JPH0192304A - Nozzle for blowing finely powdered coal in blast furnace - Google Patents

Nozzle for blowing finely powdered coal in blast furnace

Info

Publication number
JPH0192304A
JPH0192304A JP13641287A JP13641287A JPH0192304A JP H0192304 A JPH0192304 A JP H0192304A JP 13641287 A JP13641287 A JP 13641287A JP 13641287 A JP13641287 A JP 13641287A JP H0192304 A JPH0192304 A JP H0192304A
Authority
JP
Japan
Prior art keywords
pulverized coal
blowing
nozzle
finely powdered
tuyere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13641287A
Other languages
Japanese (ja)
Other versions
JPH0723489B2 (en
Inventor
Hideyuki Yamaoka
山岡 秀行
Tomio Miyazaki
宮崎 富夫
Yasuo Kamei
亀井 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62136412A priority Critical patent/JPH0723489B2/en
Publication of JPH0192304A publication Critical patent/JPH0192304A/en
Publication of JPH0723489B2 publication Critical patent/JPH0723489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To improve combustibility and to prevent sticking of ash to a tuyere by intersecting axial lines of tip parts of plural oxygen gas blowing holes surrounding fine powdered coal blowing hole of a nozzle with axial line of the finely powdered coal blowing hole at front of the nozzle. CONSTITUTION:The nozzle 1 for blowing the finely powdered coal is constituted by arranging plural pipes 3 for blowing the oxygen at circumference of the pipe 2 for blowing the finely powdered coal. The blowing tip parts of the pipes 3 for blowing the oxygen are bent to nozzle part direction, and the center lines of the parts are intersected with the center line of the pipe 2 for blowing the finely powdered coal at one point P at front of the nozzle 1 for blowing the finely powdered coal. By this method, at the time of smelting in the blast furnace, a large quantity of the finely powdered coals can be used as auxiliary fuel without bringing about unstability in the operation, and the using quantity of the coke as main fuel can be reduced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、多量の微粉炭を効果的に燃焼させてコーク
ス消費量の大幅節減を可能ならしめるための、高炉への
微粉炭吹込み用ノズルに関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to a method for injecting pulverized coal into a blast furnace in order to effectively burn a large amount of pulverized coal and significantly reduce coke consumption. It concerns the nozzle.

く背景技術〉 周知の如く、鉄の高炉製錬における主要燃料はコークス
である。しかし、高炉用のコークスは石炭埋蔵量の約2
5%程度に過ぎない高価な粘結炭を原料としているので
価格が高く、このため−段と厳しさを増してきた鉄鋼材
料へのコスト低減要求に応じるには、コークスの消費量
を極力抑えることが必要になってきた。そのため、近年
、高炉製錬に際して各種補助燃料の羽口吹込みが実施さ
れるようになってきた。
BACKGROUND TECHNOLOGY As is well known, the main fuel in blast furnace smelting of iron is coke. However, coke for blast furnaces is about 20% of coal reserves.
The price is high because the raw material is expensive coking coal, which accounts for only about 5% of coke.Therefore, in order to meet the increasingly strict cost reduction requirements for steel materials, the consumption of coke must be minimized. It has become necessary. Therefore, in recent years, tuyere injection of various auxiliary fuels has been carried out during blast furnace smelting.

振り返ると、まず1950年代から重油の吹込みが行わ
れるようになり、その吹込み量は銑鉄トン当り100k
gを上回るまでになってコークスの節減に貢献してきた
。ところが、1970年代後半以降は、重油価格が高騰
したがために重油吹き込みを実施する高炉は世界的に減
少し、代って非粘結炭を微粉砕した微粉炭の吹込みが各
国高炉操業の主流を占めるようになった。なお、このよ
うな微粉炭の吹込みは、例えば第4図で示すように、羽
口5につながる送風支管6に設置された微粉炭吹込み用
ノズル8によって実施される。
Looking back, heavy oil injection first began in the 1950s, and the injection amount was 100k per ton of pig iron.
It has contributed to the reduction of coke consumption by reaching a point where it exceeds the average of However, since the late 1970s, as the price of heavy oil soared, the number of blast furnaces that injected heavy oil decreased worldwide, and instead injection of pulverized coal, which is made by pulverizing non-coking coal, became more and more common in blast furnace operations in various countries. It has become mainstream. Incidentally, such blowing of pulverized coal is carried out by a pulverized coal blowing nozzle 8 installed in a blowing branch pipe 6 connected to the tuyere 5, for example, as shown in FIG.

しかしながら、微粉炭は粉体(固体)であるがために重
油等の液体燃料に比べて燃焼性が悪く、多量に使用する
ためには燃焼性を高めるべく○ 羽口通風中の酸素濃度
を高める、 ○ 送風温度を高める、 ○ バーナーをできるだけ羽口から離れた位置に設置し
、羽口から炉内に流入するまでの間における微粉炭の燃
焼を促進する、 等の対策がとられてきた。
However, since pulverized coal is a powder (solid), it has poor combustibility compared to liquid fuels such as heavy oil, and in order to use it in large quantities, it is necessary to increase the oxygen concentration in the tuyere ventilation to improve combustibility. Countermeasures have been taken such as: ○ Raising the temperature of the blast; ○ Installing the burner as far away from the tuyere as possible to promote the combustion of pulverized coal from the tuyere to the time it flows into the furnace.

ところが、このような方法によって微粉炭の燃焼性を向
上させた場合には、次の如き別な問題が発生しがちだっ
たのである。即ち、微粉炭には天分が含まれており、そ
のため送風支管から吹込まれて羽口先端に至るまでの間
に燃焼した微粉炭中の灰分が羽口内面に付着して羽口口
径の縮小を引き起こし、通風を阻害する現象を引き起こ
し易くなると共に、その付着状態も各羽口で均一とはな
らないので各羽目間への送風量分配の著しいアンバラン
スをも誘発して安定操業の遂行を阻害すると言う問題で
ある。
However, when the combustibility of pulverized coal is improved by such a method, the following problems tend to occur. In other words, pulverized coal contains minerals, and the ash in the pulverized coal that is blown from the blast pipe and burned before reaching the tip of the tuyere adheres to the inner surface of the tuyere, reducing the diameter of the tuyere. This tends to cause a phenomenon that obstructs ventilation, and since the adhesion state is not uniform at each tuyere, it also causes a significant imbalance in the distribution of air flow between each tuyere, hindering stable operation. The problem is that.

第5図は、上述した灰分の付着状況を示したものである
が、羽口5の内面に熱ロス防止のための断熱リングを取
付けである場合には“イ”で示す如くに、また前記断熱
リング不使用時には“口″で示す如くに付着し易い。
FIG. 5 shows the above-mentioned ash adhesion situation, and when a heat insulating ring is installed on the inner surface of the tuyere 5 to prevent heat loss, as shown by "A", When the insulation ring is not used, it tends to stick as shown by the "mouth".

従って、「良好でない燃焼性の故に炉内に未燃焼微粉炭
が蓄積されて安定操業が阻害される現象」や、これに対
処すべく前記の如き燃焼性改善策をとった際に生じがち
な「羽口内における燃焼熱上昇のために溶融状態となっ
た燃焼灰分が羽口内面に付着して“羽目閉塞”や“羽目
間での送風量分配の偏り”を生じ安定操業を阻害する現
象」等を引き起こすことなく微粉炭を使用するには、自
ずとその使用限界は限定されることになる。
Therefore, ``a phenomenon in which unburned pulverized coal accumulates in the furnace due to poor combustibility, inhibiting stable operation,'' and the phenomenon that tends to occur when measures to improve combustibility such as those described above are taken to deal with this phenomenon. ``A phenomenon in which combustion ash, which becomes molten due to the increase in combustion heat within the tuyere, adheres to the inner surface of the tuyere, causing ``wall blockage'' and ``unbalanced distribution of air flow between the tuyeres,'' which impedes stable operation.'' In order to use pulverized coal without causing such problems, the limits of its use are naturally limited.

因に、現時点では我が国の高炉における微粉炭使用量は
銑鉄トン当りで最高100kg台に止まっており、国外
の高炉においても、重油操業やオールコークス操業の条
件下では容易に達成が可能である“燃料比が500 k
g/l−pig(銑鉄)以下”の条件で200kg/l
を超えて微粉炭を使用した例はみられない。
Incidentally, at present, the amount of pulverized coal used in Japan's blast furnaces remains at a maximum of 100 kg per ton of pig iron, and this can be easily achieved in blast furnaces overseas under conditions of heavy oil operation or all-coke operation. Fuel ratio is 500k
g/l-pig (pig iron) 200kg/l or less
There are no examples of pulverized coal being used in excess of this amount.

く問題点を解決する手段〉 本発明者等は、上述のような観点から、高炉製錬に際し
て多量の微粉炭を吹込んで効率良く燃焼させると共に、
“灰分の羽口付着”等の問題を十分に抑えつつ、コーク
ス使用量の大幅節減を可能ならしめるために種々検討を
行った結果、微粉炭を例えば200 kg/l−pig
以上まで多量使用して安定に高燃料比を達成させるため
には“燃焼性向上”と“天分羽口内面付着防止”の双方
を同時に達成する方策がどうしても必要であるとの結論
に達し、これを満足させるべく 「中心の微粉炭吹出し孔を取り囲んで複数個の酸素ガス
吹出し孔を有すると共に、これら各酸素ガス吹出し孔の
少なくとも先端部の軸線がノズル前方において前記微粉
炭吹き出し孔の軸線と交わっていることを特徴とする、
高炉の微粉炭吹込み用ノズル」 を開発した。
Means for Solving the Problems> From the above-mentioned viewpoint, the present inventors injected a large amount of pulverized coal during blast furnace smelting to efficiently burn it, and
As a result of various studies in order to make it possible to significantly reduce the amount of coke used while sufficiently suppressing problems such as "ash content adhesion to the tuyeres," we found that pulverized coal can be used at a rate of, for example, 200 kg/l-pig.
We came to the conclusion that in order to stably achieve a high fuel ratio by using large quantities as described above, it was absolutely necessary to find a way to simultaneously achieve both ``improvement of combustibility'' and ``prevention of adhesion to the inner surface of the tuyere.'' In order to satisfy this requirement, a plurality of oxygen gas blowing holes are provided surrounding a central pulverized coal blowing hole, and the axis of at least the tip of each oxygen gas blowing hole is aligned with the axis of the pulverized coal blowing hole in front of the nozzle. characterized by intersecting
We have developed a pulverized coal injection nozzle for blast furnaces.

第1図は、本発明に係る微粉炭吹込み用ノズルの例を示
す概略図であり、第1図(a)はその縦断面図を、第1
図(blはノズル吹き出し面の正面図を、そして第1図
(C)は第1図(a)におけるA −A’部に相当する
断面図をそれぞれ示している。
FIG. 1 is a schematic view showing an example of a pulverized coal injection nozzle according to the present invention, and FIG.
Figure (bl) shows a front view of the nozzle blowing surface, and FIG. 1(C) shows a cross-sectional view corresponding to the A-A' section in FIG. 1(a).

第1図において、微粉炭吹込み用ノズル1はその中心に
微粉炭吹込み用パイプ2を有し、その周囲に複数個の酸
素ガス吹込み用パイプ3を有して構成されており、しか
も酸素ガス吹込み用パイプ3の吹出し先端部分がノズル
中心部方向に屈折し、該部分の中心線が微粉炭吹込み用
パイプ2の中心線と微粉炭吹込み用ノズル1の前方の一
点pで交わるように構成されている。
In FIG. 1, a pulverized coal injection nozzle 1 has a pulverized coal injection pipe 2 at its center, and a plurality of oxygen gas injection pipes 3 around it. The blowing tip part of the oxygen gas blowing pipe 3 is bent toward the center of the nozzle, and the center line of this part is the center line of the pulverized coal blowing pipe 2 and a point p in front of the pulverized coal blowing nozzle 1. are configured to intersect.

ここで、ノズル先端から前記p点までの距離は、短か過
ぎるとノズル先端の溶損を招く恐れが強くなり、一方長
(なり過ぎると吹込み微粉炭と酸素ガスとの混合性が悪
くなりがちであることから、好ましくは50〜500 
mmに設定するのが良い。
Here, if the distance from the nozzle tip to the point p is too short, there is a strong possibility that the nozzle tip will be damaged by melting. Preferably 50 to 500
It is best to set it to mm.

なお、第1図に示された微粉炭吹込み用ノズルは、冷却
水流路4が設けられた水冷構造となっている例である。
The pulverized coal injection nozzle shown in FIG. 1 is an example of a water-cooled structure in which a cooling water flow path 4 is provided.

そして、この微粉炭吹込み用ノズル1は、例えば第2図
に示すように高炉の羽口5につらなる送風支管6に取付
けられて使用される。
The pulverized coal injection nozzle 1 is used, for example, by being attached to a blowing branch pipe 6 connected to a tuyere 5 of a blast furnace, as shown in FIG.

本発明において、微粉炭吹出し孔の周囲に酸素ガス吹出
し孔を複数個設置し、これら各酸素ガス吹出し孔の少な
くとも先端部の軸線をノズル前方で微粉炭吹き出し孔の
軸線と交差させるように設定する理由は ■ 吹込み微粉炭の燃焼開始位置の規定、■ 微粉炭の
燃焼性向上、 。
In the present invention, a plurality of oxygen gas blowing holes are installed around the pulverized coal blowing hole, and the axis of at least the tip of each of these oxygen gas blowing holes is set to intersect with the axis of the pulverized coal blowing hole in front of the nozzle. The reasons are: ■ Stipulating the combustion start position of injected pulverized coal, ■ Improving the combustibility of pulverized coal.

■ 微粉炭吹込み用ノズルの損耗防止 の3点にある。以下、この点について更に詳しく説明す
る。
■ There are three points to prevent wear and tear on the pulverized coal injection nozzle. This point will be explained in more detail below.

即ち、微粉炭吹出し孔と酸素ガス吹出し孔とを別体とし
、その軸線がノズルの前方において始めて交差するよう
にした理由の1つは吹込み微粉炭の燃焼開始位置を規定
することにあるが、このようなノズル構成により、微粉
炭吹出し孔から流出した微粉炭は吹出し孔軸線の交点(
第1図におけるp点)に至るまでの間は助燃剤である熱
風又は酸素ガスと殆んど混合しない。従って、前記p点
に至るまでの間では微粉炭が燃焼することがない。
That is, one of the reasons why the pulverized coal blow-off hole and the oxygen gas blow-off hole are made as separate bodies and their axes intersect for the first time in front of the nozzle is to define the combustion start position of the blown pulverized coal. , With such a nozzle configuration, the pulverized coal flowing out from the pulverized coal blowing hole is directed to the intersection of the blowing hole axes (
Until reaching point p in FIG. 1), it hardly mixes with the combustion improver, hot air or oxygen gas. Therefore, the pulverized coal does not burn until the point P is reached.

一方、微粉炭吹出し孔から流出した微粉炭が前記交点p
に達すると、該微粉炭は酸素ガス吹出し孔から吹込まれ
る酸素ガスと混合するため、ここで始めて燃焼が開始す
ることとなる。
On the other hand, the pulverized coal flowing out from the pulverized coal outlet is at the intersection point p.
When the pulverized coal reaches this point, the pulverized coal mixes with the oxygen gas blown in from the oxygen gas blow-off hole, and combustion starts only at this point.

また、酸素ガスと微粉炭との混合点(前記p点)以降に
おいては微粉炭は主に酸素ガス吹出し孔から吹込まれた
酸素ガスと混合するため、微粉炭の周囲は非常に酸素濃
度の高い状況となる。従って、ここでは高濃度の酸素富
化送風と同様の雰囲気が形成されるため、微粉炭の燃焼
性は十分に向上することとなる。
In addition, after the mixing point of oxygen gas and pulverized coal (point p above), pulverized coal mainly mixes with the oxygen gas blown in from the oxygen gas outlet, so the area around the pulverized coal has a very high oxygen concentration. situation. Therefore, since an atmosphere similar to that of high-concentration oxygen-enriched air is formed here, the combustibility of the pulverized coal is sufficiently improved.

一般に、助燃剤中の酸素濃度を向上させれば微粉炭の燃
焼性を向上させ得ることは周知の事実であるが、本発明
者等の実験によると、送風中酸素濃度が21%の場合(
空気を送風した場合)には、従来通りに、1000℃の
熱風を使用し、送風中酸素INnfに対して微粉炭(固
定炭素53%、揮発分35%、灰分10%で、粒子の9
0%が44μ以下)を約0.3kg程度以上燃焼させよ
うとしたところ著しく低い燃焼性を示したのに対して、
送風中酸素濃度を31%にすると酸素INrrrに対し
て微粉炭を0.6kgまで、送風中酸素濃度を41%に
すると微粉炭を0.9kgまで、更に送風中酸素濃度を
60%に上げると微粉炭を1.4kgまで、それぞれ高
い燃焼性の下で燃焼させることができた。しかしながら
、高炉で1トンの銑鉄を製造するのに要する送風中の酸
素量は、燃料比が500kg/を程度である条件の場合
には約27ONrrr/lである。従って、200 k
g/l−pigの割合で微粉炭を吹込もうとする場合に
は送風中酸素IN%に対する微粉炭使用量は約0.75
kgとなり、これを高燃焼率で燃焼させるためには送風
内酸素濃度を約36%にする必要がある。このため、高
い燃焼率を確保するために富化しなければならない酸素
濃度は約14ONn?/l−pigと言う高い値となる
Generally, it is a well-known fact that the combustibility of pulverized coal can be improved by increasing the oxygen concentration in the combustion improver, but according to experiments conducted by the present inventors, when the oxygen concentration in the blast is 21% (
For pulverized coal (fixed carbon 53%, volatile content 35%, ash content 10%, 9% of particles
When attempting to burn more than about 0.3 kg of 0% (44μ or less), the combustibility was extremely low.
When the oxygen concentration in the blast is 31%, the amount of pulverized coal is 0.6 kg for oxygen INrrr, when the oxygen concentration in the blast is 41%, the amount of pulverized coal is 0.9 kg, and when the oxygen concentration in the blast is increased to 60%, the amount of pulverized coal is 0.6 kg. It was possible to burn up to 1.4 kg of pulverized coal with high combustibility. However, the amount of oxygen in the blast furnace required to produce one ton of pig iron in a blast furnace is about 27 ONrrr/l under conditions where the fuel ratio is about 500 kg/l. Therefore, 200k
When trying to inject pulverized coal at a ratio of g/l-pig, the amount of pulverized coal used relative to the oxygen IN% during blowing is approximately 0.75.
kg, and in order to burn this at a high combustion rate, the oxygen concentration in the blast must be approximately 36%. Therefore, the oxygen concentration that must be enriched to ensure a high combustion rate is approximately 14ONn? /l-pig, which is a high value.

ところが、この酸素を本発明に係る微粉炭吹込み用ノズ
ルを使用しその酸素吹出し孔を通じて吹込めば、酸素ガ
スと微粉炭の混合点(前述のp点)以降において雰囲気
中酸素濃度が100%に近い条件で微粉炭を燃焼させる
ことが可能となる。そのため、前記実験結果のように酸
素濃度が60%の場合では酸素INrrrに対して1.
4kgの微粉炭使用が可能なことを考慮すると、酸素量
の増量なく200 kg/l−pigの微粉炭使用が可
能になり、酸素使用量の節減につながることが明らかで
ある。
However, if this oxygen is injected through the oxygen blowing hole using the pulverized coal injection nozzle according to the present invention, the oxygen concentration in the atmosphere will be 100% after the mixing point of oxygen gas and pulverized coal (the above-mentioned point p). It becomes possible to burn pulverized coal under conditions close to Therefore, when the oxygen concentration is 60% as in the above experimental results, 1.
Considering that it is possible to use 4 kg of pulverized coal, it is possible to use 200 kg/l-pig of pulverized coal without increasing the amount of oxygen, which clearly leads to a reduction in the amount of oxygen used.

ところで、従来、高炉への重油吹込み用ノズルとして「
2重管構造であって、中心の孔から重油を吹込み、周囲
の環状スリットから酸素ガスを吹込む構造等のノズル」
が使用された例がある。しかし、この場合には燃料の燃
焼開始点が定まらない上、2重管構造のため内管の燃料
口と周囲の環状酸素口との隔壁の冷却が不十分である等
のために、火炎がノズルに近付いて隔壁が溶損されたり
、吹出される酸素ガスにより隔壁が急速酸化されて損耗
する等の問題があった。
By the way, conventionally, as a nozzle for blowing heavy oil into a blast furnace,
A nozzle with a double pipe structure, in which heavy oil is blown into the center hole and oxygen gas is blown into the surrounding annular slit.
There are examples where it was used. However, in this case, the combustion start point of the fuel is not determined, and because of the double tube structure, the partition wall between the fuel port of the inner tube and the surrounding annular oxygen port is insufficiently cooled, so the flame is not stable. There have been problems such as the partition wall being damaged by melting when approaching the nozzle, or the partition wall being rapidly oxidized and worn out by the blown oxygen gas.

これに対して、本発明に係る微粉炭吹込み用ノズルでは
、酸素ガ・スの吹込みのためにもパイプ状の複数の吹出
し孔を有していて微粉炭流路と酸素ガス流路とが完全に
分離されている上、微粉炭と酸素ガスとの混合・燃焼点
をノズル先端から離れた位置に確実に規制でき、しかも
冷却を強化させることも可能なためノズル損耗の恐れは
極力少ない。
On the other hand, the pulverized coal injection nozzle according to the present invention has a plurality of pipe-shaped blowing holes for injecting oxygen gas, and has a pulverized coal flow path and an oxygen gas flow path. are completely separated, the mixing and combustion point of pulverized coal and oxygen gas can be reliably regulated at a position far from the nozzle tip, and cooling can also be strengthened, so there is minimal risk of nozzle wear. .

このように、本発明に係る微粉炭吹込み用ノズルを上述
のような構成としたために、微粉炭の燃焼開始位置が規
定され、微粉炭の燃焼性が向上できるので、微粉炭の燃
焼火炎を安定化させることができる上、ノズル寿命延長
による消耗品費用の大きな削減効果が得られる。つまり
、本発明に係る微粉炭吹込み用ノズルでは、送風条件や
炉内状況に依存せず必然的に燃焼開始位置が定まり、か
つ微粉炭燃焼性が向上するので、−旦適正位置にノズル
をセットすれば、多少の送風条件変更を実施したとして
も安定した火炎で微粉炭使用が可能なため、結果として
多量の微粉炭使用が可能となる。
As described above, since the pulverized coal injection nozzle according to the present invention has the above-described configuration, the combustion start position of pulverized coal is defined, and the combustibility of pulverized coal can be improved, so that the combustion flame of pulverized coal can be improved. Not only can it be stabilized, but it can also significantly reduce consumables costs by extending the life of the nozzle. In other words, with the pulverized coal injection nozzle according to the present invention, the combustion start position is inevitably determined irrespective of the blowing conditions or the situation inside the furnace, and the pulverized coal combustibility is improved. If set, pulverized coal can be used with a stable flame even if the air blowing conditions are slightly changed, and as a result, a large amount of pulverized coal can be used.

これに対して、従来ノズルを使用した場合には微粉炭の
燃焼開始位置が安定化せず、かつ微粉炭のノズル先端を
できる限り羽口先端から引き込んだ位置にしなければ燃
焼性を向上させることができない。勿論、この場合に各
種送風条件に対するノズルの適正位置は存在するが、燃
焼開始温度が安定しないため火炎がノズルに接近し過ぎ
て羽口や送風支管の内面に接触し、天分の羽口内面付着
を引き起こしたり、微粉炭が未燃焼のまま炉内に入ると
言った不都合が生じがちとなる。特に、送風条件を変更
する際には、しかるべきノズル位置の変更をも実施しな
ければ“微粉炭未然焼”或いは“灰分の羽口付着”の問
題を必ず発生することになる。従って、微粉炭の多量使
用は非常に困難である。
On the other hand, when conventional nozzles are used, the combustion start position of the pulverized coal is not stabilized, and the pulverized coal nozzle tip must be pulled in from the tuyere tip as much as possible to improve combustibility. I can't. Of course, in this case, there is an appropriate position of the nozzle for various air blowing conditions, but because the combustion start temperature is not stable, the flame gets too close to the nozzle and comes into contact with the inner surface of the tuyere and the blower branch pipe. This tends to cause problems such as adhesion and pulverized coal entering the furnace unburned. In particular, when changing the air blowing conditions, the problem of "unburned pulverized coal" or "ash adhesion to the tuyere" will inevitably occur unless appropriate changes are made to the nozzle position. Therefore, it is very difficult to use large amounts of pulverized coal.

続いて、本発明を実施例により具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

〈実施例〉 まず、1000r/級高炉の羽目を含む下部を模凝した
扇形構造の高炉下部燃焼模型を用意し、これによって微
粉炭吹込み時の燃焼試験を実施した。
<Example> First, a combustion model of the lower part of a blast furnace having a fan-shaped structure in which the lower part including the slats of a 1000 r/class blast furnace was modeled was prepared, and a combustion test when pulverized coal was injected was conducted using this model.

なお、この高炉下部燃焼模型は1本の羽口を有したもの
であり、上部からコ“−クスを装入してコークス充填層
を形成させ、高炉と同じくコークス充填層で燃料を燃焼
試験し得る構造になったものである。
This blast furnace lower combustion model has one tuyere, and coke is charged from the top to form a coke packed bed, and fuel combustion tests are carried out in the coke packed bed just like in a blast furnace. It is structured so that you can get it.

羽口としては、先端径135flφのものを内径200
mφの送風支管に設置した。
For the tuyere, use one with a tip diameter of 135flφ and an inner diameter of 200flφ.
It was installed in a branch pipe of mφ.

使用したコークスは商業用高炉に適用されるもの(炭素
分が88%で灰分が11%程度、平均径が20薗φ、D
I=93.5%)で、微粉炭としては固定炭素53%、
揮発分35%、天分10%、水分2%の非粘結炭を44
μ以下が90%以上となるように粉砕して用いた。
The coke used is one that is applicable to commercial blast furnaces (carbon content is 88%, ash content is approximately 11%, average diameter is 20 mm, D
I=93.5%), and the fixed carbon is 53% as pulverized coal.
44% non-coking coal with 35% volatile content, 10% natural content, and 2% moisture content
It was used after being ground so that the ratio of μ or less was 90% or more.

送風条件は、空気量: 3000Nnf/h、送風温度
: 1000℃としたが、このときの送風中酸素濃度は
32.3%であった。また、このときの送風支管内流速
は123 m/seeであった。
The air blowing conditions were: air amount: 3000 Nnf/h, air blowing temperature: 1000°C, and the oxygen concentration in the air at this time was 32.3%. Further, the flow velocity in the blower branch pipe at this time was 123 m/see.

さて、まず比較として、微粉炭吹込み口径15鶴φの水
冷式微粉炭吹込み用単孔ノズルを設置位置:ノズル先端
と羽目先端とが600鶴隔たり、かつノズル先端が送風 支管中心軸から30n上方となる 位置。
First, as a comparison, we installed a water-cooled single-hole nozzle for pulverized coal injection with a pulverized coal injection diameter of 15 mm. position.

ノズルと送風支管中心軸の角度:20°。Angle between the nozzle and the center axis of the blower branch pipe: 20°.

に設置し、空気及び富化酸素を共に熱風炉を通して羽口
から吹き込みつつ微粉炭を6ONrd/hの窒素で輸送
して吹込み、吹込み量と微粉炭燃焼率及び羽口内面への
天分付着状況を調査した。このときの微粉炭吹出し速度
は94 m/secであった。なお、微粉炭燃焼率は、
羽目前800m炉内に入った位置でダストを採取し、そ
の残存燃焼性成分比率を微粉炭中の燃焼性成分比率の関
係から求めた。
The pulverized coal was transported and blown in with nitrogen at 6ONrd/h while air and enriched oxygen were blown into the tuyere through a hot blast furnace, and the blowing amount, pulverized coal combustion rate, and natural properties on the inner surface of the tuyere were measured. The adhesion status was investigated. The pulverized coal blowing speed at this time was 94 m/sec. In addition, the pulverized coal combustion rate is
Dust was collected 800 m before entering the furnace, and the residual combustible component ratio was determined from the relationship with the combustible component ratio in the pulverized coal.

この結果、微粉炭吹込み量が約600 kg/hを超え
た時点で燃焼性が著しく低下した。
As a result, when the amount of pulverized coal injected exceeded about 600 kg/h, the combustibility decreased significantly.

引き続き、ノズル位置を羽口先端から1mの位置まで引
っ込めてテストしたところ、この場合には微粉炭吹込み
量が約850kg/hを超えるまで良好な燃焼性が得ら
れた。しかし、この時には多量の灰分が羽口内面に付着
し、約10時間の後には羽口先端口径が約50龍φまで
縮小して通風不能となった。なお、この場合、微粉炭を
減少させても灰分の羽口内面付着は解消しなかった。
Subsequently, a test was conducted by retracting the nozzle position to a position 1 m from the tip of the tuyere, and in this case, good combustibility was obtained until the amount of pulverized coal injected exceeded about 850 kg/h. However, at this time, a large amount of ash adhered to the inner surface of the tuyere, and after about 10 hours, the diameter at the tip of the tuyere was reduced to about 50 mm, making ventilation impossible. In this case, even if the amount of pulverized coal was reduced, the adhesion of ash to the inner surface of the tuyere did not disappear.

更にテストを続行し、灰分の羽口付着を発生させずに微
粉炭を最大限使用し得るノズル位置を調査した結果、こ
の位置は羽目先端から700mの位置であり、この時の
微粉炭吹込み量の最高値は700kg/hとなった。
Further tests were carried out to find the nozzle position where the maximum amount of pulverized coal could be used without causing ash adhesion to the tuyere, and the result was that this position was 700 m from the tip of the tuyere, and the pulverized coal injection at this time The maximum amount was 700 kg/h.

次に、本発明に係る微粉炭吹込み用ノズルを使用した場
合の状況を調べた。
Next, the situation when the pulverized coal injection nozzle according to the present invention was used was investigated.

この際に使用した微粉炭吹込み用ノズル(外径二65鶴
)は、第3図に示す如き、微粉炭吹込み用パイプ2(内
径: 15++n)を取り囲んで酸素ガス吹込み用パイ
プ3(内径:8fl)を6本設け(微粉炭吹込み用パイ
プ2と酸素ガス吹込み用パイプ3との中心距離は18.
5m)、かつノズル先端から酸素ガスと微粉炭の混合点
pまでの距離を100mに設定したもので、吹込み酸素
ガスの全量を酸素ガス吹込み用パイプ3から吹込んでテ
ストを実施した。
The pulverized coal injection nozzle (outer diameter: 265 mm) used at this time surrounds the pulverized coal injection pipe 2 (inner diameter: 15++n) and connects to the oxygen gas injection pipe 3 (as shown in Fig. 3). Six pipes (inner diameter: 8 fl) were provided (the center distance between the pulverized coal injection pipe 2 and the oxygen gas injection pipe 3 was 18.
5 m), and the distance from the nozzle tip to the mixing point p of oxygen gas and pulverized coal was set to 100 m, and the test was conducted by blowing the entire amount of oxygen gas into the oxygen gas from the oxygen gas blowing pipe 3.

このとき、微粉炭吹出し速度は比較条件と同じ94m/
secであり、酸素ガス吹出し速度は312m/sec
であった。
At this time, the pulverized coal blowing speed was 94 m/min, which is the same as the comparative condition.
sec, and the oxygen gas blowing speed is 312 m/sec.
Met.

その結果は次の通りであった。The results were as follows.

まず、ノズル先端と羽口先端との距離を0.6mに設定
したときには灰分の羽口付着は発生せず、微粉炭を80
0kg/hまで燃焼させることができた。
First, when the distance between the nozzle tip and the tuyere tip was set to 0.6 m, ash content did not adhere to the tuyere, and pulverized coal was
It was possible to burn up to 0 kg/h.

次いで、ノズル先端と羽口先端との間隔を1mにしたと
ころ、微粉炭を1000kg/hまで燃焼することがで
き、やはり灰分の羽口内面付着はなかった。
Next, when the distance between the nozzle tip and the tuyere tip was set to 1 m, pulverized coal could be burned at up to 1000 kg/h, and no ash adhered to the inner surface of the tuyere.

続いて、ノズル先端を羽口先端から1.2mの位置まで
後退させたところ、燃焼性が更に向上して1200kg
/hまでの微粉炭を使用できたが、この場合には羽口内
面に灰分が付着する傾向が見られるようになった。
Subsequently, when the nozzle tip was moved back to a position 1.2 m from the tuyere tip, the combustibility was further improved and the weight was reduced to 1200 kg.
Although it was possible to use pulverized coal up to 1/h, there was a tendency for ash to adhere to the inner surface of the tuyere.

以上のように、従来のもの及び本発明に係るものの2つ
のノズルでの微粉炭吹込み操業を比較した結果、従来の
単孔ノズルでは700kg/hまでしか微粉炭を安定使
用できなかったのに対して、本発明に係るノズルの場合
には1000kg/hと言う高い値まで微粉炭の安定使
用が確保できた。
As mentioned above, as a result of comparing the pulverized coal injection operations using two nozzles, the conventional one and the one according to the present invention, it was found that the conventional single-hole nozzle could only stably use pulverized coal up to 700 kg/h. On the other hand, in the case of the nozzle according to the present invention, stable use of pulverized coal was ensured up to a high value of 1000 kg/h.

この結果を微粉炭比で比較すると、従来ノズルでは約1
70kgへであるのに対し、本発明に係るノズルでは2
40kgへの微粉炭となる。即ち、同一の送風温度と酸
素使用の条件で、微粉炭使用量を40%以上増加させ得
ることになる。
Comparing these results in terms of pulverized coal ratio, the conventional nozzle has approximately 1
70 kg, whereas the nozzle according to the present invention has a weight of 2.
It becomes 40kg of pulverized coal. In other words, the amount of pulverized coal used can be increased by 40% or more under the same blowing temperature and oxygen usage conditions.

く効果の総括〉 上述のように、この発明によれば、高炉製錬に際し、操
業の不安定を来たすことなく補助燃料として多量の微粉
炭を使用することが可能となり、主要燃料たるコークス
の使用量を大幅に節減して鉄の製錬コスト低減が達成で
きるなど、産業上有用な効果がもたらされるのである。
Summary of Effects> As described above, according to the present invention, it is possible to use a large amount of pulverized coal as auxiliary fuel during blast furnace smelting without causing operational instability, and the use of coke, which is the main fuel, can be reduced. This brings about industrially useful effects, such as the ability to significantly reduce the amount of iron smelting and reduce the cost of iron smelting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る微粉炭吹込み用ノズルの例を示
す概略図であり、第1図(a)はその縦断面図を、第1
図(b)はノズル吹き出し面の正面図を、そして第1図
(C)は第1図(a)におけるA−A部に相当する断面
図をそれぞれ示す。 第2図は、送風支管への本発明に係る微粉炭吹込み用ノ
ズルの取付は例を示す概念図である。 第3図は、実施例で使用した本発明に係る微粉炭吹込み
用ノズルの概略図であり、第3図(a)はその縦断面図
を、第4図中)はノズル吹き出し面の正面図ををそれぞ
れ示す。 第4図は、高炉操業における従来の微粉炭吹込み状態を
示す概念図である。 第5図は、羽口内面付近への灰分付着状況を示す概念図
である。 図面において、 1.8・・・微粉炭吹込み用ノズル、 2・・・微粉炭吹込み用パイプ、 3・・・酸素ガス吹込み用パイプ、 4・・・冷却水通路、     5・・・羽口、6・・
・送風支管、      7・・・高炉壁、42口・・
・付着灰分。
FIG. 1 is a schematic view showing an example of a pulverized coal injection nozzle according to the present invention, and FIG.
FIG. 1(b) shows a front view of the nozzle blowing surface, and FIG. 1(C) shows a sectional view corresponding to the A-A section in FIG. 1(a). FIG. 2 is a conceptual diagram showing an example of how the pulverized coal injection nozzle according to the present invention is attached to a blower branch pipe. FIG. 3 is a schematic diagram of a pulverized coal injection nozzle according to the present invention used in Examples, and FIG. 3(a) is a longitudinal cross-sectional view thereof, and FIG. Figures are shown respectively. FIG. 4 is a conceptual diagram showing a conventional pulverized coal injection state in blast furnace operation. FIG. 5 is a conceptual diagram showing how ash adheres to the vicinity of the inner surface of the tuyere. In the drawings, 1.8... Nozzle for blowing pulverized coal, 2... Pipe for blowing pulverized coal, 3... Pipe for blowing oxygen gas, 4... Cooling water passage, 5... Tuyere, 6...
・Blower branch pipe, 7... Blast furnace wall, 42 ports...
・Adhesive ash content.

Claims (1)

【特許請求の範囲】[Claims] 中心の微粉炭吹出し孔を取り囲んで複数個の酸素ガス吹
出し孔を有すると共に、これら各酸素ガス吹出し孔の少
なくとも先端部の軸線がノズル前方において前記微粉炭
吹き出し孔の軸線と交わっていることを特徴とする、高
炉の微粉炭吹込み用ノズル。
It has a plurality of oxygen gas blowing holes surrounding a central pulverized coal blowing hole, and the axis of at least the tip of each of these oxygen gas blowing holes intersects with the axis of the pulverized coal blowing hole in front of the nozzle. A nozzle for blowing pulverized coal into a blast furnace.
JP62136412A 1987-05-30 1987-05-30 Nozzle for blowing pulverized coal in blast furnace Expired - Fee Related JPH0723489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62136412A JPH0723489B2 (en) 1987-05-30 1987-05-30 Nozzle for blowing pulverized coal in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62136412A JPH0723489B2 (en) 1987-05-30 1987-05-30 Nozzle for blowing pulverized coal in blast furnace

Publications (2)

Publication Number Publication Date
JPH0192304A true JPH0192304A (en) 1989-04-11
JPH0723489B2 JPH0723489B2 (en) 1995-03-15

Family

ID=15174556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62136412A Expired - Fee Related JPH0723489B2 (en) 1987-05-30 1987-05-30 Nozzle for blowing pulverized coal in blast furnace

Country Status (1)

Country Link
JP (1) JPH0723489B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0447908A1 (en) * 1990-03-20 1991-09-25 Hoesch Stahl Aktiengesellschaft Method and apparatus for the introduction of pulverized fuel into a blast furnace
JP2011102439A (en) * 2000-08-10 2011-05-26 Jfe Steel Corp Method for operating blast furnace by injecting large-quantity of fine-powdery coals
JP2014088602A (en) * 2012-10-31 2014-05-15 Jfe Steel Corp Blast furnace operation method and blast furnace tuyere lance
JP2015129338A (en) * 2014-01-08 2015-07-16 Jfeスチール株式会社 Blast furnace tuyere complex lance
JP2015166490A (en) * 2014-02-17 2015-09-24 Jfeスチール株式会社 Method for operating blast furnace
KR20150108407A (en) * 2013-04-03 2015-09-25 제이에프이 스틸 가부시키가이샤 Blast furnace operation method
KR20150123920A (en) * 2013-04-03 2015-11-04 제이에프이 스틸 가부시키가이샤 Blast furnace operation method and lance
JP2015193927A (en) * 2014-03-26 2015-11-05 Jfeスチール株式会社 Oxygen blast furnace operation method
JP2017145451A (en) * 2016-02-17 2017-08-24 Jfeスチール株式会社 Method for estimating burning position of particulate reduction material in blow tuyere of blast furnace and blow tuyere used therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153010A (en) * 1982-03-08 1983-09-10 Kawasaki Steel Corp Powder fuel blowing burner for blast furnace
JPS58181810A (en) * 1982-03-31 1983-10-24 Kobe Steel Ltd Injection of powdery fuel into blast furnace
JPS5989907A (en) * 1982-10-19 1984-05-24 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Method of partially burning solid fuel and burner
JPS6017612A (en) * 1983-06-24 1985-01-29 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Method and burner for gasifying solid fuel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153010A (en) * 1982-03-08 1983-09-10 Kawasaki Steel Corp Powder fuel blowing burner for blast furnace
JPS58181810A (en) * 1982-03-31 1983-10-24 Kobe Steel Ltd Injection of powdery fuel into blast furnace
JPS5989907A (en) * 1982-10-19 1984-05-24 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Method of partially burning solid fuel and burner
JPS6017612A (en) * 1983-06-24 1985-01-29 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Method and burner for gasifying solid fuel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0447908A1 (en) * 1990-03-20 1991-09-25 Hoesch Stahl Aktiengesellschaft Method and apparatus for the introduction of pulverized fuel into a blast furnace
WO1991014791A1 (en) * 1990-03-20 1991-10-03 Küttner Gmbh & Co. Kg Process and device for injecting coal dust and oxygen into a blast furnace
JP2011102439A (en) * 2000-08-10 2011-05-26 Jfe Steel Corp Method for operating blast furnace by injecting large-quantity of fine-powdery coals
JP2014088602A (en) * 2012-10-31 2014-05-15 Jfe Steel Corp Blast furnace operation method and blast furnace tuyere lance
KR20150108407A (en) * 2013-04-03 2015-09-25 제이에프이 스틸 가부시키가이샤 Blast furnace operation method
KR20150123920A (en) * 2013-04-03 2015-11-04 제이에프이 스틸 가부시키가이샤 Blast furnace operation method and lance
US9938593B2 (en) 2013-04-03 2018-04-10 Jfe Steel Corporation Blast furnace operation method
US9945001B2 (en) 2013-04-03 2018-04-17 Jfe Steel Corporation Blast furnace operation method and lance
JP2015129338A (en) * 2014-01-08 2015-07-16 Jfeスチール株式会社 Blast furnace tuyere complex lance
JP2015166490A (en) * 2014-02-17 2015-09-24 Jfeスチール株式会社 Method for operating blast furnace
JP2015193927A (en) * 2014-03-26 2015-11-05 Jfeスチール株式会社 Oxygen blast furnace operation method
JP2017145451A (en) * 2016-02-17 2017-08-24 Jfeスチール株式会社 Method for estimating burning position of particulate reduction material in blow tuyere of blast furnace and blow tuyere used therefor

Also Published As

Publication number Publication date
JPH0723489B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
CN101270873B (en) Method and device for blowing breeze to pure oxygen smelting mobile filling bed smelting furnace
JPH0778252B2 (en) Improvements in or related to iron making with a melting shaft furnace
JPH0192304A (en) Nozzle for blowing finely powdered coal in blast furnace
CN105838845A (en) Supersonic circulating combustion coherent arbon-oxygen lance of electric arc furnace and spray head structure
US3701517A (en) Oxy-fuel burners in furnace tuyeres
JPS62263906A (en) Method for blowing pulverized coal from blast furnace tuyere
JPS61213312A (en) Water cooled lance
JP2001200308A (en) Pulverized coal blowing burner
JP3450205B2 (en) How to inject auxiliary fuel into the blast furnace
CN106766971B (en) The oxygen-enriched side-blowing intensified smelting stove of leaded secondary material can be handled
JPH0215105A (en) Method for blowing fine powdered coal in blast furnace
JPH0235885B2 (en)
US5227117A (en) Apparatus for blast furnace fuel injection
CN206572975U (en) The oxygen-enriched side-blowing intensified smelting stove of the energy leaded secondary material of efficient process
JP3493937B2 (en) How to blow pulverized coal into the blast furnace
JPH02213406A (en) Method and injecting fuel from tuyere in blast furnace
CN216473301U (en) Ou ye stove wind gap coal injection rifle
KR102639551B1 (en) Method for manufacturing molten iron by electric furnace
JPS6053082B2 (en) Method of injecting powdered fuel into a blast furnace
RU2796917C1 (en) Method for producing molten iron in electric arc furnace
CN2110788U (en) Oxygen-powdered coal burner for tuyere of blast furnace
GB1599356A (en) Method of melting non-ferrous metals
EP0089701A1 (en) Process for the direct reduction of matter containing iron oxide to spongy iron in a rotary kiln
JP3450206B2 (en) Auxiliary fuel injection operation method to blast furnace
JP2629108B2 (en) Waste melting furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees