JPS6053082B2 - Method of injecting powdered fuel into a blast furnace - Google Patents

Method of injecting powdered fuel into a blast furnace

Info

Publication number
JPS6053082B2
JPS6053082B2 JP5423282A JP5423282A JPS6053082B2 JP S6053082 B2 JPS6053082 B2 JP S6053082B2 JP 5423282 A JP5423282 A JP 5423282A JP 5423282 A JP5423282 A JP 5423282A JP S6053082 B2 JPS6053082 B2 JP S6053082B2
Authority
JP
Japan
Prior art keywords
burner
blow
tip
blast furnace
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5423282A
Other languages
Japanese (ja)
Other versions
JPS58181810A (en
Inventor
富雄 鈴木
孝三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5423282A priority Critical patent/JPS6053082B2/en
Publication of JPS58181810A publication Critical patent/JPS58181810A/en
Publication of JPS6053082B2 publication Critical patent/JPS6053082B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、一般的に燃焼性が悪いとされている粉体燃
料を燃焼性の良い状態で吹込む方法に関するものであり
、具体的には、燃焼性の向上につれて併発し易くなる灰
分の付着(ブローパイプ内面への堆積)を可及的に回避
しながら最適の状態で吹込みを行なう方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of injecting powdered fuel, which is generally considered to have poor flammability, in a state of good combustibility. Specifically, as the flammability improves, This invention relates to a method of blowing in an optimal state while avoiding as much as possible the adhesion of ash (deposition on the inner surface of the blow pipe), which tends to occur simultaneously.

高炉操業における吹込燃料は、石油価格の高騰の影響
を受けて重油単独吹込みが影をひそめオールコークス操
業が主流となつている。
As for the fuel injected in blast furnace operations, due to the effects of soaring oil prices, heavy oil injection alone has faded, and all-coke operation has become the mainstream.

しカルなが ら、オールコークス操業の困難性の緩和や
高価な コークスの節約のために微粉決算の粉体燃料吹
込みが検討あるいは実施されつつある。しかるに微粉決
算の粉体燃料(以下本明細書においては粉体燃料と総称
する)は重油に比べて燃焼速度が遅くかつ灰分等の未然
分を含有するという欠点を有す るので、吹込みに当つ
ては種々の対策を構する必要がある。これを更に具体的
に説明すれば以下の通りである。従来の重油吹込みでは
、バーナの先端が高炉別口とブローパイプの境界点近傍
に配置され、吹込まれた重油が別口内及び羽口直後のレ
ースウェイ内でほぼ完全に燃焼されていたのに対 し、
粉体燃料を同じ位置から吹込んだ場合は羽口やレースウ
ェイ内で完全に燃焼し尽すことができず、結果として燃
焼率が悪くなる。そこで更に検討の結果、吹込位置をも
つと上流側に移動させてブローパイプ内に吹込み、ブロ
ーパイプ内において着火燃焼させれば燃焼率を相当向上
させることができるという感触を得た。他方粉体燃料中
にはl程度の差はあれ若干の灰分が含まれており、この
灰分は燃焼熱によつて溶融するが、この溶融物がブロー
パイプの内面に衝突するとその部分に付着・堆積して送
風通路を狭くし、燃料の安定吹込みを継続することが困
難になるばかりか、羽口か丁らの熱風吹込みが不安定に
なるという危険もあり、この様な灰分の付着・堆積は粉
体燃料の吹込位置を上流側にすればする程著しくなる。
本発明者等は上記の様な知見を元に、灰分の付着・堆積
原因に明らかにすべく検討を進めたところ、以下に示す
様な事実が確認された。
However, in order to alleviate the difficulty of all-coke operation and save on expensive coke, pulverized fuel injection is being considered or implemented. However, pulverized pulverized fuel (hereinafter collectively referred to as pulverized fuel in this specification) has the drawbacks of having a slower combustion rate than heavy oil and containing unresolved components such as ash, so it is difficult to inject it. In the meantime, it is necessary to take various measures. This will be explained more specifically as follows. In conventional heavy oil injection, the tip of the burner was placed near the boundary between the blast furnace outlet and the blow pipe, and the injected heavy oil was almost completely burned inside the outlet and in the raceway immediately after the tuyere. On the other hand,
If powdered fuel is injected from the same position, it will not be completely burned in the tuyere or raceway, resulting in a poor combustion rate. As a result of further study, we felt that if we had a blowing position, we could move it upstream and blow it into the blowpipe, and if we ignited and burned it in the blowpipe, we could considerably improve the combustion rate. On the other hand, powdered fuel contains a small amount of ash, although the difference is about l, and this ash melts due to the heat of combustion, but when this molten material collides with the inner surface of the blow pipe, it adheres to that part. This accumulation of ash not only narrows the air passage and makes it difficult to maintain stable injection of fuel, but also poses a risk of unstable injection of hot air from the tuyere.・The more the powdered fuel is injected into the upstream side, the more the accumulation becomes more serious.
Based on the above-mentioned knowledge, the present inventors conducted studies to clarify the cause of adhesion and accumulation of ash, and the following facts were confirmed.

