JPH07234143A - Intake air flow rate detector of internal combustion engine - Google Patents

Intake air flow rate detector of internal combustion engine

Info

Publication number
JPH07234143A
JPH07234143A JP6027749A JP2774994A JPH07234143A JP H07234143 A JPH07234143 A JP H07234143A JP 6027749 A JP6027749 A JP 6027749A JP 2774994 A JP2774994 A JP 2774994A JP H07234143 A JPH07234143 A JP H07234143A
Authority
JP
Japan
Prior art keywords
intake air
component
air flow
flow rate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6027749A
Other languages
Japanese (ja)
Inventor
Hajime Hosoya
肇 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP6027749A priority Critical patent/JPH07234143A/en
Priority to KR1019950003633A priority patent/KR0163456B1/en
Publication of JPH07234143A publication Critical patent/JPH07234143A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To ensure the reliability of a detector by enhancing the detection accuracy of the flow rate of intake air even when intake air pulsation containing a back flow component is generated. CONSTITUTION:An intake air passage 13 is divided into an intake air passage 13a permitting only forward flow to pass and an intake air passage 13b permitting only back flow to pass by a central partition wall 21 and shield walls 22, 23 and the temp.-sensitive resistor RH1 incorporated in a circuit outputting only forward direction output is arranged to the intake air passage 13a and the temp.-sensitive resistor RH2 incorporated in a circuit outputting only reverse direction output is arranged to the intake air passage 13b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の吸入空気流量
検出装置に関し、詳しくは、逆流方向に流れる吸入空気
流量を考慮して機関の吸入空気流量を検出する装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake air flow rate detecting device for an internal combustion engine, and more particularly to a device for detecting the intake air flow rate of an engine in consideration of the intake air flow rate flowing in a reverse flow direction.

【0002】[0002]

【従来の技術】内燃機関の電子制御燃料噴射装置におい
ては、機関の吸入空気流量Qを検出するための空気流量
計(エアフローメータ)を備え、この空気流量計で検出
された吸入空気流量Qと機関回転速度Neとから燃料噴
射弁による基本燃料噴射量Tp=K×Q/Ne(Kは定
数)を演算する構成のものが知られており、前記空気流
量計として、特開平4−95721号公報等に開示され
るような感温式流量計が用いられている。
2. Description of the Related Art An electronically controlled fuel injection system for an internal combustion engine is equipped with an air flow meter (air flow meter) for detecting an intake air flow rate Q of the engine, and the intake air flow rate Q detected by this air flow meter is A configuration is known in which a basic fuel injection amount Tp = K × Q / Ne (K is a constant) by a fuel injection valve is calculated from the engine rotation speed Ne, and the air flow meter is disclosed in Japanese Patent Application Laid-Open No. 4-95721. A temperature-sensitive flow meter as disclosed in the official gazette is used.

【0003】前記感温式流量計は、いわゆるホットワイ
ヤ型或いはホットフィルム型などの感温抵抗を吸気通路
中に配置し、かかる感温抵抗に電流を供給して一定温度
(抵抗値)に発熱させ、吸入空気による温度低下を電流
の増大により補い、その電流値から吸入空気流量を求め
ている。即ち、図7中の感温式流量計1を例にして説明
すれば、感温抵抗RH (ホットワイヤ又はホットフィル
ム)の他、温度補償抵抗RK , 基準抵抗Rs , 固定抵抗
1 , 2 を備え、これらによりブリッジ回路Bが構成
されている。
In the temperature-sensitive flowmeter, a so-called hot wire type or hot film type temperature sensitive resistor is arranged in the intake passage, and a current is supplied to the temperature sensitive resistor to generate heat at a constant temperature (resistance value). Then, the temperature decrease due to the intake air is compensated by increasing the current, and the intake air flow rate is obtained from the current value. That is, the temperature-sensitive flow meter 1 in FIG. 7 will be described as an example. In addition to the temperature-sensitive resistance R H (hot wire or hot film), temperature compensation resistance R K, reference resistance R s, fixed resistance R 1 , R 2 and the bridge circuit B is constituted by them.

【0004】そして、このブリッジ回路Bの感温抵抗R
H 及び基準抵抗Rs が直列に接続されている側の分圧点
の電位(基準抵抗Rs の端子電圧)と、温度補償抵抗R
K 及び固定抵抗R1 , 2 が直列に接続されている側の
分圧点の電位(固定抵抗R2の端子電圧)とが差動増幅
器OPに入力されるようになっており、この差動増幅器
OPの出力に応じてトランジスタTrを介してブリッジ
回路Bへの供給電流が補正される。
The temperature sensing resistor R of the bridge circuit B
H and the reference resistance R s are connected in series, the potential of the voltage dividing point (the terminal voltage of the reference resistance R s ) and the temperature compensation resistance R
K and the potential at the voltage dividing point on the side where the fixed resistors R 1 and R 2 are connected in series (the terminal voltage of the fixed resistor R 2 ) are input to the differential amplifier OP. The supply current to the bridge circuit B is corrected via the transistor Tr according to the output of the dynamic amplifier OP.

