JPS6053081B2 - Method of injecting powdered fuel into blast furnace - Google Patents

Method of injecting powdered fuel into blast furnace

Info

Publication number
JPS6053081B2
JPS6053081B2 JP5423182A JP5423182A JPS6053081B2 JP S6053081 B2 JPS6053081 B2 JP S6053081B2 JP 5423182 A JP5423182 A JP 5423182A JP 5423182 A JP5423182 A JP 5423182A JP S6053081 B2 JPS6053081 B2 JP S6053081B2
Authority
JP
Japan
Prior art keywords
blast furnace
powdered fuel
blow
ash
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5423182A
Other languages
Japanese (ja)
Other versions
JPS58171509A (en
Inventor
富雄 鈴木
節夫 田村
孝三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5423182A priority Critical patent/JPS6053081B2/en
Priority to US06/477,489 priority patent/US4490171A/en
Priority to GB08308557A priority patent/GB2119488B/en
Priority to CA000424941A priority patent/CA1210248A/en
Priority to BR8301688A priority patent/BR8301688A/en
Priority to ES83521197A priority patent/ES8405138A1/en
Priority to FR8305376A priority patent/FR2530666B1/en
Publication of JPS58171509A publication Critical patent/JPS58171509A/en
Publication of JPS6053081B2 publication Critical patent/JPS6053081B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal

Description

【発明の詳細な説明】 本発明は、一般的に燃焼性が悪いとされている粉体燃
料を燃焼性の良い状態で吹込む方法に関するものてあり
、具体的には、燃焼性の向上と共に併発する灰分の付着
(ブローパイプ内面への堆積)を可及的に回避しながら
最適の状態で吹込みを行なう方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of injecting powdered fuel, which is generally considered to have poor flammability, in a state of good combustibility. This invention relates to a method of blowing in an optimal state while avoiding as much as possible the accompanying ash adhesion (deposition on the inner surface of the blow pipe).

高炉操業における吹込燃料は、石油価格の高騰の影響
を受けて、重油単独吹込みが影をひそめオールコークス
操業が主流となつている。しかしながら、オールコーク
ス操業の困難性の緩和や高価なコークスの節約のために
微粉炭等の粉体燃料吹込みが検討あるいは実施されつつ
ある。しかるに微粉炭等の粉体燃料(以下本明細書にお
いては粉体燃料と総称する)は重油に比べて燃焼速度が
遅くかつ灰分等の未然分を含有するという欠点を有する
ので、吹込みに当つては種々の対策を講する必要がある
。これを更に具体的に説明すれば以下の通りである。
従来の重油吹込みでは、バーナの先端が高炉羽口とブロ
ーパイプの境界点近傍に配置され、吹込まれた重油が羽
口内及び羽口直後のレースウェイ内でほぼ完全に燃焼さ
れていたのに対し、粉体燃料を同じ位置から吹込んだ場
合は羽口やレースウェイ内で完全に燃焼し尽すことがで
きず、結果として燃焼率が悪くなる。
As for the injection fuel used in blast furnace operations, due to the effects of soaring oil prices, the injection of heavy oil alone has faded, and all-coke operation has become the mainstream. However, in order to alleviate the difficulty of all-coke operation and save on expensive coke, injection of pulverized fuel such as pulverized coal is being considered or implemented. However, pulverized coal and other pulverized fuels (hereinafter collectively referred to as pulverized fuels) have the drawbacks of having a slower combustion rate than heavy oil and containing unresolved components such as ash, so they are not suitable for injection. Therefore, it is necessary to take various measures. This will be explained more specifically as follows.
In conventional heavy oil injection, the tip of the burner is placed near the boundary between the blast furnace tuyere and the blowpipe, and the injected heavy oil is almost completely burned inside the tuyere and in the raceway immediately after the tuyere. On the other hand, if powdered fuel is injected from the same position, it will not be completely burned within the tuyere or raceway, resulting in a poor combustion rate.

そこで更に検討の結果、吹込位置をもつと上流側に移動
させてブローパイプ内に吹込み、ブローパイプ内におい
て着火燃焼させれば燃焼率を相当向上させることができ
るという感触を得た。 他方粉体燃料中には程度の差は
あれ若干の灰分が含まれており、この灰分は燃焼熱によ
つて溶融するが、この溶融物がブローパイプの内面に衝
突するとその部分に付着・堆積して送風通路を狭くし、
燃料の安定吹込みを継続することが困難になるばかりか
、羽口からの熱風吹込みが不安定になるという危険もあ
り、この様な灰分の付着・堆積は粉体燃料の吹込位置を
上流側にすればする程著しくなる。
As a result of further study, we felt that if we had a blowing position, we could move it upstream and blow it into the blowpipe, and if we ignited and burned it in the blowpipe, we could considerably improve the combustion rate. On the other hand, powdered fuel contains a small amount of ash to varying degrees, and this ash melts due to the heat of combustion, but when this molten material collides with the inner surface of the blow pipe, it adheres and accumulates on that part. to narrow the ventilation passage,
Not only will it be difficult to maintain a stable injection of fuel, but there is also the danger that the injection of hot air from the tuyeres will become unstable. The more you move it to the side, the more noticeable it becomes.

本発明者等は上記の様な知見を元に、灰分の付着・堆
積を防止しつつ粉体燃料の燃焼率を液体燃料のそれと同
程度まで高め得る様な技術を確立すべく鋭意研究を進め
てきた。
Based on the above knowledge, the inventors of the present invention have conducted intensive research in order to establish a technology that can increase the combustion rate of powdered fuel to the same level as that of liquid fuel while preventing the adhesion and accumulation of ash. It's here.

本発明はかかる研究の結果完成されたものであつて、そ
の構成は、粉体燃料吹込用バーナを、高炉羽口に連接さ
れた熱風吹込用ブローバイブの壁を貫通して該ブローバ
イブ内へ、前記バーナの先端中心が該バイブの軸心近傍
にある様に突入させ、前記バーナから吹込まれた粉体燃
料を、ブローバイブ内を流れる950℃以上の熱風と共
に高炉羽口から吹込む高炉への粉体燃料吹込方法であつ
て、前記バーナの先端を、高炉羽口とブローバイブの境
界位置から0.1〜0.35m上流に位置させて行なう
ところに要旨が存在する。以下実験経過に沿つて本発明
の構成及び作用効果を詳細に説明する。
The present invention was completed as a result of such research, and has a structure in which a burner for blowing powdered fuel is passed through the wall of a blow vibe for blowing hot air connected to a blast furnace tuyere and into the blow vibe. , the burner is thrust into the blast furnace so that the center of the tip thereof is near the axis of the vibrator, and the powdered fuel blown from the burner is blown into the blast furnace through the blast furnace tuyeres together with the hot air of 950° C. or higher flowing inside the blow vibrator. The gist of this powdered fuel injection method is that the tip of the burner is positioned 0.1 to 0.35 m upstream from the boundary between the blast furnace tuyere and the blow vibe. The configuration and effects of the present invention will be explained in detail below along with the progress of the experiment.

第1図は燃焼実験で使用した装置の概略図であり、実際
の高炉羽口部に模した構造に設計されている。粉体燃料
Aは地上ホッパー1からスクリューコンベア2によつて
コールピン3へ搬送される。コールピン3の下部には粉
体燃料定量供給機4が設けられており、この部分て一定
量ずつ切り出された粉体燃料Aは、輸送空気5と共に輸
送管6によつてバーナ7へ送られる。一方高温熱風炉8
で得られた熱風は、送風管9からブローバイブ10及び
水冷羽口11を経て燃焼試験炉12へ送られる。図中1
3は煙突である。高炉の燃料吹込部は一般の燃焼装置と
は全く異なり、ブローバイブ10及び水冷羽口11で構
成されているので、この実験装置は実際の高炉吹込部に
近似させ、第2図に要部を拡大して示す構造一としてい
る。
Figure 1 is a schematic diagram of the apparatus used in the combustion experiment, which is designed to resemble an actual blast furnace tuyere. Powdered fuel A is conveyed from an above-ground hopper 1 to a coal pin 3 by a screw conveyor 2. A powdered fuel quantitative feeder 4 is provided at the bottom of the coal pin 3, and a fixed amount of the powdered fuel A is cut out from this portion and sent to the burner 7 through a transport pipe 6 together with transport air 5. On the other hand, high-temperature hot air stove 8
The hot air obtained is sent from the blast pipe 9 to the combustion test furnace 12 via the blow vibe 10 and the water-cooled tuyeres 11. 1 in the diagram
3 is the chimney. The fuel injection section of a blast furnace is completely different from a general combustion device and consists of a blow vibrator 10 and a water-cooled tuyere 11. Therefore, this experimental device was designed to approximate an actual blast furnace injection section, and the main parts are shown in Figure 2. The structure is shown in an enlarged view.

またこの試験炉には粉体燃料の燃焼状態及び着火状態を
観察する為ののぞき窓を多数設けると共に、炉内温度、
炉内ガス組成、炉内ダスト、火炎輻射量等を測定する為
の検査孔が設けられ、且つブローバイブ10の上流側曲
り部に.は、該ブローバイブ10壁への灰の付着状況を
観察する為ののぞき窓14が設けられている。この装置
を用いた後記一連の実験における条件は下記の通りであ
る。実験条件 粉体燃料:揮発分20〜45重量% 粉体燃料吹込量:100k9/時間 同 噴射速度:10〜25Nm/秒 輸送燃料固気比:5〜25k9/K9 熱風温度:800〜12000C 同圧力ニ2000mAq 同羽口先端流速:2507T1,/秒(1200℃)ブ
ローバイブ径:0.13〜0.187nφ炉内温度:1
500〜2200℃まず上記の装置及び条件(但しこで
は熱風温度を12000Cに設定)において、ブローバ
イブ10におけるバーナ7の位置(羽口11とブローバ
イブ10との境界面11bからバーナ先端までの距離“
L)を種々変更し、各位置における粉体燃料の燃焼率と
ブローバイブ内壁への灰の付着・堆積状況を調べたとこ
ろ、第3図の結果が得られた。
In addition, this test furnace is equipped with many observation windows to observe the combustion and ignition conditions of the powdered fuel.
Inspection holes for measuring the furnace gas composition, furnace dust, flame radiation amount, etc. are provided at the upstream bend of the blow vibe 10. A peephole 14 is provided for observing the adhesion of ash to the wall of the blow vibrator 10. The conditions for the series of experiments described later using this apparatus are as follows. Experimental conditions Powdered fuel: volatile content 20-45% by weight Powdered fuel injection amount: 100k9/hour Same injection speed: 10-25Nm/sec Transportation fuel solid-air ratio: 5-25k9/K9 Hot air temperature: 800-12000C Same pressure D2000mAq Tuyere tip flow rate: 2507T1,/sec (1200℃) Blow vibe diameter: 0.13 to 0.187nφ Furnace temperature: 1
500 to 2200°C First, under the above equipment and conditions (here, the hot air temperature is set to 12000°C), the position of the burner 7 in the blow vibe 10 (the distance from the interface 11b between the tuyere 11 and the blow vibe 10 to the burner tip) “
L) was changed in various ways and the combustion rate of the powdered fuel at each position and the state of adhesion and accumulation of ash on the inner wall of the blow vibrator were investigated, and the results shown in Fig. 3 were obtained.

但し燃焼率は、燃焼時のCO,発生濃度の分布と速度分
布から求めた総熱焼率と、炉心部におけるダストから求
めた灰分量バランスによる局所燃焼率を夫々示した。尚
総燃焼率算出の為CO2濃度測定位置は水冷羽口11の
先端面11aから0.8W1,下流の点とした。この位
置は実際の高炉におけるレースウェイの深さに相当し、
この位置に至るまでに粉体燃料を完全燃焼させることが
必要である。また灰の堆積量は、実験開始から5時間後
における灰堆積量〔ブローバイブ横断面積中の灰堆積部
の面積の%:のぞき窓14からの写真撮影後の測定値(
第4図参照)〕を示す。第3図からも明らかな様に、液
体燃料(重油)を用いた場合は前記距離Lを零にした場
合でも約92%の燃焼率を得ることができるが、同じ距
離Lで粉体燃料を使つたときの総燃焼率は約70%に低
下している。
However, the combustion rate is the total thermal burning rate determined from the distribution of CO concentration and velocity distribution during combustion, and the local combustion rate is determined from the ash content balance determined from the dust in the reactor core. In order to calculate the total combustion rate, the CO2 concentration measurement position was set at a point 0.8W1 downstream from the tip surface 11a of the water-cooled tuyere 11. This position corresponds to the raceway depth in an actual blast furnace,
It is necessary to completely burn the powdered fuel before reaching this position. In addition, the amount of ash deposited 5 hours after the start of the experiment [% of the area of ash deposited part in the cross-sectional area of the blow vibe: measured value after taking a photo from the peephole 14]
(See Figure 4)]. As is clear from Figure 3, when liquid fuel (heavy oil) is used, a combustion rate of approximately 92% can be obtained even when the distance L is zero, but when powdered fuel is used at the same distance L, The total combustion rate when used is reduced to about 70%.

即ち燃焼率からみると、粉体燃料は液体燃料の約76%
(70192×100)しか有効に利用されておらず、
熱量換算で約114が未燃焼のままである。ところが前
記距離Lを長くするにつれて燃焼率は徐々に高まり、L
を0.1m以上にすると有意差が明確に現われ、0.3
0〜0.35mの範囲では燃焼率は約20%も向上して
液体燃料を用いた場合に匹敵する燃焼率を得ることがで
きる。一方灰の付着・堆積量は、Lが0.35m未満で
殆んど認められないが、0.35mを越えると急激に増
加する。
In other words, in terms of combustion rate, powder fuel is about 76% of liquid fuel.
(70192 x 100) is being used effectively,
Approximately 114 of the amount of heat remains unburned. However, as the distance L increases, the combustion rate gradually increases, and L
A significant difference clearly appears when the distance is 0.1 m or more, and 0.3
In the range of 0 to 0.35 m, the combustion rate improves by about 20%, making it possible to obtain a combustion rate comparable to that when using liquid fuel. On the other hand, the amount of adhesion and accumulation of ash is hardly observed when L is less than 0.35 m, but increases rapidly when L exceeds 0.35 m.

それに伴つてブローバイブ10の熱風通過面積が減少し
、燃焼率も゛低下傾向を示す様になる。即ち粉体燃料の
燃焼率及び灰堆積量は、前記距離Lによつて著しく影響
され、両者を同時に満足する為には距離Lを0.10〜
0.35m.、好ましく0.20〜0.35m1こ設定
すべきであることが分かる。
Along with this, the area through which the hot air passes through the blow vibe 10 decreases, and the combustion rate also tends to decrease. That is, the combustion rate of powdered fuel and the amount of ash deposited are significantly affected by the distance L, and in order to satisfy both at the same time, the distance L must be set between 0.10 and 10.
0.35m. It can be seen that it should preferably be set to 0.20 to 0.35 m1.

尚第5図は距離Lを0.40m1こ設定し、熱風温度を
800〜1200′Cに変化させたときの熱風温度と灰
堆積量の関係を調べた結果を示したものであるが、この
図からも明らかな様に900℃以下の熱風を使用する限
り灰堆積の問題は殆んど起こらない。しかし熱風温度が
950℃を越えると灰の堆積が顕著に現われる。これは
粉体燃料中に含まれる灰分の融点による影響と考えられ
、900℃未満ではブローバイブ内で灰分が殆んど溶融
せず炉内へ送り込まれた為と思われる。従つてこの様な
低温熱風の場合は本発明に示す様な課題は存在せず、9
50℃以上の時に1050℃以上の熱風を使用する場合
においてこそ本発明の価値がある。ところで前述の様な
灰の付着・堆積はブローバイブ10の内経が小さくなる
程著しくなり、太径のものを使用した場合は付着・堆積
量自体が減少すると共に、灰堆積による流路面積の減少
率も少ないので、燃焼率に与える障害は比較的少ないと
考えられる。
Figure 5 shows the results of investigating the relationship between the hot air temperature and the amount of ash deposited when the distance L was set at 0.40 m1 and the hot air temperature was varied from 800 to 1200'C. As is clear from the figure, as long as hot air of 900° C. or lower is used, the problem of ash accumulation hardly occurs. However, when the hot air temperature exceeds 950°C, ash accumulation becomes noticeable. This is thought to be due to the influence of the melting point of the ash contained in the powdered fuel, and is thought to be because at temperatures below 900°C, the ash was hardly melted in the blow vibe and was sent into the furnace. Therefore, in the case of such low-temperature hot air, there is no problem as shown in the present invention, and 9
The present invention is valuable only when hot air of 1050°C or higher is used when the temperature is 50°C or higher. Incidentally, the adhesion and accumulation of ash as described above becomes more pronounced as the inner diameter of the blow vibrator 10 becomes smaller, and when a larger diameter one is used, the amount of adhesion and accumulation itself decreases, and the flow path area is reduced due to ash accumulation. Since the rate of decrease is also small, it is thought that there is relatively little disturbance to the combustion rate.

そこでブローバイブ内の内径の関係を調べたところ、灰
堆積の問題は0.18mφ以下の内径のブローバイブを
使用したときに顕著に現われ、それ以上の内径のものを
用いた場合の影響は殆んど無視し得る程度であることが
確認された。また実際の高炉に使用されるブローバイブ
の内径は、所定の熱風量とその流速を確保する為に自ず
と制約があり、一般的には0.18Tr1,φ程度が上
限とされている。この様な点も踏まえて考えれば、本発
明の特徴は内径が0.187TLφ以下のブローバイブ
を使用する場合に有効に発揮され且つそれで十分である
と言える。逆にブローバイブの内径が小さくなりすぎる
と灰堆積の影響が顕著になるので、0.13mφ程度以
上のものを使用することが望まれる。本発明は概略以上
の様に構成されるが、要は粉体燃料吹込用バーナの位置
を適正に調整することによつて、灰の付着・堆積による
障害を何ら生じることなく、粉体燃料の燃焼率を液体燃
料程度まで高め得ることになる。
Therefore, when we investigated the relationship between the internal diameter of the blow vibrator, we found that the problem of ash accumulation becomes noticeable when using a blow vibrator with an internal diameter of 0.18 mφ or less, and there is almost no effect when using a blow vibrator with an internal diameter of 0.18 mφ or less. It was confirmed that the level was negligible. Further, the inner diameter of a blow vibrator used in an actual blast furnace is naturally limited in order to ensure a predetermined amount of hot air and its flow velocity, and the upper limit is generally about 0.18Tr1,φ. Considering these points as well, it can be said that the features of the present invention are effectively exhibited and are sufficient when using a blow vibe with an inner diameter of 0.187TLφ or less. On the other hand, if the inner diameter of the blow vibrator becomes too small, the influence of ash accumulation becomes significant, so it is desirable to use one with a diameter of about 0.13 mφ or more. The present invention is roughly constructed as described above, but the key point is that by properly adjusting the position of the burner for blowing powdered fuel, powdered fuel can be injected without causing any problems due to adhesion or accumulation of ash. This means that the combustion rate can be increased to the level of liquid fuel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃焼実験装置の概略図、第2図は該装置におけ
る粉体燃料吹込部の要部拡大図、第3図は粉体燃料吹込
位置と燃焼率及び灰堆積量の関係を示すグラフ、第4図
はブローバイブ内面への灰付着状況を示す説明図、第5
図は熱風温度と灰堆”積量の関係を示すグラフである。
Figure 1 is a schematic diagram of the combustion experiment equipment, Figure 2 is an enlarged view of the main part of the powder fuel injection section in the equipment, and Figure 3 is a graph showing the relationship between the powder fuel injection position, combustion rate, and ash accumulation amount. , Fig. 4 is an explanatory diagram showing the state of ash adhesion to the inner surface of the blow vibrator, Fig. 5
The figure is a graph showing the relationship between hot air temperature and ash pile volume.

Claims (1)

【特許請求の範囲】[Claims] 1 粉体燃料吹込用バーナを、高炉羽口に連接された熱
風吹込用ブローパイプの壁を貫通して該ブローパイプ内
へ、前記バーナの先端中心が該パイプの軸心近傍になる
様に突入させ、前記バーナから吹込まれた粉体燃料を、
ブローパイプ内を流れる1050℃以上の熱風と共に高
炉羽口から吹込む高炉への粉体燃料吹込方法であつて、
前記バーナの先端を、高炉羽口とブローパイプの境界位
置から100〜350mm上流に位置させて行なうこと
を特徴とする高炉への粉体燃料吹込方法。
1. A burner for blowing powdered fuel penetrates the wall of a blow pipe for blowing hot air connected to a blast furnace tuyere and enters the blow pipe so that the center of the tip of the burner is near the axis of the pipe. and the powdered fuel blown from the burner,
A method of blowing powdered fuel into a blast furnace through a blast furnace tuyere together with hot air of 1050°C or higher flowing in a blow pipe,
A method for injecting powdered fuel into a blast furnace, characterized in that the tip of the burner is positioned 100 to 350 mm upstream from the boundary between the blast furnace tuyere and the blow pipe.
JP5423182A 1982-03-31 1982-03-31 Method of injecting powdered fuel into blast furnace Expired JPS6053081B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP5423182A JPS6053081B2 (en) 1982-03-31 1982-03-31 Method of injecting powdered fuel into blast furnace
US06/477,489 US4490171A (en) 1982-03-31 1983-03-21 Method and apparatus for injecting pulverized fuel into a blast furnace
GB08308557A GB2119488B (en) 1982-03-31 1983-03-29 Injecting pulverised fuel into a blast furnace
CA000424941A CA1210248A (en) 1982-03-31 1983-03-30 Method and apparatus for injecting pulverized fuel into a blast furnace
BR8301688A BR8301688A (en) 1982-03-31 1983-03-30 PROCESS TO INJECT SPRAYED FUEL IN A HIGH OVEN, APPLIANCE TO PROVIDE SPRAYED FUEL TO A HIGH - OVEN AND OVEN
ES83521197A ES8405138A1 (en) 1982-03-31 1983-03-30 Method and apparatus for injecting pulverized fuel into a blast furnace
FR8305376A FR2530666B1 (en) 1982-03-31 1983-03-31 METHOD AND APPARATUS FOR INJECTING SOLID FUEL AND BURNER FOR BLAST FURNACE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5423182A JPS6053081B2 (en) 1982-03-31 1982-03-31 Method of injecting powdered fuel into blast furnace

Publications (2)

Publication Number Publication Date
JPS58171509A JPS58171509A (en) 1983-10-08
JPS6053081B2 true JPS6053081B2 (en) 1985-11-22

Family

ID=12964761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5423182A Expired JPS6053081B2 (en) 1982-03-31 1982-03-31 Method of injecting powdered fuel into blast furnace

Country Status (1)

Country Link
JP (1) JPS6053081B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547142B2 (en) * 2016-02-17 2019-07-24 Jfeスチール株式会社 Method of estimating combustion position of particulate reductant at blast tuyere of blast furnace and blower tuyere used for the method

Also Published As

Publication number Publication date
JPS58171509A (en) 1983-10-08

Similar Documents

Publication Publication Date Title
JP5824810B2 (en) Blast furnace operation method
WO2010021065A1 (en) Process for producing sintered ore and sintering machine
BR112013017667B1 (en) HIGH OVEN OPERATION METHOD
US7621154B2 (en) Solid fuel combustion for industrial melting with a slagging combustor
JP5699832B2 (en) Blast furnace operation method
JP6580710B2 (en) Auxiliary burner for electric furnace
JPS6311608A (en) Method for blowing power fuel into blast furnace
JPS6053081B2 (en) Method of injecting powdered fuel into blast furnace
JPH0723489B2 (en) Nozzle for blowing pulverized coal in blast furnace
JPS6053082B2 (en) Method of injecting powdered fuel into a blast furnace
JP5824812B2 (en) Blast furnace operation method
JPS62238307A (en) Method for blowing noncombustible fuel into blast furnace
JP2005213591A (en) Method for blowing solid fuel into blast furnace and blowing lance
US5222447A (en) Carbon black enriched combustion
US909920A (en) Gas-generator apparatus for producing combustible gases.
JP5824811B2 (en) Blast furnace operation method
JPS62270709A (en) Method for blowing powdery fuel into blast furnace
JP2523918B2 (en) Injection method of powdered fuel into blast furnace
JP4345506B2 (en) Method of injecting solid fuel into the blast furnace
JPS5918307A (en) Blow-in device of powdery fuel into blast furnace
KR100294119B1 (en) Structure of gasified and melting furnace and operation method thereof
SU763481A1 (en) Method of heating horns of conveyer machines
Thring Some recent developments in the physics of fuel combustion
Kreisinger Combustion of Pulverized Coal
JPH0778246B2 (en) Method of blowing pulverized coal into the blast furnace