即ち燃料吹込用バーナ(以下単にバーナという)から吹
込まれた粉体燃料は、後記実施例でも明らかにする様に
バーナ先端から出ると同時にブローバイブ内を高速で流
れる熱風と接し、火炎を形成しながら燃焼するが、この
火炎のブローバイブ壁面への接触度合いが大きくなる程
、灰の付着・堆積が著しくなる。これはブローバイブ壁
面が火炎によつて過熱されていると、火炎中で溶融乃至
半溶融状態となつている粉体燃料中の灰分が壁面に付着
し易くなり、これが徐々に堆積してくる為と考えられる
。従つて灰の堆積を防止する為には、上記火炎がブロー
バイブ内壁に接触するのを極力抑制することが有効と考
えられる。本発明は上記の様な知見を元に更に研究の結
果完成されたものであつて、その構成は、粉体燃料吹込
用バーナを、高炉羽口に連接される熱風吹込用ブローバ
イブの壁を貫通して該ブローバイブ内−へ突入させ、前
記バーナからの吹込まれた粉体燃料を、ブローバイブ内
を流れる熱風と共に高炉羽口から吹込む粉体燃料の高炉
吹込方法であつて、前記バーナの先端中心が前記ブロー
バイブの軸心と一致しない場合に、前記バーナ先端を、
下記3,点A.,B.,Cによつて形成される三角形に
おける角ZBACが11〜25度となる位置に設定して
粉体燃料を吹込むところ要旨が存在する。
In other words, the powdered fuel blown from the fuel injection burner (hereinafter simply referred to as the burner) comes out from the burner tip and comes into contact with the hot air flowing at high speed inside the blow vibe, forming a flame, as will be clarified in the examples below. However, the greater the degree of contact of this flame with the wall surface of the blow vibrator, the greater the adhesion and accumulation of ash. This is because when the wall of the blow vibrator is overheated by the flame, the ash in the powdered fuel, which is in a molten or semi-molten state in the flame, tends to adhere to the wall and gradually accumulates. it is conceivable that. Therefore, in order to prevent the accumulation of ash, it is considered effective to suppress the flame from coming into contact with the blow vibe inner wall as much as possible. The present invention was completed as a result of further research based on the above knowledge, and its configuration consists of a burner for blowing powdered fuel and a wall of a blow vibrator for blowing hot air connected to the blast furnace tuyere. A method for blowing powdered fuel into a blast furnace, in which the powdered fuel is penetrated and entered into the blow vibe, and the powdered fuel blown from the burner is blown from the blast furnace tuyeres together with the hot air flowing inside the blow vibe. If the center of the tip of the burner does not coincide with the axis of the blow vibe, the tip of the burner
Below 3, point A. ,B. , C is set at a position where the angle ZBAC in the triangle is 11 to 25 degrees, and the powdered fuel is injected.

