-25 杰富意钢铁株式会社 Blast furnace operation method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537602B2 (en) * 2001-03-08 2010-09-01 新日鉄エンジニアリング株式会社 Combustible dust injection method in waste melting furnace
LU91264B1 (en) 2006-07-12 2008-01-14 Wurth Paul Sa Pulverized coal injection lance
DE102006060867B4 (en) * 2006-12-22 2020-07-02 Khd Humboldt Wedag Gmbh Rotary kiln burners
KR100948927B1 (en) * 2007-08-29 2010-03-23 주식회사 포스코 Tuyere for manufacturing molten iron and method for injecting gas using the same
WO2009110038A1 (en) * 2008-03-06 2009-09-11 株式会社Ihi Oxygen combustion boiler and pulverized coal burner
JP5824810B2 (en) * 2010-01-29 2015-12-02 Jfeスチール株式会社 Blast furnace operation method
IN2015DN00025A (en) * 2012-07-13 2015-05-22 Jfe Steel Corp
JP5983293B2 (en) * 2012-10-19 2016-08-31 Jfeスチール株式会社 Blast furnace operating method and lance
JP5983294B2 (en) * 2012-10-19 2016-08-31 Jfeスチール株式会社 Blast furnace operating method and lance
JP6003535B2 (en) * 2012-10-31 2016-10-05 Jfeスチール株式会社 Blast furnace operation method and blast furnace tuyere lance
US9938593B2 (en) 2013-04-03 2018-04-10 Jfe Steel Corporation Blast furnace operation method
RU2674454C2 (en) * 2013-04-03 2018-12-10 ДжФЕ СТИЛ КОРПОРЕЙШН Blast furnace operation method and lance
CN109489039B (en) * 2018-12-31 2024-05-07 河南汇金智能装备有限公司 Combustor nozzle axial flow air duct structure and combustor nozzle
CN115044720B (en) * 2022-06-17 2023-11-07 中钢集团鞍山热能研究院有限公司 Fuel injection method for reducing coking of blast furnace tuyere and composite fuel spray gun

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328657A (en) * 2011-01-18 2013-09-25 杰富意钢铁株式会社 Blast furnace operation method
CN103328657B (en) * 2011-01-18 2016-06-22 杰富意钢铁株式会社 Method for operating blast furnace

Also Published As

Publication number Publication date
JP2001200308A (en) 2001-07-24

Similar Documents

Publication Publication Date Title
JP4341131B2 (en) Pulverized coal blowing burner
JP4745731B2 (en) Method of melting hot metal with cupola
JP5087955B2 (en) Melting reduction method
JP2006312757A (en) Injection lance for gaseous reducing material, blast furnace and blast furnace operation method
JP4760976B2 (en) Blast furnace operation method
KR960016161B1 (en) Process & device for the disposal of dust in a cupola by combustion/slag production
JP4747662B2 (en) Lance for blowing gas reducing material, blast furnace and blast furnace operating method
KR101629123B1 (en) Blast furnace operation method
JP2011153371A (en) Blast furnace operation method
JP3733601B2 (en) Apparatus for injecting pulverized coal for blast furnace and method for injecting pulverized coal in blast furnace
JP2761885B2 (en) Pulverized coal burner
JP3493937B2 (en) How to blow pulverized coal into the blast furnace
JPS60200007A (en) Combustion of pulverized coal
JP4893291B2 (en) Hot metal production method using vertical scrap melting furnace
JPH08157916A (en) Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal
JPH11343511A (en) Method for blowing pulverized coal into blast furnace
JP2005060834A (en) Burner for blowing pulverized fine coal for metallurgy, and method for blowing pulverized fine coal into metallurgical furnace
JP3613902B2 (en) Burner with pulverized coal injection into blast furnace
JPH11315310A (en) Method for blowing pulverized coal into blast furnace
JP2963422B2 (en) Pulverized coal burner for blast furnace operation
JPH1112613A (en) Lance for injecting pulverized fine coal into blast furnace
JP2004091921A (en) Method for blowing solid fuel into blast furnace and blown lance
JPH10121119A (en) Tuyere for injecting pulverized fine coal
JPH1112612A (en) Lance for injecting pulverized fine coal into blast furnace
JP4893290B2 (en) Hot metal production method using vertical scrap melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4341131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees