JP6034313B2 - Combined lance for blast furnace tuyere - Google Patents

Combined lance for blast furnace tuyere Download PDF

Info

Publication number
JP6034313B2
JP6034313B2 JP2014001794A JP2014001794A JP6034313B2 JP 6034313 B2 JP6034313 B2 JP 6034313B2 JP 2014001794 A JP2014001794 A JP 2014001794A JP 2014001794 A JP2014001794 A JP 2014001794A JP 6034313 B2 JP6034313 B2 JP 6034313B2
Authority
JP
Japan
Prior art keywords
section
flow path
circular cross
cross
lance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014001794A
Other languages
Japanese (ja)
Other versions
JP2015129338A (en
Inventor
長野 誠
誠 長野
大樹 藤原
大樹 藤原
吉田 健
健 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014001794A priority Critical patent/JP6034313B2/en
Publication of JP2015129338A publication Critical patent/JP2015129338A/en
Application granted granted Critical
Publication of JP6034313B2 publication Critical patent/JP6034313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blast Furnaces (AREA)

Description

本発明は、高炉羽口から微粉炭などの固体還元材と、LNG(Liquefied Natural Gas:液化天然ガス)などの気体還元材とを吹き込んで、燃焼温度を上昇させることにより生産性の向上及び還元材原単位の低減を図る高炉の操業方法に用いられるランスに関するものである。   In the present invention, a solid reducing material such as pulverized coal and a gaseous reducing material such as LNG (Liquefied Natural Gas) are blown from the blast furnace tuyere to increase the combustion temperature and reduce the productivity. The present invention relates to a lance used in a method of operating a blast furnace to reduce the basic unit of material.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出COの抑制は重要な課題である。これを受け、最近の高炉操業では、低還元材比(低RAR:Reduction Agent Ratioの略で、銑鉄1t製造当たりの、羽口からの吹き込み還元材と炉頂から装入されるコークスの合計量)操業が強力に推進されている。高炉は、主にコークス及び微粉炭を還元材として使用しており、低還元材比、ひいては炭酸ガス排出抑制を達成するためにはコークスなどを廃プラ、LNG、重油等の水素含有率の高い還元材で置換する方策が有効である。その際、ランスから固体還元材、気体還元材、支燃性ガスを同時に吹き込むことで、気体還元材の燃焼場により固体還元材の昇温が促進されることで固体還元材の燃焼率が向上し、未燃粉やコークス粉の発生が抑制され、通気が改善することで還元材比が削減できるとされている。下記特許文献1では、例えばランスを三重管型とし、最も内側の管の内側を内管ランス、最も内側の管と内側から二番目の管の間を中間ランス、内側から二番目の管と最も外側の管の間を外管ランスとし、内管ランス、中間ランス、外管ランスの夫々から、固体還元材、気体還元材、支燃性ガスの一種類ずつを吹き込むようにしている。 In recent years, global warming due to an increase in carbon dioxide emission has become a problem, and the suppression of exhausted CO 2 is an important issue even in the steel industry. As a result, in recent blast furnace operations, the ratio of low reducing agent ratio (low RAR: Abbreviation for Reduction Agent Ratio, the total amount of reducing material blown from the tuyere and coke charged from the top of the furnace per 1 ton of pig iron production. ) Operation is strongly promoted. Blast furnaces mainly use coke and pulverized coal as reducing materials, and in order to achieve a low reducing material ratio, and thus carbon dioxide emission control, coke etc. have a high hydrogen content such as waste plastic, LNG, heavy oil, etc. It is effective to replace with a reducing material. At that time, the solid reductant, the gas reductant, and the combustion-supporting gas are simultaneously blown from the lance, so that the temperature of the solid reductant is increased by the combustion field of the gas reductant, thereby improving the combustion rate of the solid reductant. However, the generation of unburned powder and coke powder is suppressed, and it is said that the reducing material ratio can be reduced by improving the ventilation. In the following Patent Document 1, for example, the lance is a triple tube type, the innermost tube is the inner tube lance, the innermost tube and the second tube from the inside are the intermediate lance, and the innermost tube is the second tube from the innermost. An outer pipe lance is provided between the outer pipes, and each of the inner pipe lance, the intermediate lance, and the outer pipe lance is blown with a solid reducing material, a gas reducing material, and a combustion-supporting gas.

特開2011−174171号公報JP 2011-174171 A

ところで、羽口に主として熱風を送風する送風管(ブローパイプ)にはランス用ガイド管が設けられており、ランスはランス用ガイド管を通じて送風管内に挿入される。しかしながら、前記特許文献1に記載されるようにランスを重管型とし、管と管の隙間からガスを吹き込む場合、ガスの流速に対する圧力損失が大きく、ガス量と流速を両立させようとすると、ランスの径が極端に増大し、ランス用ガイド管内に挿入できない可能性がある。   Incidentally, a lance guide tube is provided in a blower pipe (blow pipe) that mainly blows hot air to the tuyere, and the lance is inserted into the blower tube through the lance guide tube. However, as described in Patent Document 1, when the lance is a heavy pipe type and gas is blown from the gap between the pipes, there is a large pressure loss with respect to the flow rate of the gas. There is a possibility that the diameter of the lance is extremely increased and the lance cannot be inserted into the lance guide tube.

本発明は、上記のような問題点に着目してなされたものであり、ランスの径を極端に増加させることなく、還元材原単位の低減を可能とする高炉羽口用複合ランスを提供することを目的とするものである。   The present invention has been made paying attention to the above-described problems, and provides a blast furnace tuyere lance capable of reducing the reducing material basic unit without extremely increasing the diameter of the lance. It is for the purpose.

上記課題を解決するために、本発明の高炉羽口用複合ランスは、固体又は流体が流れる流路を三つの平行な状態で有する高炉羽口用複合ランスであって、前記三つの流路のうち一つ目の流路を構成し、断面円形の管体によって形成された円形断面流路部と、前記三つの流路のうち二つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした一つ目の縦割り管体の両端部を前記断面円形の管体に接合して形成された一つ目の不完全円形断面流路部と、前記三つの流路のうち三つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした二つ目の縦割り管体の一端部を前記断面円形の管体に接合し、前記二つ目の縦割り管体の他端部を前記一つ目の縦割り管体に接合して形成された二つ目の不完全円形断面流路部とを備え、前記円形断面流路部及び前記一つ目及び二つ目の不完全円形断面流路部とによって集合流路部を構成したことを特徴とするものである。 In order to solve the above problems, a blast furnace tuyeres composite lance according to the present invention is a blast furnace tuyeres composite lance having three parallel flow paths through which solids or fluids flow. of constitute first one of the flow path, configured with a circular cross-sectional flow portion formed by a circular cross section of the tubular body, the second flow path of the three flow paths, the longitudinal cross section of the tubular body incomplete circular cross-sectional flow portion of the first one formed by combined contact the both end portions of the first one of the vertically divided tube the switching devoid sectional continuously in direction and arcuately to the circular section of the tubular body And one end of a second vertically-divided tubular body that constitutes a third flow path among the three flow paths and has a cross-section cut continuously in the longitudinal direction so that the cross-section has an arc shape. A second incomplete product formed by joining the tubular body having a circular cross section and joining the other end portion of the second vertically-separated tubular body to the first vertically-separated tubular body; And a circular cross-sectional flow portion and is characterized by being configured to set channel portion by said circular cross-sectional flow portion and the first one and incomplete circular cross-sectional flow portion of the second.

本発明における固体又は流体が流れる二以上の平行な流路とは、流路が互いに交わらず且つ独立しており、各流路を流れる固体又は流体が同一方向に流れる関係にあるものを全て示す。また、固体は搬送ガスと共に流路に流すことが可能で、また搬送ガスが還元性ガスなどの他の機能を有していてもよい。
また、前記集合流路部を冷却するための冷却流体用の冷却流体流路部を備えたことを特徴とするものである。
In the present invention, the two or more parallel flow paths through which solids or fluids flow indicate all those in which the flow paths do not cross each other and are independent, and the solids or fluids flowing through the respective flow paths flow in the same direction. . Further, the solid can flow through the flow path together with the carrier gas, and the carrier gas may have other functions such as a reducing gas.
In addition, a cooling fluid channel portion for cooling fluid for cooling the collective channel portion is provided.

また、前記集合流路部の外周に外周管体を設け、前記集合流路部と前記外周管体との隙間を前記冷却流体流路部としたことを特徴とするものである In addition, an outer peripheral tube is provided on the outer periphery of the collective flow channel portion, and a gap between the collective flow channel portion and the outer peripheral tube body is used as the cooling fluid flow channel portion .

また、前記三つの流路のうちいずれか一つを前記固体が流れる流路とし、前記三つの流路のうち前記固体が流れる流路を除く二つの流路を前記流体が流れる流路とし、固体還元材を供給する固体還元材供給手段が前記固体が流れる流路に接続され、支燃性ガスを供給する支燃性ガス供給手段が前記流体が流れる流路のいずれか一つに接続されたことを特徴とするものである。
また、体還元材を供給する気体還元材供給手段が、前記支燃性ガス供給手段が接続されている前記流体が流れる流路のいずれか一つ以外の流路に接続されたことを特徴とするものである。
Further, any one of the three channels is a channel through which the solid flows, and two channels other than the channel through which the solid flows out of the three channels are channels through which the fluid flows, solid reducing agent supply means for supplying a solid reducing material is connected to the channel through the pre-Symbol solids, to one flow path is combustion supporting gas supply means for supplying a combustion-supporting gas flows before Symbol fluid It is characterized by being connected.
Further, characterized in that the gas reducing material supply means for supplying a gas material reducing material, the combustion supporting gas supply means is connected to any one other than the flow path of the flow path through which the fluid being connected It is what.

また、前記円形断面流路を構成する前記三つの流路のうち一つ目の流路が前記固体が流れる流路を構成し、前記固体還元材供給手段が前記円形断面流路によって構成される前記固体が流れる流路に接続されたことを特徴とするものである。
また、固体又は流体が流れる流路を三つの平行な状態で有する高炉羽口用複合ランスであって、前記三つの流路のうち一つ目の流路を構成し、断面円形の一つ目の管体によって形成された一つ目の円形断面流路部と、前記三つの流路のうち二つ目の流路を構成し、前記一つ目の管体に接合されるとともに断面円形の二つ目の管体によって形成された二つ目の円形断面流路部と、前記三つの流路のうち三つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした縦割り管体の両端部を前記一つ目の管体及び前記二つ目の管体に接合して形成された不完全円形断面流路部とを備え、前記一つ目及び二つ目の円形断面流路部及び前記不完全円形断面流路部とによって集合流路部を構成したことを特徴とするものである。
また、固体又は流体が流れる流路を四つの平行な状態で有する高炉羽口用複合ランスであって、前記四つの流路のうち一つ目の流路を構成し、断面円形の一つ目の管体によって形成された一つ目の円形断面流路部と、前記四つの流路のうち二つ目の流路を構成し、前記一つ目の管体に接合されるとともに断面円形の二つ目の管体によって形成された二つ目の円形断面流路部と、前記四つの流路のうち三つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした一つ目の縦割り管体の両端部を前記一つ目の管体及び前記二つ目の管体に接合して形成された一つ目の不完全円形断面流路部と、前記四つの流路のうち四つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした二つ目の縦割り管体の両端部を前記一つ目の管体及び前記二つ目の管体に接合して形成された二つ目の不完全円形断面流路部とを備え、前記一つ目及び二つ目の円形断面流路部及び前記一つ目及び二つ目の不完全円形断面流路部とによって集合流路部を構成したことを特徴とするものである。
また、固体又は流体が流れる流路を四つの平行な状態で有する高炉羽口用複合ランスであって、前記四つの流路のうち一つ目の流路を構成し、断面円形の管体によって形成された円形断面流路部と、前記四つの流路のうち二つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした一つ目の縦割り管体の両端部を前記断面円形の管体に接合して形成された一つ目の不完全円形断面流路部と、前記四つの流路のうち三つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした二つ目の縦割り管体の一端部を前記断面円形の管体に接合し、前記二つ目の縦割り管体の他端部を前記一つ目の縦割り管体に接合して形成された二つ目の不完全円形断面流路部と、前記四つの流路のうち四つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした三つ目の縦割り管体の両端部を前記一つ目の縦割り管体及び前記二つ目の縦割り管体に接合して形成された三つ目の不完全円形断面流路部とを備え、前記円形断面流路部及び前記一つ目、二つ目及び三つ目の不完全円形断面流路部とによって集合流路部を構成したことを特徴とするものである。
また、固体又は流体が流れる流路を二つの平行な状態で有する高炉羽口用複合ランスであって、前記二つの流路のうち一つ目の流路を構成し、断面円形の管体によって形成された円形断面流路部と、前記二つの流路のうち二つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした縦割り管体の両端部を前記断面円形の管体に接合して形成された不完全円形断面流路部とを備え、前記円形断面流路部及び前記不完全円形断面流路部とによって集合流路部を構成したことを特徴とするものである。
なお、前記本発明の高炉羽口用複合ランスを用い、固体還元材及び支燃性ガスを高炉の羽口に吹込み、場合に応じて気体還元材を前記高炉の羽口に吹込むことを特徴とする高炉操業方法は、本発明の高炉羽口用複合ランスの用途として好適である。
In addition, the first flow path among the three flow paths constituting the circular cross-sectional flow path constitutes a flow path through which the solid flows, and the solid reducing material supply means is configured by the circular cross-sectional flow path. It is connected to the flow path through which the solid flows.
A lance for a blast furnace tuyere having three flow paths through which a solid or a fluid flows, wherein the first flow path of the three flow paths is formed, and the first cross-section is circular. The first circular cross-section flow channel portion formed by the tube body and the second flow channel of the three flow channels are configured and joined to the first tube body and have a circular cross-section. A second circular cross-section channel formed by the second tube and a third channel among the three channels, and the cross-section of the tube is notched continuously in the longitudinal direction And an incomplete circular cross-sectional flow path portion formed by joining both ends of a vertically divided tubular body having an arcuate cross section to the first tubular body and the second tubular body, The first and second circular cross-sectional flow channel portions and the incomplete circular cross-sectional flow channel portion constitute a collective flow channel portion.
A lance for a blast furnace tuyere having four flow paths through which a solid or a fluid flows in a parallel state, the first of the four flow paths being configured, and the first having a circular cross section The first circular cross-section flow channel portion formed by the pipe body and the second flow path of the four flow paths are formed and joined to the first pipe body and have a circular cross-section. A second circular cross-section channel formed by the second tube and a third channel among the four channels are formed, and the cross-section of the tube is continuously cut in the longitudinal direction. A first incomplete circular cross-section flow formed by joining both ends of the first vertically-divided tubular body having a circular cross section to the first tubular body and the second tubular body. A second vertically-divided pipe that forms a passage and a fourth passage out of the four passages, and the cross-section of the tubular body is continuously cut in the longitudinal direction so that the cross-section has an arc shape. A second incomplete circular cross-section channel part formed by joining both ends of the first pipe body and the second pipe body, the first and second The aggregate flow path portion is constituted by the circular cross-section flow path section and the first and second incomplete circular cross-section flow path sections.
A lance for a blast furnace tuyere having four flow paths through which a solid or a fluid flows in a parallel state, which constitutes a first flow path of the four flow paths, and has a circular cross section. The formed circular cross-sectional flow path portion and the second flow path of the four flow paths are configured, and the first cross-section of the tubular body is continuously cut in the longitudinal direction to make the cross-section arc-shaped. A first incomplete circular cross-section flow path portion formed by joining both ends of the vertically divided pipe body to the circular cross-section pipe body, and a third flow path among the four flow paths are configured. One end of a second vertically-divided tube having a cross-section cut continuously in the longitudinal direction and having an arc-shaped cross-section is joined to the circular-circular tube, and the second vertically-divided tube A second incomplete circular cross-section channel portion formed by joining the other end of the body to the first vertically-divided tube, and a fourth channel among the four channels Constructed, the cross-section of the tube body is continuously cut in the longitudinal direction, and both ends of the third vertically-divided tube body having an arc-shaped cross section are formed on the first vertically-divided tube body and the second vertically-divided tube body. A third incomplete circular cross section channel formed by joining to the split pipe body, the circular cross section channel and the first, second and third incomplete circular cross section flow The aggregate flow path part is constituted by the path part.
A lance for a blast furnace tuyere having two parallel flow paths through which a solid or a fluid flows, wherein the first flow path of the two flow paths is configured, and a tube having a circular cross section is used. A vertically-divided tubular body that is formed with a circular cross-section flow passage portion and a second flow passage of the two flow passages, and the cross-section of the tubular body is continuously cut in the longitudinal direction so that the cross-section is an arc shape. And an incomplete circular cross-section channel portion formed by joining both end portions of the tube to the tubular body having a circular cross section, and the collective flow channel portion is formed by the circular cross-section channel portion and the incomplete circular cross-section channel portion. It is characterized by comprising.
In addition, using the composite lance for a blast furnace tuyere of the present invention, blowing a solid reducing material and a combustion-supporting gas into the tuyere of the blast furnace, and in some cases blowing a gas reducing material into the tuyere of the blast furnace. The featured blast furnace operating method is suitable for use as a composite lance for blast furnace tuyere of the present invention.

而して、本発明の高炉羽口用複合ランスによれば、固体又は流体が流れる流路を二以上平行な状態で有し、断面円形の管体によって円形断面流路部を形成し、この円形断面流路部で何れかの流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした縦割り管体を断面円形の管体及び他の縦割り管体の少なくとも一方に接合して不完全円形断面流路部を形成し、この不完全円形断面流路部で何れか他の流路を構成し、円形断面流路部及び不完全円形断面流路部によって集合流路部を構成した。円形断面流路部や不完全円形断面流路部は、重管型ランスにおける管と管の隙間よりも流速に対する圧力損失が小さく、流体として流すガスや固体を搬送するために流すガスのガス量と流速を両立しても、集合流路部の外周径が極端に増加することがないから、ランス全体の径が極端に増加することもない。そのため、所望する量の固体還元材、気体還元材、支燃性ガスを羽口に吹き込むことが可能となり、その結果、還元材原単位を低減することができる。   Thus, according to the composite lance for a blast furnace tuyere of the present invention, there are two or more flow paths through which a solid or fluid flows in a parallel state, and a circular cross-section flow path portion is formed by a tubular section having a circular cross section. A vertical cross-section pipe having a circular cross-section with a circular cross-section flow passage section and a cross-section of the pipe body continuously cut in the longitudinal direction to have an arc-shaped cross section, and other vertical split pipes An incomplete circular cross-section flow path portion is formed by joining to at least one of the body, and any other flow path is constituted by this incomplete circular cross-section flow path portion, and the circular cross-section flow path portion and the incomplete circular cross-section flow path The assembly flow path part was constituted by the part. The circular cross-section flow path section and the incomplete circular cross-section flow path section have a smaller pressure loss with respect to the flow velocity than the gap between the pipes in the heavy tube type lance, and the amount of gas flowing for transporting a gas flowing as a fluid or a solid Even if both the flow velocity and the flow velocity are compatible, the outer diameter of the collective flow path portion does not increase extremely, so the diameter of the entire lance does not increase extremely. Therefore, it becomes possible to blow a desired amount of the solid reducing material, the gas reducing material, and the combustion-supporting gas into the tuyere, and as a result, the reducing material basic unit can be reduced.

また、集合流路部の外周に外周管体を設け、集合流路部と外周管体との隙間を、集合流路部を冷却するための冷却流体用の冷却流体流路部とした。そのため、ランス全体の径を極端に増加することなく、しかも集合流路部の冷却性能に優れ、効率よく集合流路部を冷却することができる。
また、円形断面流路部によって固体が流れる流路を構成し、この円形断面流路部によって構成される流路に固体還元材供給手段を接続した。円形断面流路部は、不完全円形断面流路部よりも流動抵抗が小さいので、円形断面流路部によって固体が流れる流路を構成し、その流路に固体還元材供給手段を接続して固体還元材を吹き込めば、固体還元材を円滑に羽口に吹き込むことができる。
In addition, an outer peripheral tube was provided on the outer periphery of the collective flow channel portion, and a gap between the collective flow channel portion and the outer peripheral tube body was used as a cooling fluid flow channel portion for cooling fluid for cooling the collective flow channel portion. Therefore, the diameter of the entire lance is not extremely increased, and the cooling performance of the collective flow path section is excellent and the collective flow path section can be efficiently cooled.
Moreover, the flow path through which the solid flows was constituted by the circular cross-section flow path portion, and the solid reducing material supply means was connected to the flow path constituted by the circular cross-section flow path portion. Since the circular cross-sectional flow path portion has a smaller flow resistance than the incomplete circular cross-sectional flow path portion, the circular cross-sectional flow path portion constitutes a flow path through which solid flows, and a solid reducing material supply means is connected to the flow path. If the solid reducing material is blown, the solid reducing material can be smoothly blown into the tuyere.

本発明の高炉羽口用複合ランスが適用された高炉の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the blast furnace to which the composite lance for blast furnace tuyere of this invention was applied. 図1のランスから微粉炭だけを吹き込んだときの燃焼状態の説明図である。It is explanatory drawing of a combustion state when only pulverized coal is blown in from the lance of FIG. 図2の微粉炭の燃焼メカニズムの説明図である。It is explanatory drawing of the combustion mechanism of the pulverized coal of FIG. 微粉炭とLNGと酸素とを吹き込んだときの燃焼メカニズムの説明図である。It is explanatory drawing of a combustion mechanism when pulverized coal, LNG, and oxygen are blown. 燃焼実験装置の説明図である。It is explanatory drawing of a combustion experiment apparatus. ランス内の吹き込み管の説明図である。It is explanatory drawing of the blowing pipe | tube in a lance. ランスの外観及び配置の説明図である。It is explanatory drawing of the external appearance and arrangement | positioning of a lance. 燃焼実験結果の燃焼率の説明図である。It is explanatory drawing of the combustion rate of a combustion experiment result. 燃焼実験結果の圧力損失の説明図である。It is explanatory drawing of the pressure loss of a combustion experiment result. ランス内の吹き込み管と冷却流体流路部の説明図である。It is explanatory drawing of the blowing pipe in a lance, and a cooling fluid flow-path part. ランス内の吹き込み管と冷却流体流路部の説明図である。It is explanatory drawing of the blowing pipe in a lance, and a cooling fluid flow-path part. ランスの外観及び配置の説明図である。It is explanatory drawing of the external appearance and arrangement | positioning of a lance. ランス内の吹き込み管の他の例を示す説明図である。It is explanatory drawing which shows the other example of the blowing pipe | tube in a lance. ランス内の吹き込み管の更に他の例を示す説明図である。It is explanatory drawing which shows the further another example of the blowing pipe | tube in a lance. ランス内の吹き込み管の更に更に他の例を示す説明図である。It is explanatory drawing which shows the further another example of the blowing pipe | tube in a lance.

次に、本発明の高炉羽口用複合ランスの一実施形態について図面を参照しながら説明する。図1は、本実施形態が適用された高炉の全体図である。図に示すように、高炉1の羽口3には、熱風を送風するための送風管(ブローパイプ)2が接続され、この送風管2を貫通してランス4が設置されている。羽口3の熱風送風方向先方のコークス堆積層には、レースウエイ5と呼ばれる燃焼空間が存在し、主として、この燃焼空間で鉄鉱石の還元、即ち造銑が行われる。なお、前述のように、送風管2の壁部には、図示しないランス用ガイド管が挿入されており、このランス用ガイド管の内部にランス4が挿入されている。   Next, an embodiment of a composite lance for a blast furnace tuyere of the present invention will be described with reference to the drawings. FIG. 1 is an overall view of a blast furnace to which the present embodiment is applied. As shown in the figure, the tuyere 3 of the blast furnace 1 is connected to a blower pipe (blow pipe) 2 for blowing hot air, and a lance 4 is installed through the blower pipe 2. A combustion space called a raceway 5 exists in the coke deposit layer in the hot air blowing direction ahead of the tuyere 3, and iron ore is reduced, that is, ironmaking is mainly performed in this combustion space. As described above, a lance guide tube (not shown) is inserted into the wall portion of the blower tube 2, and the lance 4 is inserted into the lance guide tube.

図2には、ランス4から微粉炭6だけを吹き込んだときの燃焼状態を示す。ランス4から羽口3を通過し、レースウエイ5内に吹き込まれた微粉炭6は、コークス7と共に、その揮発分と固定炭素が燃焼し、燃焼しきれずに残った、一般にチャーと呼ばれる炭素と灰分の集合体は、レースウエイから未燃チャー8として排出される。羽口3の熱風送風方向先方における熱風速度は約200m/secであり、ランス4の先端からレースウエイ5内におけるOの存在領域は約0.3〜0.5mとされているので、実質的に1/1000秒のレベルで微粉炭粒子の昇温及びOとの接触効率(分散性)の改善が必要となる。 FIG. 2 shows a combustion state when only pulverized coal 6 is blown from the lance 4. The pulverized coal 6 that has passed through the tuyere 3 from the lance 4 and is blown into the raceway 5, together with the coke 7, combusts its volatile matter and fixed carbon, and remains unburned, generally called char. The aggregate of ash is discharged as unburned char 8 from the raceway. The hot air velocity at the tip of the tuyere 3 in the direction of blowing hot air is about 200 m / sec, and the region where O 2 exists in the raceway 5 from the tip of the lance 4 is about 0.3 to 0.5 m. In particular, it is necessary to improve the temperature rise of the pulverized coal particles and the contact efficiency (dispersibility) with O 2 at a level of 1/1000 second.

図3は、ランス4から送風管2内に微粉炭(図ではPC:Pulverized Coal)6のみを吹き込んだ場合の燃焼メカニズムを示す。羽口3からレースウエイ5内に吹き込まれた微粉炭6は、レースウエイ5内の火炎からの輻射伝熱によって粒子が加熱し、更に輻射伝熱、伝導伝熱によって粒子が急激に温度上昇し、300℃以上昇温した時点から熱分解が開始し、揮発分に着火して火炎が形成され、燃焼温度は1400〜1700℃に達する。揮発分が放出してしまうと、前述したチャー8となる。チャー8は、主に固定炭素であるので、燃焼反応と共に、炭素溶解反応と呼ばれる反応も生じる。   FIG. 3 shows a combustion mechanism when only pulverized coal (PC: Pulverized Coal in the figure) 6 is blown into the blow pipe 2 from the lance 4. The pulverized coal 6 blown into the raceway 5 from the tuyere 3 is heated by the radiant heat transfer from the flame in the raceway 5, and the temperature of the pulverized coal 6 is rapidly increased by the radiant heat transfer and conduction heat transfer. The thermal decomposition starts when the temperature is raised to 300 ° C. or more, and the volatile matter is ignited to form a flame, and the combustion temperature reaches 1400 to 1700 ° C. When the volatile matter is released, the above-described char 8 is obtained. Since the char 8 is mainly fixed carbon, a reaction called a carbon dissolution reaction occurs along with a combustion reaction.

図4は、ランス4から送風管2内に微粉炭6と共にLNG9と酸素(酸素は図示せず)とを吹き込んだ場合の燃焼メカニズムを示す。微粉炭6とLNG9と酸素との吹き込み方法は、単純に平行に吹き込んだ場合を示している。なお、図中の二点鎖線は、図3に示した微粉炭のみを吹き込んだ場合の燃焼温度を参考に示している。このように微粉炭とLNGと酸素とを同時に吹き込む場合、ガスの拡散に伴って微粉炭が分散し、LNGとO2の接触によってLNGが燃焼し、その燃焼熱によって微粉炭が急速に加熱、昇温すると考えられ、これによりランスに近い位置で微粉炭が燃焼する。 FIG. 4 shows a combustion mechanism when LNG 9 and oxygen (oxygen is not shown) are blown together with pulverized coal 6 from the lance 4 into the blower pipe 2. The blowing method of pulverized coal 6, LNG9, and oxygen shows the case where it blows in parallel simply. In addition, the dashed-two dotted line in a figure has shown the combustion temperature at the time of blowing only the pulverized coal shown in FIG. 3 with reference. When pulverized coal, LNG, and oxygen are blown at the same time, the pulverized coal is dispersed as the gas diffuses, the LNG is burned by the contact of LNG and O 2 , and the pulverized coal is rapidly heated by the combustion heat. It is thought that the temperature will rise, and this causes the pulverized coal to burn near the lance.

このような知見に基づき、図5に示す燃焼実験装置を用いて燃焼実験を行った。実験炉11内にはコークスが充填されており、覗き窓からレースウエイ15の内部を観察することができる。送風管12にはランス4が差し込まれ、燃焼バーナ13で生じた熱風を実験炉11内に所定の送風量で送風することができる。また、この送風管12では、送風の酸素富化量を調整することも可能である。ランス4は、微粉炭及びLNG及び酸素の何れか一つ又は二以上を送風管12内に吹き込むことができる。実験炉11内で生じた排ガスは、サイクロンと呼ばれる分離装置16で排ガスとダストに分離され、排ガスは助燃炉などの排ガス処理設備に送給され、ダストは捕集箱17に捕集される。   Based on such knowledge, a combustion experiment was performed using the combustion experiment apparatus shown in FIG. The experimental furnace 11 is filled with coke, and the inside of the raceway 15 can be observed from the viewing window. A lance 4 is inserted into the blower tube 12, and hot air generated in the combustion burner 13 can be blown into the experimental furnace 11 with a predetermined blowing amount. Moreover, in this ventilation pipe 12, it is also possible to adjust the oxygen enrichment amount of ventilation. The lance 4 can blow any one or more of pulverized coal, LNG, and oxygen into the blower pipe 12. The exhaust gas generated in the experimental furnace 11 is separated into exhaust gas and dust by a separator 16 called a cyclone, the exhaust gas is fed to an exhaust gas treatment facility such as an auxiliary combustion furnace, and the dust is collected in a collection box 17.

燃焼実験では、ランス4に単管ランス、三重管ランス(以下、重管型ランスとも記す)、3本の吹き込み管を並列に束ねて一体とした並列型ランスを用いた。そして、単管ランスから微粉炭のみを吹き込んだ場合をベースとして、重管型ランスの内管から微粉炭を吹き込み、内管と中管の隙間から酸素を吹き込み、中管と外管の隙間からLNGを吹き込んだ場合、並列型ランスの夫々の吹き込み管から微粉炭、LNG、酸素を吹き込んだ場合の夫々について、燃焼率、ランス内圧力損失、ランス表面温度、並びにランスの外径を測定した。燃焼率については、酸素の吹き込み流速を変化させて測定した。燃焼率は、レースウエイの後方からプローブで未燃チャーを回収し、その未燃量から求めた。   In the combustion experiment, a single-tube lance, a triple-tube lance (hereinafter also referred to as a heavy-tube lance), and a parallel-type lance in which three blowing tubes are bundled in parallel are used as the lance 4. Based on the case where only pulverized coal is blown from the single pipe lance, pulverized coal is blown from the inner pipe of the heavy pipe type lance, oxygen is blown from the gap between the inner pipe and the middle pipe, and from the gap between the inner pipe and the outer pipe. When LNG was blown, the combustion rate, pressure loss in the lance, lance surface temperature, and the outer diameter of the lance were measured for each of the cases where pulverized coal, LNG, and oxygen were blown from the blow pipes of the parallel lances. The combustion rate was measured by changing the oxygen blowing flow rate. The burning rate was determined from the amount of unburned charcoal collected from the rear of the raceway with a probe.

図6aには重管型ランスの各吹き込み管の諸元を、図6bには並列型ランスの各吹き込み管の諸元を示す。重管型ランスでは、内管Iに呼び径8A、呼び厚さスケジュール10Sのステンレス鋼管を、中管Mに呼び径15A、呼び厚さスケジュール40のステンレス鋼管を、外管Oに呼び径20A、呼び厚さスケジュール10Sのステンレス鋼管を用いた。各ステンレス鋼管の諸元は図に示す通りである。そして、その結果、内管Iと中管Mの隙間は1.15mm、中管Mと外管Oの隙間は0.65mmとなった。また、並列型ランスでは、第1管21に呼び径8A、呼び厚さスケジュール5Sのステンレス鋼管を、第2管22に呼び径6A、呼び厚さスケジュール10Aのステンレス鋼管を、第3管23に呼び径6A、呼び厚さスケジュール20Sのステンレス鋼管を用い、それらを束ねた。各ステンレス鋼管の諸元は図に示す通りである。なお、並列型ランスの外周径は25.293mmで、重管型ランスの外管Oの外径よりやや小径である。   FIG. 6a shows the specifications of each blow pipe of the heavy tube type lance, and FIG. 6b shows the specifications of each blow pipe of the parallel lance. In the heavy tube type lance, a stainless steel pipe having a nominal diameter of 8A and a nominal thickness schedule of 10S is used for the inner pipe I, a stainless steel pipe having a nominal diameter of 15A and a stainless steel pipe having a nominal thickness schedule of 40 is used for the inner pipe, and a nominal diameter of 20A for the outer pipe. A stainless steel pipe having a nominal thickness schedule of 10S was used. The specifications of each stainless steel pipe are as shown in the figure. As a result, the gap between the inner tube I and the middle tube M was 1.15 mm, and the gap between the middle tube M and the outer tube O was 0.65 mm. In the parallel lance, a stainless steel pipe having a nominal diameter of 8A and a nominal thickness schedule of 5S is used as the first pipe 21, a stainless steel pipe having a nominal diameter of 6A and a nominal thickness schedule of 10A is used as the third pipe as the second pipe. Stainless steel tubes having a nominal diameter of 6A and a nominal thickness schedule of 20S were used and bundled. The specifications of each stainless steel pipe are as shown in the figure. The outer diameter of the parallel lance is 25.293 mm, which is slightly smaller than the outer diameter of the outer tube O of the heavy tube lance.

実際のランスは、後段に詳述するように、図6a、図6bに示す吹き込み管の外側に冷却流体流路部を形成し、内部に冷却流体を流して吹き込み管を冷却する。冷却流体には、水が最適であるが、窒素ガスや空気などのガスを用いることも可能である。図7は、並列型の吹き込み管の外側に冷却流体流を形成して水冷化した並列型ランス4を示す(重管型ランスも同様である)。ランスの上方に突出する二本の管は、夫々、冷却流体の供給側と戻り側に接続される。実験では、図7aに示すように、並列型ランスの第1管21から微粉炭(PC)を吹き込み、第2管22からLNGを吹き込み、第3管23から酸素を吹き込んだ。なお、夫々のランスの送風管(ブローパイプ)への差し込み長さは、図7bに示すように、200mmとした。   As will be described in detail later, the actual lance forms a cooling fluid flow path portion outside the blowing pipe shown in FIGS. 6a and 6b, and cools the blowing pipe by flowing a cooling fluid therein. Water is optimal for the cooling fluid, but gases such as nitrogen gas and air can also be used. FIG. 7 shows a parallel lance 4 formed by cooling the water flow by forming a cooling fluid flow outside the parallel blow pipe (the same applies to the heavy pipe lance). Two pipes projecting above the lance are connected to the cooling fluid supply side and the return side, respectively. In the experiment, as shown in FIG. 7 a, pulverized coal (PC) was blown from the first pipe 21 of the parallel lance, LNG was blown from the second pipe 22, and oxygen was blown from the third pipe 23. Note that the insertion length of each lance into the blower pipe (blow pipe) was 200 mm, as shown in FIG. 7b.

また、吹き込みに際しては、微粉炭の主流にLNGと酸素とが衝突するように調整することもできる。重管型ランスでは、微粉炭、酸素、LNGが互いに衝突することなく、同心状に吹き込まれる。一方、並列型ランスでは、例えば吹き込み先端構造を調整することにより、微粉炭流、酸素流、LNG流を夫々調整することができる。吹き込み管の先端構造としては、例えば先端を斜めに切除したものや、先端を曲げた構造のものが適用できる。このうち、吹き込み管の先端を斜めに切除する場合には、吹き込まれるLNGや酸素の拡散状態を変更することができる。また、吹き込み管の先端を湾曲すると、吹き込まれるLNGや酸素の流れの向きを変更することができる。   Moreover, when blowing, it can also adjust so that LNG and oxygen may collide with the mainstream of pulverized coal. In the heavy tube lance, pulverized coal, oxygen, and LNG are blown concentrically without colliding with each other. On the other hand, in the parallel type lance, for example, the pulverized coal flow, the oxygen flow, and the LNG flow can be adjusted by adjusting the blowing tip structure. As the tip structure of the blowing tube, for example, a structure in which the tip is cut obliquely or a structure in which the tip is bent can be applied. Among these, when the tip of the blowing tube is cut obliquely, the diffusion state of the blown LNG or oxygen can be changed. Further, when the tip of the blowing tube is curved, the direction of the flow of LNG or oxygen to be blown can be changed.

微粉炭の諸元は、固定炭素(FC:Fixed Carbon)71.3%、揮発分(VM:Volatile Matter)19.6%、灰分(Ash)9.1%で、吹き込み条件は50.0kg/h(製銑原単位で158kg/t相当)とした。また、LNGの吹き込み条件は、3.6kg/h(5.0Nm/h、製銑原単位で11kg/t相当)とした。送風条件は、送風温度1100℃、流量350Nm/h、流速80m/s、O富化+3.7(酸素濃度24.7%、空気中酸素濃度21%に対し、3.7%の富化)とした。 The specifications of the pulverized coal are 71.3% of fixed carbon (FC), 19.6% of volatile matter (VM), 9.1% of ash (Ash), and the blowing condition is 50.0 kg / h (equivalent to 158 kg / t in the iron making unit). The LNG blowing conditions were 3.6 kg / h (5.0 Nm 3 / h, equivalent to 11 kg / t in the ironmaking base unit). The blowing conditions are as follows: blowing temperature 1100 ° C., flow rate 350 Nm 3 / h, flow rate 80 m / s, O 2 enrichment +3.7 (oxygen concentration 24.7%, air oxygen concentration 21%, 3.7% wealth) ).

図8には、燃焼実験による燃焼率の結果を示す。同図から明らかなように、重管型ランスでは酸素の流速が100m/sまでの範囲、並列型ランスでは酸素の流速が150m/sまでの範囲では、酸素の流速の増加に伴って微粉炭の燃焼率が増加している。これは、重管型ランスの場合は、流速の増加により熱風に拡散するランスからの吹き込み酸素(以下、ランス由来酸素と記す)が減少し、微粉炭と混合されるランス由来酸素の割合が増加したためであり、並列型ランスの場合は、酸素の流速の増加により熱風に拡散するランス由来酸素が減少し、更に揮発分やLNGの燃焼により消費されるランス由来酸素が減少し、微粉炭と混合されるランス由来酸素の割合が増加したためだと考えられる。なお、重管型ランスの燃焼率のデータが、酸素流速100m/sの範囲までしかないのは、圧力損失が限界となるためである。また、並列型ランスでは、酸素流速が150m/s以上の領域で燃焼率が低下しているが、これはランス由来酸素の流速が熱風の流速に近づき、酸素流が微粉炭流と平行に流れるため、ランス由来酸素が微粉炭と混合しないままレースウエイ奥に到達するためである。図9には、重管型ランスと並列型ランスの圧力損失の測定結果を示す。同図から明らかなように、並列型ランスは重管型ランスに比べ、同じ流速における圧力損失が低下している。これは、重管型ランスの流路が管と管の隙間で流動抵抗(通気抵抗)が大きいのに対し、断面円形の管体そのもので構成される並列型ランスの流路の流動抵抗(通気抵抗)が小さいためであると考えられる。   In FIG. 8, the result of the combustion rate by a combustion experiment is shown. As is clear from the figure, the pulverized coal increases with the increase of the oxygen flow rate in the range where the oxygen flow rate is up to 100 m / s in the heavy tube type lance and the oxygen flow rate is up to 150 m / s in the parallel type lance. The burning rate is increasing. In the case of heavy pipe type lances, the oxygen blown from the lance that diffuses into the hot air (hereinafter referred to as lance-derived oxygen) decreases as the flow rate increases, and the proportion of lance-derived oxygen mixed with pulverized coal increases. In the case of a parallel lance, the lance-derived oxygen that diffuses into the hot air decreases with an increase in the flow rate of oxygen, and the lance-derived oxygen consumed by combustion of volatile matter and LNG decreases, mixing with pulverized coal. This is thought to be due to an increase in the proportion of lance-derived oxygen produced. The reason why the combustion rate data of the heavy tube type lance is limited to the range of the oxygen flow rate of 100 m / s is that the pressure loss becomes the limit. In the parallel lance, the combustion rate decreases in the region where the oxygen flow rate is 150 m / s or more. This is because the flow rate of oxygen from the lance approaches the flow rate of hot air, and the oxygen flow flows in parallel with the pulverized coal flow. This is because the lance-derived oxygen reaches the back of the raceway without mixing with pulverized coal. In FIG. 9, the measurement result of the pressure loss of a heavy tube type lance and a parallel type lance is shown. As is apparent from the figure, the pressure loss at the same flow rate is lower in the parallel lance than in the heavy tube lance. This is because the flow resistance of the heavy pipe type lance is large between the pipes and the flow resistance (ventilation resistance) between the pipes, whereas the flow resistance (ventilation) of the parallel type lance consisting of a circular tube itself is used. This is probably because the resistance is small.

このように、重管型ランスに比べて並列型ランスは、流速に対する圧力損失が小さく、LNGや酸素のように流体として吹き込み管に流すガス、或いは微粉炭を搬送するための窒素のようなガスのガス量と流速を両立することが可能である。つまり、微粉炭の燃焼率を向上するために必要なLNGや酸素を十分な量、十分な流速で吹き込むことが可能となり、その結果、還元材原単位の低減が可能になると考えられる。しかしながら、本発明者等が鋭意検討した結果、並列型ランスにも改善すべき点があることを見出した。図10は、並列型の吹き込み管、即ち第1管21、第2管22、第3管23の外周に冷却流体流路部を形成した並列型ランスの断面図であり、図10aは各管の軸直角断面図、図10bは縦断面図である。第1管21、第2管22、第3管23の外周に冷却流体流路部を形成しようとする場合、例えば、これらの吹き込み管の外周に外周管体24を被嵌し、更にその外周管体24の外周に最外周管体25を配置する。このように外周管体24及び最外周管体25を配置すると、例えば第1〜第3管21〜23からなる吹き込み管と外周管体24との隙間と、外周管体24と最外周管体25との隙間の夫々に冷却流体流路部を形成することができる。   Thus, the parallel type lance has a smaller pressure loss with respect to the flow velocity than the heavy pipe type lance, and a gas such as LNG or oxygen that flows into the blowing pipe as a fluid or a gas such as nitrogen for conveying pulverized coal. It is possible to satisfy both the gas amount and the flow rate. That is, it is considered that LNG and oxygen necessary for improving the combustion rate of pulverized coal can be blown in a sufficient amount and at a sufficient flow rate, and as a result, it is possible to reduce the reducing material basic unit. However, as a result of intensive studies by the present inventors, it has been found that there is a point to be improved also in the parallel type lance. FIG. 10 is a cross-sectional view of a parallel type lance in which a cooling fluid flow path portion is formed on the outer periphery of the parallel type blowing pipe, that is, the first pipe 21, the second pipe 22, and the third pipe 23. FIG. FIG. 10B is a longitudinal sectional view. When the cooling fluid flow path portion is to be formed on the outer periphery of the first tube 21, the second tube 22, and the third tube 23, for example, the outer tube body 24 is fitted on the outer periphery of these blowing tubes, and further the outer periphery thereof An outermost peripheral tube body 25 is disposed on the outer periphery of the tube body 24. When the outer peripheral tube body 24 and the outermost peripheral tube body 25 are arranged in this way, for example, the gap between the blow tube composed of the first to third tubes 21 to 23 and the outer peripheral tube body 24, the outer peripheral tube body 24, and the outermost peripheral tube body. The cooling fluid channel portion can be formed in each of the gaps between the two.

このうち、例えば吹き込み管と外周管体24との隙間を供給側冷却流体流路部18とし、外周管体24と最外周管体25との隙間を戻り側冷却流体流路部19とする。更に、図10bに示すように、外周管体24の長さを最外周管体25の長さより短くして最外周管体25の先端部と外周管体24の先端部との間に隙間を作り、最外周管体25の先端部と第1〜第3管21〜23からなる吹き込み管との隙間を蓋体26で閉塞する。すると、冷却流体は、吹き込み管の外周を覆う供給側冷却流体流路部18から蓋体26の手前で折り返して戻り側冷却流体流路部19に流れ込んで戻る循環系統ができる。そして、このようにすればランス全体の外径を極端に大きくすることなく、束ねられた第1〜第3管21〜23の吹き込み管を効率よく冷却することができ、冷却効率も極めて良好である。   Among these, for example, a gap between the blow-in pipe and the outer peripheral tube body 24 is referred to as a supply side cooling fluid flow path portion 18, and a gap between the outer peripheral tube body 24 and the outermost peripheral tube body 25 is referred to as a return side cooling fluid flow path portion 19. Furthermore, as shown in FIG. 10 b, the length of the outer peripheral tube body 24 is made shorter than the length of the outermost peripheral tube body 25, and a gap is formed between the distal end portion of the outermost peripheral tube body 25 and the distal end portion of the outer peripheral tube body 24. The gap between the distal end portion of the outermost peripheral tube body 25 and the blowing tube composed of the first to third tubes 21 to 23 is closed by the lid body 26. Then, a circulation system is formed in which the cooling fluid returns from the supply-side cooling fluid flow path portion 18 covering the outer periphery of the blowing pipe before the lid body 26 and flows into the return-side cooling fluid flow path portion 19. In this way, the bundled blow pipes of the first to third pipes 21 to 23 can be efficiently cooled without extremely increasing the outer diameter of the entire lance, and the cooling efficiency is also extremely good. is there.

しかしながら、図10aのように3本(或いは3本以上)の吹き込み管を束ねた並列型ランスには、以下のような問題がある。即ち、束ねられた3本(3本以上)の吹き込み管の中央部分にできる隙間は、冷却流体の流路として機能しない又は殆ど機能しない、単なる空隙であり、空間効率がよくなく、ランス全体の外径増加の原因となる。また、吹き込み管の中央部分にできる隙間には、束ねられる吹き込み管同士の隙間を溶接などによって閉塞しないかぎり、冷却流体が浸入する。浸入した冷却流体は、吹き込み管の端部から漏れ出てしまうので、例えば蓋体26の部分で吹き込み管の中央部分の隙間を閉塞しなければならないが、この隙間を閉塞するのは困難である。   However, the parallel lance in which three (or three or more) blowing tubes are bundled as shown in FIG. 10a has the following problems. That is, the gap formed in the central part of the bundled three (three or more) blowing pipes is a simple gap that does not function or hardly functions as a cooling fluid flow path, is not efficient in space, and is not good for the entire lance. It causes an increase in outer diameter. In addition, the cooling fluid enters the gap formed in the central portion of the blowing pipe unless the gap between the bundled blowing pipes is closed by welding or the like. Since the cooling fluid that has entered leaks from the end of the blowing pipe, for example, the gap in the central part of the blowing pipe must be closed at the lid 26, but it is difficult to close this gap. .

そこで、本発明者等は、断面円形の管体を束ねてできる隙間をなくすため、例えば図11に示すような集合流路部31を開発した。図11aは集合流路部31の軸直角断面図、図11bは縦断面図である。この集合流路部31は、1本の断面円形の管体(円形管体)34そのものによって流路を構成する円形断面流路部32と、断面が円弧状の2本の縦割り管体35によって2つの流路を構成する不完全円形断面流路部33とで構成される。縦割り管体35は、例えば円形断面の管体の断面を長手方向に連続して切欠いて断面を円弧状にしたものであり、この縦割り管体35を円形管体34や他の縦割り管体35の少なくとも一方に接合することによって不完全円形断面流路部33が形成され、不完全円形断面流路部33は、夫々、独立した流路を構成する。流路には、流体であるLNGや酸素を流すこともできるし、窒素などの搬送ガスと共に固体である微粉炭を流すこともできる。   Therefore, the present inventors have developed a collective flow path portion 31 as shown in FIG. 11, for example, in order to eliminate a gap formed by bundling tubes having a circular cross section. FIG. 11 a is a cross-sectional view perpendicular to the axis of the collecting flow path portion 31, and FIG. 11 b is a vertical cross-sectional view. This collective flow path portion 31 includes a circular cross-section flow path portion 32 that forms a flow path by a single circular tube (circular tube body) 34 itself, and two vertically-divided pipe bodies 35 having a circular arc cross section. And an incomplete circular cross-section channel portion 33 that constitutes two channels. The vertically divided tubular body 35 is, for example, a circular section having a circular cross section that is continuously cut in the longitudinal direction, and the cross section is arcuate. By joining to at least one of the pipe bodies 35, the incomplete circular cross-section flow path portion 33 is formed, and each of the incomplete circular cross-section flow path portions 33 constitutes an independent flow path. In the flow path, LNG or oxygen that is a fluid can be flowed, or pulverized coal that is a solid can be flowed together with a carrier gas such as nitrogen.

より具体的には、図11aに示すように、1本の円形管体34によって1つの円形断面流路部32を形成すると共に、その円形管体34の外周面の図示右下方に1本の断面約3/4円弧状の縦割り管体35の円周方向両端部を接合し且つ前記円形管体34の外周面の図示左方及び先に接合した縦割り管体35の外周面の図示左方に1本の断面約3/4円弧状の縦割り管体35の円周方向両端部を接合することで2つの不完全円形断面流路部33を形成し、これらの円形断面流路部32及び不完全円形断面流路部33によって集合流路部31を形成している。本実施形態では、円形断面流路部32を構成する円形管体34も、不完全円形断面流路部33を構成する縦割り管体35も、ステンレス鋼管製とし、縦割り管体35の円形管体34又は他の縦割り管体35への接合には溶接を用いた。各管体の素材や、縦割り管体の接合方法は、上記以外であってもよい。   More specifically, as shown in FIG. 11 a, one circular cross-section channel portion 32 is formed by one circular tube 34, and one circular tube 34 is arranged at the lower right of the outer peripheral surface of the circular tube 34. An illustration of the outer circumferential surface of the longitudinally divided tubular body 35 joined at both ends in the circumferential direction of the circular tubular body 34 joined at both ends in the circumferential direction of the longitudinally divided tubular body 35 having an arc shape of about 3/4 in cross section. Two incomplete circular cross-section channel portions 33 are formed by joining both circumferential ends of a longitudinally divided pipe body 35 having an arc shape of about 3/4 in cross section to the left. The collective flow path portion 31 is formed by the portion 32 and the incomplete circular cross-section flow path portion 33. In the present embodiment, the circular tube body 34 constituting the circular cross-section flow path portion 32 and the vertically divided pipe body 35 constituting the incomplete circular cross-section flow passage portion 33 are both made of stainless steel pipes, and the circular pipe body 35 is circular. Welding was used for joining to the pipe body 34 or the other vertically divided pipe body 35. The material of each tubular body and the joining method of the vertically divided tubular bodies may be other than the above.

そして、前記図10aと同様に、集合流路部31の外周に外周管体24を被嵌し、更にその外周管体24の外周に最外周管体25を配置する。このように外周管体24及び最外周管体25を配置すると、集合流路部31と外周管体24との隙間と、外周管体24と最外周管体25との隙間の夫々に冷却流体流路部を形成することができる。そこで、吹き込み管と外周管体24との隙間を供給側冷却流体流路部18とし、外周管体24と最外周管体25との隙間を戻り側冷却流体流路部19とする。更に、図11bに示すように、外周管体24の長さを最外周管体25の長さより短くして最外周管体25の先端部と外周管体24の先端部との間に隙間を作り、最外周管体25の先端部と集合流路部31との隙間を蓋体26で閉塞する。   Then, similarly to FIG. 10 a, the outer peripheral tube body 24 is fitted on the outer periphery of the collecting channel portion 31, and the outermost peripheral tube body 25 is disposed on the outer periphery of the outer peripheral tube body 24. When the outer peripheral tube body 24 and the outermost peripheral tube body 25 are arranged in this way, the cooling fluid is respectively provided in the gap between the collecting flow path portion 31 and the outer peripheral tube body 24 and in the gap between the outer peripheral tube body 24 and the outermost outer tube body 25. A flow path part can be formed. Therefore, a gap between the blow-in pipe and the outer peripheral tube body 24 is referred to as a supply-side cooling fluid channel portion 18, and a gap between the outer peripheral tube body 24 and the outermost peripheral tube body 25 is referred to as a return-side cooling fluid channel portion 19. Further, as shown in FIG. 11 b, the length of the outer peripheral tube body 24 is made shorter than the length of the outermost peripheral tube body 25 so that a gap is formed between the distal end portion of the outermost peripheral tube body 25 and the distal end portion of the outer peripheral tube body 24. The gap between the distal end portion of the outermost peripheral tube body 25 and the collecting flow path portion 31 is closed by the lid body 26.

このように構成されたランス(以下、接合型ランスとも記す)4の外観を図12aに、使用状態を図12bに示す。接合型ランス4の送風管への差し込み長さは200mmとした。この接合型ランス3でも、冷却流体は、集合流路部31の外周を覆う供給側冷却流体流路部18から蓋体26の手前で折り返して戻り側冷却流体流路部19に流れ込んで戻る。そして、このようにすればランス全体の外径を極端に大きくすることなく、集合流路部31を効率よく冷却することができ、冷却効率も極めて良好である。このとき、集合流路部31の管体同士の間には、軸方向に連続する隙間がないので、冷却流体が隙間に浸入することがない。また、本実施形態の接合型ランス4では、円形管体34からなる円形断面流路部32から搬送ガスと共に微粉炭を吹き込み、縦割り管体35からなる不完全円形断面流路部33の夫々からLNG及び酸素を吹き込んだ。つまり円形断面流路部32には微粉炭供給手段が接続され、不完全円形断面流路部33にはLNG供給手段及び酸素供給手段が夫々接続される。不完全円形断面流路部33も、前記重管型ランスにおける管と管の隙間に比べると流動抵抗が小さいが、円形断面流路部32は更に流動抵抗が小さい。そのため、この円形断面流路部32から微粉炭を吹き込むことで、微粉炭を円滑に羽口に吹き込むことができる。なお、冷却流体の流路の供給側と戻り側は、前記と逆であってもよい。   FIG. 12a shows the appearance of the lance 4 configured as described above (hereinafter also referred to as a joining lance), and FIG. The insertion length of the junction type lance 4 into the blower tube was 200 mm. Also in this junction type lance 3, the cooling fluid returns from the supply side cooling fluid channel portion 18 covering the outer periphery of the collecting channel portion 31 in front of the lid body 26 and flows into the return side cooling fluid channel portion 19. And if it does in this way, without increasing the outer diameter of the whole lance extremely, the gathering channel part 31 can be cooled efficiently and the cooling efficiency is also very favorable. At this time, there is no gap continuous in the axial direction between the tubes of the collecting flow path portion 31, so that the cooling fluid does not enter the gap. Further, in the junction type lance 4 of the present embodiment, pulverized coal is blown together with the carrier gas from the circular cross-section flow path portion 32 formed of the circular tubular body 34, and each of the incomplete circular cross-section flow path portions 33 formed of the vertically divided pipe bodies 35. LNG and oxygen were blown from. That is, the pulverized coal supply means is connected to the circular cross-sectional flow path section 32, and the LNG supply means and the oxygen supply means are connected to the incomplete circular cross-section flow path section 33, respectively. The incomplete circular cross-section channel portion 33 also has a smaller flow resistance than the pipe-to-tube gap in the heavy tube lance, but the circular cross-section channel portion 32 has a smaller flow resistance. Therefore, the pulverized coal can be smoothly blown into the tuyere by blowing the pulverized coal from the circular cross-sectional flow path portion 32. The supply side and the return side of the cooling fluid flow path may be reversed.

図11において、円形断面流路部32を内径(直径)17.5mm、管厚2.1mmの管で形成し、2つの不完全円形断面流路部33を内径(直径)23mm、管厚2.1mmの縦割り管で形成した場合、円形断面流路部32の断面積は240mm、不完全円形断面流路部33はそれぞれ320.18mmとなり、また外周管体24の内径は42mmであった。また、前記3つの管(縦割り管を含む)を外周管に接するように配置するにあたり、断面図11上で、各管の中心と外周管の中心とを結ぶ線分が、互いに120°の角度を成すように配置した。もし、同様の管厚の管を用いて、第1管21、第2管22、第3管23からなる図10の並列型で同じ断面積を実現した場合、各管の内径は約17.5mm、20mmおよび15mmとなり、外径管の内径は50mmが必要となる。なお、各流路の寸法や配置は上記に限定されないのは言うまでもないが、固体還元材用流路は内径10〜20mm程度の円形管体、支燃性ガス用流路や気体還元材用流路は内径15〜25mm程度の縦割り管体により形成することが好ましい。 In FIG. 11, the circular cross-section flow path portion 32 is formed of a tube having an inner diameter (diameter) of 17.5 mm and a tube thickness of 2.1 mm, and the two incomplete circular cross-section flow path portions 33 have an inner diameter (diameter) of 23 mm and a tube thickness of 2 When formed with a 1 mm vertical split pipe, the cross-sectional area of the circular cross-section flow path portion 32 is 240 mm 2 , the incomplete circular cross-section flow path section 33 is 320.18 mm 2 , and the inner diameter of the outer tube 24 is 42 mm. there were. Further, when the three pipes (including the split pipe) are arranged so as to be in contact with the outer peripheral pipe, the line segment connecting the center of each pipe and the center of the outer peripheral pipe is 120 ° on the cross-sectional view 11. Arranged to form an angle. If the same cross-sectional area is realized in the parallel type of FIG. 10 composed of the first tube 21, the second tube 22, and the third tube 23 using tubes having the same tube thickness, the inner diameter of each tube is about 17. The inner diameter of the outer diameter tube is required to be 5 mm, 20 mm, and 15 mm. Needless to say, the dimensions and arrangement of each flow path are not limited to the above, but the solid reducing material flow path is a circular tube having an inner diameter of about 10 to 20 mm, a combustion-supporting gas flow path, or a gas reducing material flow path. The path is preferably formed by a longitudinally divided tube having an inner diameter of about 15 to 25 mm.

図13〜図15は、本実施形態の高炉羽口用複合ランス(接合型ランス)4の各種変形例である。これらの図は、全てランスの軸直角断面図である。また、全ての変形例の集合流路部31の外周に外周管体24を配置して両者の隙間を供給側冷却流体流路部18とし、外周管体24の外周に最外周管体25を配置して両者の隙間を戻り側冷却流体流路部19としている。図13aでは、2本の円形管体34を平行に並べて互いに接合することで2つの平行な円形断面流路部32を形成すると共に、それらの円形管体34の一方の並列な外周面を連結するように1本の断面半円弧状の縦割り管体35の円周方向端部を各円形管体34の外周面に接合することで1つの不完全円形断面流路部33を形成し、これらの円形断面流路部及び不完全円形断面流路部33によって集合流路部31を形成している。また、図13bでは、図13aと同様に、2本の円形管体34を平行に並べて互いに接合することで2つの平行な円形断面流路部32を形成すると共に、それらの円形管体34の2つの並列な外周面を夫々連結するように2本の断面半円弧状の縦割り管体35の円周方向端部を各円形管体34の外周面に接合することで2つの不完全円形断面流路部33を形成し、これらの円形断面流路部及び不完全円形断面流路部33によって集合流路部31を形成している。   13 to 15 show various modifications of the blast furnace tuyeres composite lance (joint lance) 4 of the present embodiment. These figures are all cross-sectional views perpendicular to the axis of the lance. Further, the outer peripheral tube body 24 is arranged on the outer periphery of the collective flow path portion 31 of all the modified examples, and the gap between them is used as the supply side cooling fluid flow path portion 18, and the outermost peripheral tube body 25 is disposed on the outer periphery of the outer peripheral tube body 24. The gap between the two is used as a return side cooling fluid channel portion 19. In FIG. 13 a, two circular tube bodies 34 are arranged in parallel and joined together to form two parallel circular cross-section flow channel portions 32, and one parallel outer peripheral surface of these circular tube bodies 34 is connected. As described above, one incomplete circular cross-section flow path portion 33 is formed by joining the circumferential end portion of the vertically divided pipe body 35 having a semicircular cross section in cross section to the outer peripheral surface of each circular pipe body 34, The collective flow channel portion 31 is formed by the circular cross-sectional flow channel portion and the incomplete circular cross-sectional flow channel portion 33. Further, in FIG. 13 b, as in FIG. 13 a, two parallel circular cross-sectional flow channel portions 32 are formed by arranging two circular tubes 34 in parallel and joining each other. Two incomplete circles are formed by joining the circumferential ends of the two longitudinally split pipes 35 having a semicircular arc shape in cross section to the outer peripheral faces of the circular pipes 34 so as to connect two parallel outer peripheral faces, respectively. The cross-sectional flow path part 33 is formed, and the collective flow path part 31 is formed by the circular cross-sectional flow path part and the incomplete circular cross-sectional flow path part 33.

図14は、固体である微粉炭や流体であるLNGや酸素を流す流路を4つ形成したものである。この接合型ランス4は、1本の円形管体34によって1つの円形断面流路部32を形成すると共に、その円形管体34の外周面の図示左下方に1本の断面約3/4円弧状の縦割り管体35の円周方向両端部を接合し且つ前記円形管体34の外周面の図示右方及び先に接合した縦割り管体35の外周面の図示右方に1本の断面約3/4円弧状の縦割り管体35の円周方向両端部を接合し且つ前記二つの縦割り管体35の外周面の図示下方に1本の断面約1/4円弧状の縦割り管体35の円周方向両端部の夫々を接合することで3つの不完全円形断面流路部33を形成し、これらの円形断面流路部32及び不完全円形断面流路部33によって集合流路部31を形成している。   FIG. 14 shows a case where four flow paths for flowing pulverized coal as a solid, LNG as a fluid, and oxygen are formed. This junction type lance 4 forms one circular cross-section flow path portion 32 by one circular tube 34, and has a cross section of about 3/4 circle at the lower left of the outer peripheral surface of the circular tube 34 in the figure. The arcuate vertically divided pipes 35 are joined at both ends in the circumferential direction, and the right side of the outer peripheral face of the circular pipe 34 and the right side of the outer peripheral face of the vertically split pipe 35 joined first are shown. The ends of the circumferentially divided tubular bodies 35 having a circular arc shape of about 3/4 are joined to each other in the circumferential direction. Three incomplete circular cross-section flow path portions 33 are formed by joining the respective circumferential ends of the split pipe body 35, and are assembled by the circular cross-section flow path portion 32 and the incomplete circular cross-section flow path portion 33. A flow path portion 31 is formed.

図15は、固体である微粉炭や流体であるLNGや酸素を流す流路を2つ形成したものである。この接合型ランス4は、1本の円形管体34によって1つの円形断面流路部32を形成すると共に、その円形管体34の外周面の図示下方に1本の断面約2/3円弧状の縦割り管体35の円周方向両端部を接合することで1つの不完全円形断面流路部33を形成し、これらの円形断面流路部32及び不完全円形断面流路部33によって集合流路部31を形成している。   FIG. 15 shows a case where two flow paths for flowing solid pulverized coal, fluid LNG and oxygen are formed. This junction type lance 4 forms one circular cross-section flow path portion 32 by one circular tube 34, and has a cross section of about 2/3 arc in the lower part of the outer peripheral surface of the circular tube 34. One incomplete circular cross-section flow path portion 33 is formed by joining both ends in the circumferential direction of the vertically divided pipe body 35, and the circular cross-section flow path portion 32 and the incomplete circular cross-section flow path portion 33 are assembled together. A flow path portion 31 is formed.

このように本実施形態の高炉羽口用複合ランスでは、固体又は流体が流れる流路を二以上平行な状態で有し、円形管体34によって円形断面流路部32を形成し、この円形断面流路部32で何れかの流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした縦割り管体35を円形管体34及び他の縦割り管体35の少なくとも一方に接合して不完全円形断面流路部33を形成し、この不完全円形断面流路部33で何れか他の流路を構成し、円形断面流路部32及び不完全円形断面流路部33によって集合流路部31を構成した。円形断面流路部32や不完全円形断面流路部33は、重管型ランスにおける管と管の隙間よりも流速に対する圧力損失が小さく、流体として流すガスや固体を搬送するために流すガスのガス量と流速を両立しても、集合流路部31の外周径が極端に増加することがないから、ランス全体の径が極端に増加することもない。そのため、所望する量の固体還元材、気体還元材、支燃性ガスを羽口に吹き込むことが可能となり、その結果、還元材原単位を低減することができる。   As described above, the composite lance for a blast furnace tuyere of this embodiment has two or more flow paths through which a solid or fluid flows in a parallel state, and the circular cross-section channel portion 32 is formed by the circular tubular body 34. One of the flow paths is constituted by the flow path section 32, and the longitudinally divided tubular body 35 in which the cross section of the tubular body is continuously cut out in the longitudinal direction and the cross section is formed in an arc shape is formed into the circular tubular body 34 and the other vertically divided tubular bodies. 35, an incomplete circular cross-section channel portion 33 is formed by joining to at least one of them, and any other channel is constituted by this incomplete circular cross-section channel portion 33. The collective flow path portion 31 is configured by the cross-sectional flow path portion 33. The circular cross-section flow path section 32 and the incomplete circular cross-section flow path section 33 have a smaller pressure loss with respect to the flow velocity than the gap between the pipes in the heavy tube type lance, and the gas flow for transporting a gas or solid flowing as a fluid. Even if both the gas amount and the flow rate are compatible, the outer diameter of the collective flow path portion 31 does not increase excessively, so the diameter of the entire lance does not increase extremely. Therefore, it becomes possible to blow a desired amount of the solid reducing material, the gas reducing material, and the combustion-supporting gas into the tuyere, and as a result, the reducing material basic unit can be reduced.

また、集合流路部31の外周に外周管体24を設け、集合流路部31と外周管体24との隙間を、集合流路部31を冷却するための冷却流体用の冷却流体流路部18とした。そのため、ランス全体の径を極端に増加することなく、しかも集合流路部31の冷却性能に優れ、効率よく集合流路部31を冷却することができる。
また、円形断面流路部32によって微粉炭が流れる流路を構成し、この円形断面流路部32によって構成される流路に微粉炭供給手段を接続した。円形断面流路部32は、不完全円形断面流路部33よりも流動抵抗が小さいので、円形断面流路部32によって微粉炭が流れる流路を構成し、その流路に微粉炭供給手段を接続して微粉炭を吹き込めば、微粉炭を円滑に羽口に吹き込むことができる。
Further, the outer peripheral tube body 24 is provided on the outer periphery of the collecting channel portion 31, and the cooling fluid channel for cooling fluid for cooling the collecting channel portion 31 through the gap between the collecting channel portion 31 and the outer tube body 24. Part 18 was designated. For this reason, the collective flow path portion 31 can be efficiently cooled without excessively increasing the diameter of the entire lance and with excellent cooling performance of the collective flow path portion 31.
In addition, a flow path through which the pulverized coal flows is formed by the circular cross-sectional flow path portion 32, and a pulverized coal supply unit is connected to the flow path formed by the circular cross-sectional flow path portion 32. Since the circular cross-section flow path portion 32 has a smaller flow resistance than the incomplete circular cross-section flow path portion 33, the circular cross-section flow path portion 32 constitutes a flow path through which pulverized coal flows, and pulverized coal supply means is provided in the flow path. By connecting and blowing pulverized coal, the pulverized coal can be smoothly blown into the tuyere.

1 高炉
2 送風管
3 羽口
4 ランス
5 レースウエイ
6 微粉炭(固体還元材)
7 コークス
8 チャー
9 LNG(気体還元材)
18 供給側冷却流体流路部
19 戻り側冷却流体流路部
24 外周管体
25 最外周管体
26 蓋体
31 集合流路部
32 円形断面流路部
33 不完全円形断面流路部
DESCRIPTION OF SYMBOLS 1 Blast furnace 2 Blower pipe 3 Tuyere 4 Lance 5 Raceway 6 Pulverized coal (solid reducing material)
7 Coke 8 Char 9 LNG (Gas reducing material)
18 Supply-side cooling fluid flow path section 19 Return-side cooling fluid flow path section 24 Outer peripheral tube body 25 Outermost peripheral tube body 26 Lid body 31 Collective flow path section 32 Circular cross-section flow path section 33 Incomplete circular cross-section flow path section

Claims (10)

固体又は流体が流れる流路を三つの平行な状態で有する高炉羽口用複合ランスであって、
前記三つの流路のうち一つ目の流路を構成し、断面円形の管体によって形成された円形断面流路部と、
前記三つの流路のうち二つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした一つ目の縦割り管体の両端部を前記断面円形の管体に接合して形成された一つ目の不完全円形断面流路部と、
前記三つの流路のうち三つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした二つ目の縦割り管体の一端部を前記断面円形の管体に接合し、前記二つ目の縦割り管体の他端部を前記一つ目の縦割り管体に接合して形成された二つ目の不完全円形断面流路部とを備え、
前記円形断面流路部及び前記一つ目及び二つ目の不完全円形断面流路部とによって集合流路部を構成したことを特徴とする高炉羽口用複合ランス。
A lance for a blast furnace tuyere having three flow paths through which a solid or fluid flows,
A first cross-section of the three flow paths is configured, and a circular cross-sectional flow channel portion formed by a tube having a circular cross-section,
Of the three flow paths, the second flow path is configured, and the cross section of the first vertically divided pipe body in which the cross section of the pipe body is continuously cut out in the longitudinal direction so that the cross section has an arc shape. and an incomplete circular cross-sectional flow portion of the first one formed by engagement against the circular tube,
Of the three flow paths, a third flow path is configured, and one end portion of a second vertically-divided pipe body in which the cross section of the pipe body is continuously cut out in the longitudinal direction and the cross section is formed in an arc shape. A second incomplete circular cross-section channel part formed by joining the circular pipe body and joining the other end of the second vertical pipe body to the first vertical pipe body; With
A combined lance for a blast furnace tuyere comprising a collective flow path portion by the circular cross-sectional flow path portion and the first and second incomplete circular cross-sectional flow path portions.
前記集合流路部を冷却するための冷却流体用の冷却流体流路部を備えたことを特徴とする請求項1に記載の高炉羽口用複合ランス。   The lance for a blast furnace tuyere according to claim 1, further comprising a cooling fluid channel portion for cooling fluid for cooling the collective channel portion. 前記集合流路部の外周に外周管体を設け、前記集合流路部と前記外周管体との隙間を前記冷却流体流路部としたことを特徴とする請求項2に記載の高炉羽口用複合ランス。   3. The blast furnace tuyere according to claim 2, wherein an outer peripheral tube is provided on an outer periphery of the collective flow passage portion, and a gap between the collective flow passage portion and the outer peripheral tube portion is used as the cooling fluid flow passage portion. For composite lance. 前記三つの流路のうちいずれか一つを前記固体が流れる流路とし、前記三つの流路のうち前記固体が流れる流路を除く二つの流路を前記流体が流れる流路とし、
固体還元材を供給する固体還元材供給手段が前記固体が流れる流路に接続され、
支燃性ガスを供給する支燃性ガス供給手段が前記流体が流れる流路のいずれか一つに接続されたことを特徴とする請求項1乃至3のうちいずれか一項に記載の高炉羽口用複合ランス。
Any one of the three flow paths is a flow path through which the solid flows, and among the three flow paths, two flow paths excluding the flow path through which the solid flows are flow paths through which the fluid flows,
Solid reducing agent supply means for supplying a solid reducing material is connected to the channel through the pre-Symbol solids,
Blast furnace according to any one of claims 1 to 3, characterized in that the combustion assisting gas supply means for supplying a combustion-supporting gas is connected to any one of the previous SL flow path through which fluid flows Combined lance for tuyere.
体還元材を供給する気体還元材供給手段が、前記支燃性ガス供給手段が接続されている前記流体が流れる流路のいずれか一つ以外の流路に接続されたことを特徴とする請求項に記載の高炉羽口用複合ランス。 Gas reducing material supply means for supplying a gas material reducing material, characterized in that the combustion supporting gas supply means is connected to any one other than the flow path of the flow path through which the fluid being connected The lance for a blast furnace tuyere according to claim 4 . 前記円形断面流路部を構成する前記三つの流路のうち一つ目の流路が前記固体が流れる流路を構成し、
前記固体還元材供給手段が前記円形断面流路部によって構成される前記固体が流れる流路に接続されたことを特徴とする請求項4又は5に記載の高炉羽口用複合ランス。
The first flow path of the three flow paths constituting the circular cross-section flow path portion constitutes a flow path through which the solid flows,
The lance for a blast furnace tuyere according to claim 4 or 5 , wherein the solid reducing material supply means is connected to a flow path in which the solid flows, which is constituted by the circular cross section flow path section.
固体又は流体が流れる流路を三つの平行な状態で有する高炉羽口用複合ランスであって、A lance for a blast furnace tuyere having three flow paths through which a solid or fluid flows,
前記三つの流路のうち一つ目の流路を構成し、断面円形の一つ目の管体によって形成された一つ目の円形断面流路部と、The first channel of the three channels, the first circular cross-section channel part formed by the first tube body having a circular cross-section,
前記三つの流路のうち二つ目の流路を構成し、前記一つ目の管体に接合されるとともに断面円形の二つ目の管体によって形成された二つ目の円形断面流路と、A second circular cross-sectional flow path that forms a second flow path of the three flow paths and is joined to the first tubular body and formed by a second tubular body having a circular cross section. When,
前記三つの流路のうち三つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした縦割り管体の両端部を前記一つ目の管体及び前記二つ目の管体に接合して形成された不完全円形断面流路部とを備え、Of the three channels, a third channel is formed, and both ends of a vertically divided tube whose cross section is continuously cut in the longitudinal direction to have an arc-shaped cross section are formed on the first tube. A body and an incomplete circular cross-section channel formed by joining to the second tube,
前記一つ目及び二つ目の円形断面流路部及び前記不完全円形断面流路部とによって集合流路部を構成したことを特徴とする高炉羽口用複合ランス。A combined lance for a blast furnace tuyere, wherein the first and second circular cross-sectional flow path portions and the incomplete circular cross-sectional flow path portion constitute a collective flow path portion.
固体又は流体が流れる流路を四つの平行な状態で有する高炉羽口用複合ランスであって、A compound lance for a blast furnace tuyere having four flow paths through which a solid or fluid flows,
前記四つの流路のうち一つ目の流路を構成し、断面円形の一つ目の管体によって形成された一つ目の円形断面流路部と、The first channel of the four channels, the first circular cross-section channel portion formed by the first tube having a circular cross-section,
前記四つの流路のうち二つ目の流路を構成し、前記一つ目の管体に接合されるとともに断面円形の二つ目の管体によって形成された二つ目の円形断面流路部と、A second circular cross-section flow path that forms a second flow path among the four flow paths and is formed by a second pipe body that is joined to the first pipe body and has a circular cross section. And
前記四つの流路のうち三つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした一つ目の縦割り管体の両端部を前記一つ目の管体及び前記二つ目の管体に接合して形成された一つ目の不完全円形断面流路部と、Of the four channels, a third channel is configured, and both ends of the first vertically divided tube whose cross section is continuously cut in the longitudinal direction to have an arc-shaped cross section are formed on the one end. A first tubular body and a first incomplete circular cross-section channel formed by joining to the second tubular body;
前記四つの流路のうち四つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした二つ目の縦割り管体の両端部を前記一つ目の管体及び前記二つ目の管体に接合して形成された二つ目の不完全円形断面流路部とを備え、  Among the four channels, a fourth channel is configured, and both ends of a second vertically-divided tube body in which the section of the tube body is continuously cut out in the longitudinal direction so that the section is arcuate. A second tube and a second incomplete circular cross-section channel formed by joining to the second tube,
前記一つ目及び二つ目の円形断面流路部及び前記一つ目及び二つ目の不完全円形断面流路部とによって集合流路部を構成したことを特徴とする高炉羽口用複合ランス。  A combined blast furnace tuyere comprising the first and second circular cross-sectional flow passages and the first and second incomplete circular cross-sectional flow passages. Lance.
固体又は流体が流れる流路を四つの平行な状態で有する高炉羽口用複合ランスであって、A compound lance for a blast furnace tuyere having four flow paths through which a solid or fluid flows,
前記四つの流路のうち一つ目の流路を構成し、断面円形の管体によって形成された円形断面流路部と、  A first cross-section of the four flow paths, and a circular cross-section channel portion formed by a tubular body having a circular cross-section;
前記四つの流路のうち二つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした一つ目の縦割り管体の両端部を前記断面円形の管体に接合して形成された一つ目の不完全円形断面流路部と、  Of the four flow paths, the second flow path is configured, and the cross section of the first vertically divided pipe body in which the cross section of the pipe body is continuously cut out in the longitudinal direction so that the cross section has an arc shape. A first incomplete circular cross-section flow channel portion formed by joining a circular tube;
前記四つの流路のうち三つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした二つ目の縦割り管体の一端部を前記断面円形の管体に接合し、前記二つ目の縦割り管体の他端部を前記一つ目の縦割り管体に接合して形成された二つ目の不完全円形断面流路部と、  Of the four channels, a third channel is configured, and one end portion of a second vertically-divided tube body in which the cross section of the tube body is continuously cut out in the longitudinal direction and the cross section is formed in an arc shape. A second incomplete circular cross-section channel part formed by joining the circular pipe body and joining the other end of the second vertical pipe body to the first vertical pipe body; ,
前記四つの流路のうち四つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした三つ目の縦割り管体の両端部を前記一つ目の縦割り管体及び前記二つ目の縦割り管体に接合して形成された三つ目の不完全円形断面流路部とを備え、  Among the four channels, a fourth channel is configured, and both ends of a third vertically-divided tube body in which a cross section of the tube body is continuously cut in the longitudinal direction so that the cross section has an arc shape are formed on the one end. A third vertically-divided tubular body and a third incomplete circular cross-section channel portion formed by joining to the second vertically-divided tubular body,
前記円形断面流路部及び前記一つ目、二つ目及び三つ目の不完全円形断面流路部とによって集合流路部を構成したことを特徴とする高炉羽口用複合ランス。  A combined lance for a blast furnace tuyere comprising a collective flow path portion by the circular cross-sectional flow path portion and the first, second, and third incomplete circular cross-sectional flow path portions.
固体又は流体が流れる流路を二つの平行な状態で有する高炉羽口用複合ランスであって、A composite lance for a blast furnace tuyere having two parallel flow paths through which a solid or fluid flows,
前記二つの流路のうち一つ目の流路を構成し、断面円形の管体によって形成された円形断面流路部と、A first cross-section of the two flow paths, a circular cross-section flow channel portion formed by a tube having a circular cross-section;
前記二つの流路のうち二つ目の流路を構成し、管体の断面を長手方向に連続して切欠いて断面を円弧状にした縦割り管体の両端部を前記断面円形の管体に接合して形成された不完全円形断面流路部とを備え、  A tubular body having a circular cross section is formed at both ends of a vertically divided tubular body that forms a second flow path of the two flow paths, and the cross section of the tubular body is continuously cut out in the longitudinal direction so that the cross section has an arc shape. An incomplete circular cross-section flow path portion formed by joining to,
前記円形断面流路部及び前記不完全円形断面流路部とによって集合流路部を構成したことを特徴とする高炉羽口用複合ランス。  A combined lance for a blast furnace tuyere characterized in that a collective flow path portion is constituted by the circular cross-sectional flow path portion and the incomplete circular cross-sectional flow path portion.
JP2014001794A 2014-01-08 2014-01-08 Combined lance for blast furnace tuyere Active JP6034313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014001794A JP6034313B2 (en) 2014-01-08 2014-01-08 Combined lance for blast furnace tuyere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014001794A JP6034313B2 (en) 2014-01-08 2014-01-08 Combined lance for blast furnace tuyere

Publications (2)

Publication Number Publication Date
JP2015129338A JP2015129338A (en) 2015-07-16
JP6034313B2 true JP6034313B2 (en) 2016-11-30

Family

ID=53760266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014001794A Active JP6034313B2 (en) 2014-01-08 2014-01-08 Combined lance for blast furnace tuyere

Country Status (1)

Country Link
JP (1) JP6034313B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6912261B2 (en) * 2017-04-18 2021-08-04 Jfeスチール株式会社 Composite lance for blast furnace tuyere

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311608A (en) * 1986-03-28 1988-01-19 Kobe Steel Ltd Method for blowing power fuel into blast furnace
JPH0723489B2 (en) * 1987-05-30 1995-03-15 住友金属工業株式会社 Nozzle for blowing pulverized coal in blast furnace
JP6003535B2 (en) * 2012-10-31 2016-10-05 Jfeスチール株式会社 Blast furnace operation method and blast furnace tuyere lance

Also Published As

Publication number Publication date
JP2015129338A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
JP5263430B2 (en) Blast furnace operation method
JP5974687B2 (en) Blast furnace operation method
JP5522326B1 (en) Blast furnace operation method and tube bundle type lance
JP2012188742A (en) Method for operating blast furnace
JP6034313B2 (en) Combined lance for blast furnace tuyere
JP2016160482A (en) Apparatus for blowing in reductant
JP5652575B1 (en) Blast furnace operating method and lance
JP5610109B1 (en) Blast furnace operation method
JP6477607B2 (en) Lance
JP5983293B2 (en) Blast furnace operating method and lance
JP6481662B2 (en) Lance
JP2018178215A (en) Combined lance for blast furnace tuyere
JP5983294B2 (en) Blast furnace operating method and lance
KR101629122B1 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161027

R150 Certificate of patent or registration of utility model

Ref document number: 6034313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250