1前記バーナの先端中心A 2A点からブローバイブ先端に向かう垂線とブニローパ
イプ出口面との交点B3B点に最近接するブローバイブ
出口端内周面の1点C以下実験経過に沿つて本発明の構
成及び作用効果を詳細に説明する。
1 Center A at the tip of the burner 2 Point C on the inner circumferential surface of the blow vibe outlet end closest to point B 3 B, the intersection of the perpendicular line from point A to the tip of the blow vibe and the outlet surface of the Bunilow pipe. The effects will be explained in detail.

第1図は燃焼実験で使用し3た装置の概略図であり、実
際の高炉羽口部に模した構造に設計されている。粉体燃
料Aは地上ホッパー1からスクリューコンベア2によつ
てコールピン3へ搬送される。コールピン3の下部には
粉体燃料定量供給機4が設けられており、この部分4で
一定量ずつ切り出された粉体燃料Aは、輸送空気5と共
に輸送管6によつてバーナ7へ送られる。一方高温熱風
炉8で得られた熱風は、送風管9からブローバイブ10
及び水冷羽口11を経て燃焼試験炉12へ送られる。図
中13は煙突である。高炉の燃焼吹込部は一般の燃焼装
置とは全く異なり、ブローバイブ10血び水冷羽口11
で構成されているので、この実験装置は実際の高炉吹込
部に近似させ、第2図に要部を拡大して示す構造として
いる。
Figure 1 is a schematic diagram of the apparatus used in the combustion experiment, which is designed to resemble an actual blast furnace tuyere. Powdered fuel A is conveyed from an above-ground hopper 1 to a coal pin 3 by a screw conveyor 2. A powdered fuel quantitative feeder 4 is provided at the bottom of the coal pin 3, and the powdered fuel A cut out in fixed amounts at this portion 4 is sent to the burner 7 through a transportation pipe 6 together with transportation air 5. . On the other hand, the hot air obtained from the high-temperature hot air stove 8 is transferred from the blow pipe 9 to the blow vibrator 10.
and is sent to the combustion test furnace 12 via the water-cooled tuyeres 11. 13 in the figure is a chimney. The combustion blowing section of a blast furnace is completely different from general combustion equipment, with 10 blow vibes, 11 water-cooled tuyeres, and 11 blow vibes.
This experimental apparatus approximates an actual blast furnace injection section, and its structure is shown in FIG. 2 as an enlarged view of the main part.

またこの試験炉には粉体燃料の燃焼状態及び着火状態を
観察する為の覗窓を多数設けると共に、炉内温度、炉内
ガス組成、炉内ダスlト、火炎輻射量等を測定する為の
検査孔が設けられ、且つブローバイブ10の上流側曲り
部には、該ブローバイブ10内壁への灰の付着状況を観
察する為の覗窓14が設けられている。この装置を用い
た後記実験における条件は下記の通りである。実験条件 粉体燃料:揮発分25〜45% 粉体燃料吹込量:100k9/時間 同 噴射速度:10〜25Nm/秒 輸送燃料固気比:5〜25k9/K9 熱風温度:1200℃ 同 空気比:2.0 同 圧力ニ2000rnmAg 同 羽口先端流速:250TrL/秒 ブローバイブ内径:0.13〜0.20mφこの装置及
び条件において、まずブローバイブ10内におけるバー
ナ6先端位置を種々変えた場合の火炎形成状況と灰堆積
量の関係を概念的に確認した。
In addition, this test furnace is equipped with a number of observation windows to observe the combustion and ignition conditions of the powdered fuel, as well as to measure the temperature inside the furnace, the gas composition inside the furnace, the dust inside the furnace, the amount of flame radiation, etc. In addition, a viewing window 14 is provided at the upstream curved portion of the blow vibe 10 for observing the state of adhesion of ash to the inner wall of the blow vibe 10. The conditions for the experiment described later using this device are as follows. Experimental conditions Powdered fuel: Volatile content 25-45% Powdered fuel injection amount: 100k9/hour Same injection speed: 10-25Nm/sec Transportation fuel air-solid ratio: 5-25k9/K9 Hot air temperature: 1200℃ Same Air ratio: 2.0 Same pressure: 2000 rnmAg Same Tuyere tip flow rate: 250 TrL/sec Blow vibe inner diameter: 0.13 to 0.20 mφ In this device and conditions, first, the flame when the burner 6 tip position in the blow vibe 10 is changed variously. The relationship between the formation status and the amount of ash deposited was conceptually confirmed.

その結果、例えば第3図(概念図)に示す様に、バーナ
6の先端位置をブローバイブ10の軸心10−Pに一致
させた場合は、火炎Fは軸心10−Pからブローバイブ
10の内壁側へ均等に広がるので、バーナ6先端からブ
ローバイブ開口端までの距離Zやブローバイブ10の内
径D等を調整することによつて、灰の付着・堆積を防止
することができる。ところが第4、5図に示す様にバー
ナ6の先端と前記軸心10−Pが不一致の場合は、火炎
Fがブローバイブ6の最も近い壁面に片寄る為にこの部
分に溶融灰xが付着することが確認された。
As a result, for example, as shown in FIG. 3 (conceptual diagram), when the tip position of the burner 6 is aligned with the axis 10-P of the blow vibe 10, the flame F is moved from the axis 10-P to the blow vibe 10. Since the ash spreads evenly toward the inner wall side, adhesion and accumulation of ash can be prevented by adjusting the distance Z from the tip of the burner 6 to the opening end of the blow vibe, the inner diameter D of the blow vibe 10, etc. However, as shown in FIGS. 4 and 5, if the tip of the burner 6 and the axis 10-P do not match, the flame F is biased toward the wall closest to the blow vibe 6, and molten ash x adheres to this area. This was confirmed.

従つて火炎Fが上記の様に片寄つた場合でもブローバイ
ブ内壁に灰が付着しない様な粉体燃料吹込位置を設定す
る必要がある。そこで第6図に示す様に、1バーナ6の
先端中心Al2A点からブローバイブ10の先端に向か
う垂線Sとブローバイブ出口面(水冷羽口11との境界
面)との交点B1及び3B点に最近接するブローバイブ
出口端内周面の1点C1で形成される仮想三角形N幻を
想定し、角ZBAC(即ちθ)を種々変えた場合の燃焼
率及び灰堆積量に与える影響を調べた。
Therefore, it is necessary to set the powder fuel injection position so that ash will not adhere to the blow vibe inner wall even if the flame F is lopsided as described above. Therefore, as shown in FIG. 6, the points B1 and 3B are the intersections of the perpendicular S from the tip center point Al2A of burner 6 to the tip of the blow vibe 10 and the blow vibe outlet surface (boundary surface with the water-cooled tuyere 11). Assuming a virtual triangle N phantom formed by one point C1 on the inner circumferential surface of the blow vibrator outlet end closest to it, we investigated the effects on the combustion rate and the amount of ash accumulation when the angle ZBAC (i.e., θ) was variously changed.

但し燃焼率とは、羽口先端から0.20m下流の燃焼炉
内で採取したガス中のCO2量より算出した総燃焼率を
言う。結果は第7図に示した通りであり、角度0が小さ
くなる程灰の付着・堆積は著しくなり、θが11度以上
になると灰の付着は殆んどみられなくなる。
However, the combustion rate refers to the total combustion rate calculated from the amount of CO2 in the gas collected in the combustion furnace 0.20 m downstream from the tip of the tuyere. The results are shown in FIG. 7, and as the angle 0 becomes smaller, the adhesion and accumulation of ash becomes more significant, and when θ becomes 11 degrees or more, almost no ash adhesion is observed.

しかし角度θが大きくなるということは、バーナ先端か
らブローバイブ出口端までの距離L(第3図)が短くな
ることを意味しており、燃焼ゾーンが短縮されるので燃
焼率は低下してくる。殊に角度θが40度を越えると燃
焼率の低下が顕著になつてくるので、角度θは40度以
下に設定すべきである。中でも最も好ましい角度0は、
第7図からも明らかな様に11〜25度の範囲である。
尚上記角度0は、ブローバイブ10の内径D1バーナ先
端からブローバイブ開口端までの距離L1及びバーナ先
端とブローバイブ最近接壁面との距離1(第6図)によ
つて変わるので、使用するブローバイブ10の内径Dに
応じて前記距離L及びlを適当に調整して角度θが前記
好適範囲に収まる様にすればよい。本発明は概略以上の
様に構成されており、粉体燃料吹込用バーナの先端位置
を前記角度θとの関係を考慮して適正に調整することに
よつて、灰の付着・堆積による障害を何ら生じることな
く粉体燃料の燃焼率を高め得ることになつた。
However, as the angle θ increases, it means that the distance L from the burner tip to the blow-vibrator outlet end (Figure 3) decreases, and as the combustion zone becomes shorter, the combustion rate decreases. . In particular, if the angle θ exceeds 40 degrees, the combustion rate will decrease significantly, so the angle θ should be set to 40 degrees or less. Among them, the most preferable angle is 0,
As is clear from FIG. 7, the angle is in the range of 11 to 25 degrees.
Note that the above angle 0 varies depending on the inner diameter D1 of the blow vibe 10, the distance L1 from the burner tip to the blow vibe opening end, and the distance 1 (FIG. 6) between the burner tip and the wall closest to the blow vibe. The distances L and l may be adjusted appropriately according to the inner diameter D of the vibrator 10 so that the angle θ falls within the preferable range. The present invention is roughly constructed as described above, and by appropriately adjusting the tip position of the burner for blowing powdered fuel in consideration of the relationship with the angle θ, problems caused by adhesion and accumulation of ash can be prevented. It became possible to increase the combustion rate of powdered fuel without causing any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃焼実験装置の概略図、第2図は該装置におけ
る粉体燃料吹込部の要部拡大図、第3〜5図は燃料吹込
位置と火炎及び灰付着の関係を示す説明図、第6図は本
発明における角度0の設定根拠を説明する為の概念図、
第7図は角度θと燃焼率及び灰付着の有無との関係を示
すグラフである。 1:地上ホッパー、2:スクリユーコンベア、J7:粉
体燃料吹込みバーナ、10:プローパイプ、11:水冷
羽口、12:燃焼炉。
Fig. 1 is a schematic diagram of the combustion experiment equipment, Fig. 2 is an enlarged view of the main part of the powder fuel injection part in the equipment, and Figs. 3 to 5 are explanatory diagrams showing the relationship between the fuel injection position and flame and ash adhesion. FIG. 6 is a conceptual diagram for explaining the basis for setting the angle 0 in the present invention,
FIG. 7 is a graph showing the relationship between the angle θ, the combustion rate, and the presence or absence of ash adhesion. 1: Ground hopper, 2: Screw conveyor, J7: Powdered fuel injection burner, 10: Plow pipe, 11: Water-cooled tuyere, 12: Combustion furnace.

Claims (1)

【特許請求の範囲】 1 粉体燃料吹込用バーナを、高炉羽口に連設される熱
風吹込用ブローパイプの壁を貫通して該ブローパイプ内
へ突入させ、前記バーナから吹込まれた粉体燃料を、ブ
ローパイプ内を流れる熱風と共に高炉羽口から吹込む粉
体燃料の高炉吹込方法であつて、前記バーナの先端中心
が前記ブローパイプの軸心と一致しない場合に、前記バ
ーナ先端を、下記3点A、B、Cによつて形成される三
角形における角■BACが11〜25度となる位置に設
定して粉体燃料を吹込むことを特徴とする粉体燃料の高
炉吹込方法。 (1)前記バーナの先端中心A (2)A点からブローパイプ先端に向かう垂線とブロー
パイプ出口面との交点B(3)B点に最近接するブロー
パイプ出口端内周面の1点C
[Scope of Claims] 1. A burner for blowing powdered fuel is passed through the wall of a blow pipe for blowing hot air connected to a blast furnace tuyere and thrust into the blow pipe, and the powder blown from the burner is A powder fuel blast furnace injection method in which fuel is injected from a blast furnace tuyere together with hot air flowing in a blow pipe, and when the center of the tip of the burner does not coincide with the axis of the blow pipe, the tip of the burner is A method for injecting powdered fuel into a blast furnace, characterized in that the powdered fuel is injected at a position where the angle BAC in the triangle formed by the following three points A, B, and C is 11 to 25 degrees. (1) Center A of the tip of the burner (2) Intersection B between the perpendicular line from point A to the tip of the blowpipe and the blowpipe outlet surface (3) Point C on the inner peripheral surface of the blowpipe outlet end closest to point B
JP5423282A 1982-03-31 1982-03-31 Method of injecting powdered fuel into a blast furnace Expired JPS6053082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5423282A JPS6053082B2 (en) 1982-03-31 1982-03-31 Method of injecting powdered fuel into a blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5423282A JPS6053082B2 (en) 1982-03-31 1982-03-31 Method of injecting powdered fuel into a blast furnace

Publications (2)

Publication Number Publication Date
JPS58181810A JPS58181810A (en) 1983-10-24
JPS6053082B2 true JPS6053082B2 (en) 1985-11-22

Family

ID=12964790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5423282A Expired JPS6053082B2 (en) 1982-03-31 1982-03-31 Method of injecting powdered fuel into a blast furnace

Country Status (1)

Country Link
JP (1) JPS6053082B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131905A (en) * 1983-12-21 1985-07-13 Nisshin Steel Co Ltd Method for supplying fuel to blast furnace tuyere
JPH0723489B2 (en) * 1987-05-30 1995-03-15 住友金属工業株式会社 Nozzle for blowing pulverized coal in blast furnace
JPH01177307A (en) * 1987-12-29 1989-07-13 Nkk Corp Method for operating blast furnace
JPH0694564B2 (en) * 1990-11-30 1994-11-24 住友金属工業株式会社 Injection method of powdered fuel into blast furnace

Also Published As

Publication number Publication date
JPS58181810A (en) 1983-10-24

Similar Documents

Publication Publication Date Title
US3809524A (en) Injection of liquid fuels into shaft furnaces
JPS6053082B2 (en) Method of injecting powdered fuel into a blast furnace
CA1223775A (en) Burner for pulverized, gaseous and/or liquid fuels
JPH0723489B2 (en) Nozzle for blowing pulverized coal in blast furnace
CN108194922B (en) Oxygen-enriched combustor capable of adjusting flame
JPH0833190B2 (en) Swirl melting furnace
US3793002A (en) Method of introducing a combustible auxiliary liquid into blast furnace and a tuyere for carrying out the method
JPS63282402A (en) Coal burning equipment
JPH08104909A (en) Device for blowing pulverized coal for blast furnace and operation for blowing pulverized coal in blast furnace
JPS6053081B2 (en) Method of injecting powdered fuel into blast furnace
US5222447A (en) Carbon black enriched combustion
US4043541A (en) Blast furnace tuyere
JPS5918307A (en) Blow-in device of powdery fuel into blast furnace
GB870553A (en) Pulverised fuel burner
JPS606418Y2 (en) Burner for blowing powdered fuel into blast furnace
JPH08157916A (en) Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal
JPS6053083B2 (en) Control method for pulverized fuel injection into blast furnace
JP3475963B2 (en) Pulverized coal injection method and injection lance into blast furnace
JPH0449452Y2 (en)
JPH0694564B2 (en) Injection method of powdered fuel into blast furnace
JPS6036575Y2 (en) Burner with tip for injecting powdered fuel into blast furnace
JPH0778246B2 (en) Method of blowing pulverized coal into the blast furnace
JPH04309707A (en) Burner for igniting sintered raw material
JPH0343220Y2 (en)
KR100294119B1 (en) Structure of gasified and melting furnace and operation method thereof