【0005】つまり、ブリッジ回路Bが平衡している状
態において、例えば機関の吸入空気流量が増大すると、
感温抵抗RH がこの空気流によってより冷却されてその
抵抗値が減少し、基準抵抗Rs の端子電圧が増大して、
ブリッジ回路Bが非平衡状態となり、差動増幅器OPの
出力が増大する。これにより、トランジスタTrによっ
て制御されるブリッジ回路Bへの供給電流が増大し、感
温抵抗RH が加熱されてその抵抗値が増大することによ
り、ブリッジ回路Bの平衡条件が回復される。
That is, when the intake air flow rate of the engine increases, for example, when the bridge circuit B is in a balanced state,
The temperature sensitive resistance R H is further cooled by this air flow, its resistance value decreases, and the terminal voltage of the reference resistance R s increases,
The bridge circuit B becomes unbalanced and the output of the differential amplifier OP increases. As a result, the supply current to the bridge circuit B controlled by the transistor Tr increases, the temperature-sensitive resistor R H is heated, and its resistance value increases, whereby the balanced condition of the bridge circuit B is restored.

【0006】なお、吸入空気の温度が例えば低下すると
感温抵抗RH が冷却されてその抵抗値が減少するが、感
温抵抗RH と同一雰囲気にある温度補償抵抗RK も同時
に冷却されてその抵抗値が減少することとなるので、ブ
リッジ回路Bへ供給される電流値が吸入空気の温度変化
により変化することが抑制される。従って、機関の吸入
空気流量Qとブリッジ回路Bへの供給電流とが吸入空気
温度に無関係に対応することになり、基準抵抗Rs の端
子電圧Usを検出することにより、吸入空気流量Qを測
定することが可能となるものである。
When the temperature of the intake air decreases, for example, the temperature-sensitive resistor R H is cooled and its resistance value decreases, but the temperature-compensating resistor R K in the same atmosphere as the temperature-sensitive resistor R H is also cooled. Since the resistance value is reduced, the current value supplied to the bridge circuit B is suppressed from changing due to the temperature change of the intake air. Therefore, the intake air flow rate Q of the engine and the current supplied to the bridge circuit B correspond independently of the intake air temperature, and the intake air flow rate Q is measured by detecting the terminal voltage Us of the reference resistance R s. It is possible to do.

【0007】図7に示す例では、前記基準抵抗Rs の端
子電圧UsをA/D変換器3でA/D変換してマイクロ
コンピュータを含んで構成されるコントロールユニット
16に読み込ませる。ここでコントロールユニット16は、
予め前記端子電圧Usを吸入空気流量Qに変換するテー
ブルを備えており、該テーブルを用いて前記端子電圧U
sの情報を吸入空気流量Qに変換して、機関の吸入空気
流量Qを検知する。そして、前記吸入空気流量Qの情報
に基づいて図示しない燃料噴射弁から噴射供給させる燃
料量を決定し、所定空燃比の混合気を形成させるように
する。
In the example shown in FIG. 7, the terminal voltage Us of the reference resistor R s is A / D converted by the A / D converter 3 and the control unit includes a microcomputer.
Let it read in 16. Here, the control unit 16
A table for converting the terminal voltage Us into the intake air flow rate Q is provided in advance, and the terminal voltage U is converted by using the table.
The information of s is converted into the intake air flow rate Q to detect the intake air flow rate Q of the engine. Then, the amount of fuel to be injected and supplied from a fuel injection valve (not shown) is determined based on the information of the intake air flow rate Q, and an air-fuel mixture having a predetermined air-fuel ratio is formed.

【0008】尚、図7において、2はイグニッションス
イッチであり、該イグニッションスイッチ2を介して前
記感温式流量計1及びコントロールユニット16にバッテ
リ電圧VBが印加されるようになっている。
In FIG. 7, reference numeral 2 is an ignition switch, and a battery voltage VB is applied to the temperature-sensitive flow meter 1 and the control unit 16 via the ignition switch 2.

【0009】[0009]

【発明が解決しようとする課題】ところで、スロットル
弁開度が大きくしかも機関回転数が低回転域又は高回転
域にあるときには、逆流成分を含んだ吸気脈動がシリン
ダ側から感温式流量計の感温抵抗RH の部分まで伝わる
場合がある。このとき、感温抵抗RH は流れの方向が判
別できないため、逆流も正方向と同様に検知し(図8参
照)、この結果、平均流量として真の吸入空気流量(図
9参照)よりも大きな値が検出されることになってしま
うという問題があった。
By the way, when the throttle valve opening is large and the engine speed is in the low speed region or the high speed region, the intake pulsation including the backflow component is applied to the temperature sensitive flowmeter from the cylinder side. It may reach the temperature-sensitive resistance R H. At this time, since the temperature-sensitive resistance R H cannot determine the flow direction, the backflow is detected in the same manner as the positive direction (see FIG. 8), and as a result, the average flow rate is lower than the true intake air flow rate (see FIG. 9). There was a problem that a large value would be detected.

【0010】上記のようにして、吸入空気流量の検出値
が、真の吸入空気流量よりも大きな値になってしまう
と、該検出値に基づく電子燃料噴射制御によって余分な
燃料が噴射供給され、空燃比を目標空燃比よりもリッチ
化させることになってしまう。ここで、逆流成分を含ん
だ吸気脈動に係る空気流量を測定する装置として、特公
平4−32328号に示されるように、吸入空気流量に
応じて抵抗値が変化する測定抵抗の上流側と下流側とに
検出抵抗を設け、該両検出抵抗の出力の差に基づいて逆
流成分を含んだ吸気脈動に係る空気流量を測定する装置
があるが、複雑な演算補正を必要とし、信頼性を確保す
ることが難しい。
As described above, when the detected value of the intake air flow rate becomes larger than the true intake air flow rate, the extra fuel is injected and supplied by the electronic fuel injection control based on the detected value. The air-fuel ratio will be made richer than the target air-fuel ratio. Here, as a device for measuring the air flow rate related to the intake pulsation including the backflow component, as shown in Japanese Patent Publication No. 4-32328, upstream and downstream of the measured resistance whose resistance value changes according to the intake air flow rate. There is a device that measures the air flow rate related to the intake pulsation that includes a backflow component based on the difference between the outputs of both detection resistors, but there is a device that requires complicated calculation correction to ensure reliability. Difficult to do.

【0011】尚、以上説明の説明においては、感温式流
量計を例に採りその問題点を説明したが、吸入空気流量
検出部に逆流成分を含んだ吸気脈動が作用することによ
り、該吸入空気流量検出部により誤った吸入空気流量が
検出されてしまうことは、勿論である。本発明は上記問
題点に鑑みなされたものであり、逆流成分を含んだ吸気
脈動が発生しても、前記吸気の逆流が吸入空気流量検出
部に伝わることを抑止することによって、吸入空気流量
の検出精度を向上させ、吸入空気流量検出装置の信頼性
を確保することを目的とする。
In the above description, the problem has been explained by taking the temperature sensitive flow meter as an example. However, the intake air flow rate detecting portion is acted upon by the intake pulsation containing the backflow component, so that the intake air flow rate is detected. It goes without saying that an erroneous intake air flow rate is detected by the air flow rate detection unit. The present invention has been made in view of the above problems, and even if intake pulsation including a backflow component occurs, it is possible to prevent the backflow of the intake air from being transmitted to the intake air flow rate detection unit, thereby reducing the intake air flow rate. The object is to improve the detection accuracy and ensure the reliability of the intake air flow rate detection device.

【0012】[0012]

【課題を解決するための手段】そのため本発明の請求項
1に係る手段として、内燃機関の吸入空気流量を検出す
る吸入空気流量検出装置において、正流方向に流れる吸
入空気流量成分のみを検出する正流成分検出手段と、逆
流方向に流れる吸入空気流量成分のみを検出する逆流成
分検出手段と、吸入空気流量の正流成分検出値と逆流成
分検出値とに基づいて機関の吸入空気流量を検出する吸
入空気量検出手段とを、設ける構成とした。
Therefore, as a means according to claim 1 of the present invention, in an intake air flow rate detecting device for detecting the intake air flow rate of an internal combustion engine, only the intake air flow rate component flowing in the forward flow direction is detected. Forward flow component detecting means, reverse flow component detecting means for detecting only the intake air flow rate component flowing in the reverse flow direction, and detecting the intake air flow rate of the engine based on the forward flow component detection value and the reverse flow component detection value of the intake air flow rate And an intake air amount detecting means for controlling the intake air amount.

【0013】また本発明の請求項2に係る手段として、
内燃機関の吸入空気通路内に、吸入空気流の逆流成分を
遮断し正流成分のみを通過させる正流成分通過手段と、
吸入空気流の正流成分を遮断し逆流成分のみを通過させ
る逆流成分通過手段とを備え、前記正流成分検出手段及
び逆流成分検出手段を夫々正流成分通過手段及び逆流成
分通過手段を通過する正流成分及び逆流成分の流量を検
出することにより構成してもよい。
Further, as means according to claim 2 of the present invention,
In the intake air passage of the internal combustion engine, a forward flow component passage means for blocking the reverse flow component of the intake air flow and passing only the forward flow component,
Backflow component passing means for blocking the forward flow component of the intake air flow and passing only the backward flow component, and passing the forward flow component detecting means and the backward flow component detecting means through the forward flow component passing means and the backward flow component passing means, respectively. It may be configured by detecting the flow rates of the forward flow component and the reverse flow component.

【0014】また本発明の請求項3に係る手段として、
正流成分通過手段及び逆流成分通過手段を、夫々正流、
逆流に対して入口を吸入空気流通方向と直角に開口し、
出口を吸入空気流通方向に対して平行に開口することに
より構成してもよい。また本発明の請求項4に係る手段
として、吸入空気流量を検出する吸入空気流量検出装置
が感温抵抗式であってもよい。
Further, as means according to claim 3 of the present invention,
The forward flow component passing means and the backward flow component passing means are respectively forward flow,
Open the inlet to the backflow at a right angle to the direction of the intake air flow,
It may be configured by opening the outlet in parallel with the intake air circulation direction. Further, as a means according to claim 4 of the present invention, the intake air flow rate detecting device for detecting the intake air flow rate may be a temperature-sensitive resistance type.

【0015】[0015]

【作用】上記構成の吸入空気流量検出装置によれば、請
求項1記載の発明の作用として、逆流成分を含む吸気脈
動が発生しているときには、正流成分検出手段が正流方
向に流れる吸入空気流量成分のみを検出し、逆流成分検
出手段が逆流方向に流れる吸入空気流量成分のみを検出
する。
According to the intake air flow rate detecting device having the above-described structure, as the action of the invention described in claim 1, when the intake pulsation including the backflow component is generated, the intake component flowing in the normal flow direction by the normal flow component detecting means. Only the air flow rate component is detected, and the backflow component detection means detects only the intake air flow rate component flowing in the backflow direction.

【0016】そして、吸入空気量検出手段が吸入空気流
量の正流成分検出値と逆流成分検出値とに基づいて機関
の吸入空気流量を検出する。また、請求項2記載の発明
の作用として、内燃機関の吸入空気通路内に、正流成分
通過手段と逆流成分通過手段とが備えられた場合には、
前記正流成分通過手段は吸入空気流の逆流成分を遮断し
正流成分のみを通過させるので、該正流成分通過手段を
通過する正流成分の流量を検出することにより前記正流
成分を検出することが可能となると共に、前記逆流成分
通過手段は吸入空気流の正流成分を遮断し逆流成分のみ
を通過させるので、該逆流成分通過手段を通過する逆流
成分の流量を検出することにより前記逆流成分を検出す
ることが可能となる。
Then, the intake air amount detecting means detects the intake air flow rate of the engine based on the detected value of the forward flow component and the detected value of the reverse flow component of the intake air flow rate. Further, as an operation of the invention described in claim 2, when the forward air component passage means and the backward flow component passage means are provided in the intake air passage of the internal combustion engine,
Since the normal flow component passage means blocks the reverse flow component of the intake air flow and passes only the normal flow component, the normal flow component is detected by detecting the flow rate of the normal flow component passing through the normal flow component passage means. In addition, since the backflow component passing means blocks the forward flow component of the intake air flow and allows only the backflow component to pass through, the backflow component passing means detects the flow rate of the backflow component passing through the backflow component passing means. It is possible to detect the backflow component.

【0017】また、請求項3記載の発明の作用として、
正流成分通過手段及び逆流成分通過手段を、夫々正流、
逆流に対して入口を吸入空気流通方向と直角に開口し、
出口を吸入空気流通方向に対して平行に開口することに
より、夫々正流、逆流が前記入口から入り易く、出口か
らは入り難くなるので、該入口、出口により逆流成分、
正流成分の遮断が確実に行えると共に、正流成分、逆流
成分の通過が確実に行えることとなる。
As an operation of the invention described in claim 3,
The forward flow component passing means and the backward flow component passing means are respectively forward flow,
Open the inlet to the backflow at a right angle to the direction of the intake air flow,
By opening the outlet in parallel to the intake air flow direction, a forward flow and a reverse flow are likely to enter from the inlet and become difficult to enter from the outlet.
The forward flow component can be reliably blocked, and the forward flow component and the backward flow component can be reliably passed.

【0018】また、請求項4記載の発明の作用として、
吸入空気流量を検出する吸入空気流量検出装置が感温抵
抗式の場合には、逆流成分を含む吸気脈動が発生してい
るときには、感温抵抗により正流方向に流れる吸入空気
流量成分及び逆流方向に流れる吸入空気流量成分が検出
され、正流成分検出値と逆流成分検出値とに基づいて機
関の吸入空気流量が検出される。
As an operation of the invention according to claim 4,
When the intake air flow rate detection device that detects the intake air flow rate is a temperature-sensitive resistance type, when intake pulsation including a backflow component is occurring, the intake airflow component and the backflow direction that flow in the forward direction due to the temperature-sensitive resistance The intake air flow rate component flowing in the engine is detected, and the intake air flow rate of the engine is detected based on the normal flow component detection value and the reverse flow component detection value.

【0019】[0019]

【実施例】以下に本発明の一実施例を説明する。尚本実
施例は、流量計として感温式流量計を用いた場合の例で
ある。そして、感温式流量計に係る回路構成について
は、従来例において説明した回路構成とほぼ同様であ
り、同一構成要素については同一符号を付して説明を省
略する。
EXAMPLE An example of the present invention will be described below. The present embodiment is an example in which a temperature-sensitive flow meter is used as the flow meter. The circuit configuration of the temperature-sensitive flow meter is almost the same as the circuit configuration described in the conventional example, and the same components are designated by the same reference numerals and the description thereof will be omitted.

【0020】図1は本実施例における感温抵抗RH1及び
H2の機関に対する配設状態を示すシステム図である。
エンジン11におけるエアクリーナ12からの吸気通路13の
スロットル弁14下流に電磁式の燃料噴射弁15が設けられ
ており、この燃料噴射弁15は、コントロールユニット16
からエンジン回転に同期して出力される駆動パルス信号
により、そのパルス幅の時間開弁して、燃料噴射を行
う。
FIG. 1 is a system diagram showing an arrangement state of temperature-sensitive resistors R H1 and R H2 in the present embodiment with respect to an engine.
An electromagnetic fuel injection valve 15 is provided downstream of the throttle valve 14 in the intake passage 13 from the air cleaner 12 in the engine 11, and the fuel injection valve 15 includes a control unit 16
From the drive pulse signal output from the engine in synchronization with the engine rotation, the valve is opened for the pulse width and fuel injection is performed.

【0021】スロットル弁14上流側の吸気通路13には、
図2及び図3に示した感温式流量計1を夫々構成する感
温抵抗RH1及びRH2が介装されており、該感温抵抗RH1
及びRH2からの信号はコントロールユニット16に入力さ
れる。この他、エンジン回転数Nの検出手段を兼ねるク
ランク角センサ18からも、該コントロールユニット16に
信号が入力されている。
In the intake passage 13 upstream of the throttle valve 14,
Temperature-sensitive resistors R H1 and R H2, which respectively constitute the temperature-sensitive flowmeter 1 shown in FIGS. 2 and 3, are interposed, and the temperature-sensitive resistors R H1
And signals from R H2 are input to the control unit 16. In addition, a signal is also input to the control unit 16 from a crank angle sensor 18 that also serves as a means for detecting the engine speed N.

【0022】ここで、本実施例における特徴的な構成と
して、スロットル弁14上流の吸気通路13に、該吸気通路
13を並列に分割する中央隔壁21が設けられている。さら
に該中央隔壁21の下流端21aにおいて、遮蔽壁22が分割
された一方の吸気通路13a側の吸気通路壁25近傍まで延
設されていると共に、該中央隔壁21の上流端21bにおい
て、遮蔽壁23が分割された他方の吸気通路13b側の吸気
通路壁26近傍まで延設される。
Here, as a characteristic configuration of this embodiment, the intake passage 13 upstream of the throttle valve 14 is provided with the intake passage 13.
A central partition 21 that divides 13 in parallel is provided. Further, at the downstream end 21a of the central partition wall 21, the shielding wall 22 is extended to the vicinity of the intake passage wall 25 on the side of one of the divided intake passages 13a, and at the upstream end 21b of the central partition wall 21, the shielding wall 22 is provided. 23 is extended to the vicinity of the intake passage wall 26 on the side of the other divided intake passage 13b.

【0023】かかる構成によると、エアクリーナ12から
吸気通路13に正流方向に流入する吸入空気は、中央隔壁
21の上流端21bに設けられた遮蔽壁23が吸気通路13b側
の吸気通路壁26近傍まで延設されているので、該吸気通
路13b側を通過することなく、吸気通路13a側を通過し
てエンジン11に吸入される。また、当該吸気通路13a側
には中央隔壁21の下流端21aに遮断壁22が吸気通路13a
側の吸気通路壁25近傍まで延設されているので、吸気通
路13に逆流方向に流出する空気は、該吸気通路13a側を
通過することがない。
According to this structure, the intake air flowing from the air cleaner 12 into the intake passage 13 in the forward flow direction has a central partition wall.
Since the shielding wall 23 provided at the upstream end 21b of 21 extends to the vicinity of the intake passage wall 26 on the intake passage 13b side, it passes through the intake passage 13a side without passing through the intake passage 13b side. Inhaled by the engine 11. A blocking wall 22 is provided at the downstream end 21a of the central partition wall 21 on the intake passage 13a side.
Since it is extended to the vicinity of the intake passage wall 25 on the side, the air flowing out to the intake passage 13 in the reverse flow direction does not pass through the intake passage 13a side.

【0024】即ち、前記吸気通路13aは正流成分通過手
段としての機能を奏している。一方、エンジン11から吸
気通路13に逆流方向に流出する空気は、中央隔壁21の下
流端21aに設けられた遮蔽壁22が吸気通路13a側の吸気
通路壁25近傍まで延設されているので、該吸気通路13a
側を通過することなく、吸気通路13b側を通過すること
となる。また、当該吸気通路13b側には中央隔壁21の上
流端21bに遮断壁23が吸気通路13b側の吸気通路壁26近
傍まで延設されているので、エアクリーナ12から吸気通
路13に正流方向に流入する吸入空気は、該吸気通路13b
側を通過することがない。
That is, the intake passage 13a functions as a normal flow component passage means. On the other hand, in the air flowing out from the engine 11 to the intake passage 13 in the reverse flow direction, the shielding wall 22 provided at the downstream end 21a of the central partition wall 21 extends to the vicinity of the intake passage wall 25 on the intake passage 13a side. The intake passage 13a
It does not pass on the side, but on the side of the intake passage 13b. Further, on the intake passage 13b side, the blocking wall 23 is extended to the vicinity of the intake passage wall 26 on the intake passage 13b side at the upstream end 21b of the central partition wall 21, so that the flow direction from the air cleaner 12 to the intake passage 13 is increased. The intake air that flows in is taken in by the intake passage 13b.
Never pass by.

【0025】即ち、前記吸気通路13bは逆流成分通過手
段としての機能を奏している。そして、前記感温抵抗R
H1が前記一方の吸気通路13a中の中央隔壁21の上流端21
b近傍に配設されると共に、前記感温抵抗RH2が前記他
方の吸気通路13b中の中央隔壁21の下流端21a近傍に配
設される。次に前記感温抵抗RH1及び感温抵抗RH2が接
続される回路構成を説明する。尚、図7に示した感温式
流量計1の構成・作用とほぼ同様であるので、ここでは
概略説明をする。
That is, the intake passage 13b functions as a backflow component passing means. And the temperature-sensitive resistor R
H1 is the upstream end 21 of the central partition wall 21 in the one intake passage 13a.
The temperature-sensitive resistor R H2 is disposed near b and near the downstream end 21a of the central partition wall 21 in the other intake passage 13b. Next, a circuit configuration to which the temperature sensitive resistor R H1 and the temperature sensitive resistor R H2 are connected will be described. Note that the configuration and operation of the temperature-sensitive flow meter 1 shown in FIG. 7 are almost the same, so a brief description will be given here.

【0026】図2に示す回路は、感温抵抗RH1に係る出
力を出力する回路であるが、該回路において前記感温抵
抗RH の代わりに感温抵抗RH1を接続することにより、
該感温抵抗RH1は、ブリッジ回路Bが平衡している状態
において、例えば機関の吸入空気流量が増大すると、感
温抵抗RH1がこの空気流によってより冷却されてその抵
抗値が減少し、基準抵抗Rs の端子電圧が増大して、ブ
リッジ回路Bが非平衡状態となり、差動増幅器OPの出
力が増大する。これにより、トランジスタTrによって
制御されるブリッジ回路Bへの供給電流が増大し、感温
抵抗RH1が加熱されてその抵抗値が増大することによ
り、ブリッジ回路Bの平衡条件が回復される。
The circuit shown in FIG. 2 is a circuit that outputs an output of the temperature-sensitive resistor R H1, by connecting the temperature sensitive resistor R H1 in place of the temperature sensitive resistor R H in the circuit,
Temperature sensitive resistor R H1, in a state where the bridge circuit B is balanced, for example, the intake air flow rate of the engine is increased, the temperature-sensitive resistor R H1 is the resistance value decreases is more cooled by the air flow, The terminal voltage of the reference resistor R s increases, the bridge circuit B becomes unbalanced, and the output of the differential amplifier OP increases. As a result, the supply current to the bridge circuit B controlled by the transistor Tr increases, the temperature-sensitive resistor R H1 is heated, and its resistance value increases, whereby the balanced condition of the bridge circuit B is restored.

【0027】ここで、吸入空気の温度が例えば低下する
と、感温抵抗RH1が冷却されてその抵抗値が減少する
が、感温抵抗RH1と同一雰囲気にある温度補償抵抗RK
も同時に冷却されてその抵抗値が減少するから、ブリッ
ジ回路Bへ供給される電流値が吸入空気の温度変化によ
り変化することが抑制される。従って、機関の吸入空気
流量Qとブリッジ回路Bへの供給電流とが吸入空気温度
に無関係に対応することになり、基準抵抗Rs の端子電
圧Usを検出することにより、前記感温抵抗RH1を通過
する空気量を検出することが可能となる。
Here, when the temperature of the intake air falls, for example, the temperature-sensitive resistor R H1 is cooled and its resistance value decreases, but the temperature-compensating resistor R K in the same atmosphere as the temperature-sensitive resistor R H1.
At the same time, the resistance value of the bridge circuit B is reduced and the resistance value of the bridge circuit B is reduced, so that the current value supplied to the bridge circuit B is prevented from changing due to the temperature change of the intake air. Therefore, the intake air flow rate Q of the engine and the current supplied to the bridge circuit B correspond independently of the intake air temperature, and the temperature-sensitive resistance R H1 is detected by detecting the terminal voltage Us of the reference resistance R s. It is possible to detect the amount of air passing through.

【0028】従って、前記感温抵抗RH1は吸気通路13a
を介してエアクリーナ12からの吸気通路3に正流方向に
流入する吸入空気量を検出することとなり、感温抵抗R
H2は吸気通路13aを正流方向に流れる吸入空気量に応じ
た感温抵抗RH1の抵抗値変化に基づいて、図4に示すよ
うな、正方向出力が出力されることとなる。即ち、図2
に示す回路は正流成分検出手段としての機能を奏してい
る。
Therefore, the temperature-sensitive resistor R H1 is connected to the intake passage 13a.
The amount of intake air flowing from the air cleaner 12 into the intake passage 3 in the forward flow direction is detected through the temperature sensor R
As for H2 , a forward output as shown in FIG. 4 is output based on the change in the resistance value of the temperature-sensitive resistor R H1 according to the amount of intake air flowing in the intake passage 13a in the forward direction. That is, FIG.
The circuit shown in (1) functions as a forward current component detecting means.

【0029】一方、図3に示す回路は、感温抵抗RH2
係る出力を出力する回路であるが、該回路において前記
感温抵抗RH の代わりに感温抵抗RH2を接続することに
より、該感温抵抗RH2は、ブリッジ回路B’が平衡して
いる状態において、例えばエンジン11から吸気通路13に
逆流方向に流出する空気の空気流量が増大すると、感温
抵抗RH2がこの空気流によってより冷却されてその抵抗
値が減少し、基準抵抗Rs の端子電圧が増大して、ブリ
ッジ回路B’が非平衡状態となり、差動増幅器OPの出
力が増大する。これにより、トランジスタTrによって
制御されるブリッジ回路B’への供給電流が負側に減少
し(絶対値としては大きくなる方向に変化する)、感温
抵抗RH2が加熱されてその抵抗値が増大することによ
り、ブリッジ回路B’の平衡条件が回復される。
On the other hand, the circuit shown in FIG. 3 is a circuit for outputting an output of the temperature-sensitive resistor R H2, by connecting the temperature sensitive resistor R H2 instead of the temperature sensitive resistor R H in the circuit , the temperature sensitive resistor R H2, in the state in which the bridge circuit B 'are balanced, for example, an air flow rate of air flowing in the reverse flow direction to the intake passage 13 from the engine 11 is increased, the temperature-sensitive resistor R H2 is the air The current is further cooled, its resistance value decreases, the terminal voltage of the reference resistance R s increases, the bridge circuit B ′ becomes unbalanced, and the output of the differential amplifier OP increases. As a result, the supply current to the bridge circuit B ′ controlled by the transistor Tr decreases to the negative side (changes to increase in absolute value), the temperature-sensitive resistor R H2 is heated, and its resistance value increases. By doing so, the balanced condition of the bridge circuit B ′ is restored.

【0030】ここで、吸入空気の温度が例えば低下する
と、感温抵抗RH2が冷却されてその抵抗値が減少する
が、感温抵抗RH2と同一雰囲気にある温度補償抵抗RK
も同時に冷却されてその抵抗値が減少するから、ブリッ
ジ回路B’へ供給される電流値が吸入空気の温度変化に
より変化することが抑制される。従って、機関の吸入空
気流量Qとブリッジ回路B’への供給電流とが吸入空気
温度に無関係に対応することになり、基準抵抗Rs の端
子電圧Usを検出することにより、前記感温抵抗RH2
通過する空気量を検出することが可能となる。
Here, when the temperature of the intake air decreases, for example, the temperature-sensitive resistor R H2 is cooled and its resistance value decreases, but the temperature-compensating resistor R K in the same atmosphere as the temperature-sensitive resistor R H2.
At the same time, the resistance value of the bridge circuit B'is reduced and the resistance value of the bridge circuit B'is prevented from changing due to the temperature change of the intake air. Therefore, by the current supplied to the intake air flow rate Q and the bridge circuit B of the engine 'is to correspond independently to an intake air temperature, detecting a terminal voltage Us of the reference resistor R s, the temperature sensing resistor R It becomes possible to detect the amount of air passing through H2 .

【0031】従って、前記感温抵抗RH2は吸気通路13b
を介して吸気通路3に逆流方向に流出する空気量を検出
することとなり、感温抵抗RH2は吸気通路13bを逆流方
向に流れる空気量に応じた感温抵抗RH2の抵抗値変化に
基づいて、図5に示すような、負方向出力が出力される
こととなる。即ち、図3に示す回路は逆流成分検出手段
としての機能を奏している。
Therefore, the temperature-sensitive resistor R H2 is connected to the intake passage 13b.
The amount of air flowing out to the intake passage 3 in the reverse flow direction is detected, and the temperature-sensitive resistance R H2 is based on the resistance value change of the temperature-sensitive resistor R H2 corresponding to the amount of air flowing in the intake passage 13b in the reverse flow direction. As a result, a negative output is output as shown in FIG. That is, the circuit shown in FIG. 3 functions as a backflow component detecting means.

【0032】さらに、本実施例では、正方向出力と負方
向出力とが、加算器(図示せず)に入力されて、図9に
示すような、正流成分が正方向に出力されて逆流成分が
負方向に出力されている出力が得られる。その後従来と
同様に、当該出力をA/D変換器3でA/D変換してコ
ントロールユニット16に読み込ませ、コントロールユニ
ット16では、予め前記端子電圧Usを吸入空気流量Qに
変換するテーブルを備え、該テーブルを用いて前記端子
電圧Usの情報を吸入空気流量Qに変換して、機関の吸
入空気流量Qを検知する。
Further, in the present embodiment, the positive direction output and the negative direction output are input to the adder (not shown), and the positive flow component as shown in FIG. An output is obtained in which the components are output in the negative direction. Thereafter, as in the conventional case, the output is A / D converted by the A / D converter 3 and read into the control unit 16, and the control unit 16 is provided with a table for converting the terminal voltage Us into the intake air flow rate Q in advance. The information of the terminal voltage Us is converted into the intake air flow rate Q using the table to detect the intake air flow rate Q of the engine.

【0033】即ち、当該構成が、吸入空気流量の正流成
分検出値と逆流成分検出値とに基づいて機関の吸入空気
流量Qを検出する吸入空気量検出手段に相当する。この
ように、正流成分が正方向に出力されて逆流成分が負方
向に出力されている出力を用いて吸入空気流量を演算す
るようにしたので、正しい逆流成分を検出することとな
り、逆流成分を含む吸気脈動が発生した場合にも、該逆
流の発生を正しく吸入空気流量の演算に反映することが
可能となり、逆流成分に影響されて平均流量が真の吸入
空気流量よりも大きく演算されることを回避でき、以
て、燃料噴射制御の精度を向上させることができる。
That is, the structure corresponds to intake air amount detecting means for detecting the intake air flow rate Q of the engine based on the detected value of the forward flow component and the detected value of the reverse flow component of the intake air flow rate. In this way, the intake air flow rate is calculated using the output in which the positive flow component is output in the positive direction and the reverse flow component is output in the negative direction, so the correct reverse flow component is detected, and the reverse flow component is detected. Even if an intake pulsation including the above occurs, it is possible to correctly reflect the occurrence of the backflow in the calculation of the intake air flow rate, and the average flow rate is calculated to be larger than the true intake air flow rate due to the backflow component. This can be avoided, and thus the accuracy of fuel injection control can be improved.

【0034】尚、以上説明した実施例においては、中央
隔壁21、遮蔽壁22及び23により正流成分通過手段及び逆
流成分通過手段を構成したが、図6に示すように、吸気
通路3内に、夫々正流、逆流に対して入口41、42が正流
の吸入空気流通方向及び逆流の空気流通方向と直角に開
口され、出口43、44が正流の吸入空気流通方向及び逆流
の空気流通方向に対して平行に開口されるような曲がり
通路45、46を設けることにより正流成分通過手段及び逆
流成分通過手段を構成してもよい。
In the embodiment described above, the central partition wall 21, the shielding walls 22 and 23 constitute the forward flow component passing means and the reverse flow component passing means. However, as shown in FIG. , Inlets 41 and 42 are opened at right angles to the forward flow and reverse flow, respectively, and the outlets 43 and 44 are forward flow and reverse flow, respectively. The forward flow component passing means and the reverse flow component passing means may be configured by providing the curved passages 45 and 46 that are opened parallel to the direction.

【0035】この場合も、該曲がり通路45に感温抵抗R
H1を配設し、該曲がり通路46に感温抵抗RH2を配設する
ことにより、前記感温抵抗RH1は曲がり通路45を介して
エアクリーナ12からの吸気通路3に正流方向に流入する
吸入空気量を検出することが可能となり、また前記感温
抵抗RH2は曲がり通路46を介して吸気通路3に逆流方向
に流出する空気量を検出することが可能となる。
Also in this case, the temperature sensitive resistor R is provided in the curved passage 45.
By disposing H1 and arranging the temperature sensitive resistance R H2 in the curved passage 46, the temperature sensitive resistance R H1 flows in the forward flow direction from the air cleaner 12 into the intake passage 3 through the curved passage 45. The amount of intake air can be detected, and the temperature-sensitive resistor R H2 can detect the amount of air flowing back to the intake passage 3 via the curved passage 46.

【0036】また、以上説明した実施例においては、流
量計として感温式流量計を用いた場合の例であるが、流
量計としてフラップ式流量計やカルマン渦式流量計を用
いてもよいことは勿論である。
Further, in the embodiment described above, the temperature sensitive flow meter is used as the flow meter, but a flap type flow meter or a Karman vortex flow meter may be used as the flow meter. Of course.

【0037】[0037]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、逆流成分を含む吸気脈動が発生していると
きには、正流成分検出手段が正流方向に流れる吸入空気
流量成分のみを検出し、逆流成分検出手段が逆流方向に
流れる吸入空気流量成分のみを検出し、機関の吸入空気
流量を検出するようにしたので、逆流成分を含む吸気脈
動が発生した場合にも、逆流成分に影響されて平均流量
が真の吸入空気流量よりも大きく演算されることを回避
でき、以て、燃料噴射制御の精度を向上させることがで
きるという効果がある。
As described above, according to the first aspect of the invention, when the intake pulsation including the backflow component is generated, the normal flow component detecting means only receives the intake air flow rate component flowing in the normal flow direction. The reverse flow component detection means detects only the intake air flow rate component flowing in the reverse flow direction to detect the intake air flow rate of the engine.Therefore, even when the intake pulsation including the reverse flow component occurs, the reverse flow component is detected. There is an effect that it is possible to avoid that the average flow rate is calculated to be larger than the true intake air flow rate due to the influence of, and thus the accuracy of fuel injection control can be improved.

【0038】また請求項2記載の発明によれば、正流成
分通過手段と逆流成分通過手段とを備えることにより、
逆流成分を含む吸気脈動が発生しても、正流成分検出手
段が確実に正流方向に流れる吸入空気流量を検出するこ
とが可能となり、燃料噴射制御の精度向上にさらに寄与
できるという効果がある。また請求項3記載の発明によ
れば、逆流成分、正流成分の遮断が確実に行えると共
に、正流成分、逆流成分の通過が確実に行えることとな
るという効果がある。
According to the second aspect of the present invention, by providing the forward flow component passage means and the backward flow component passage means,
Even if the intake pulsation including the backflow component is generated, the normal flow component detecting means can reliably detect the intake air flow rate flowing in the normal flow direction, which further contributes to the improvement of the accuracy of fuel injection control. . According to the third aspect of the invention, there is an effect that the backflow component and the forward flow component can be reliably blocked, and the forward flow component and the backflow component can be reliably passed.

【0039】また請求項4記載の発明によれば、感温抵
抗により正流方向に流れる吸入空気流量成分及び逆流方
向に流れる吸入空気流量成分が検出され、正流成分検出
値と逆流成分検出値とに基づいて機関の吸入空気流量を
検出することが可能となるという効果がある。
According to the fourth aspect of the present invention, the intake air flow rate component flowing in the forward flow direction and the intake air flow rate component flowing in the reverse flow direction are detected by the temperature-sensitive resistance, and the forward flow component detection value and the reverse flow component detection value are detected. There is an effect that it is possible to detect the intake air flow rate of the engine based on

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のハードウェア構成を示すシス
テム概略図。
FIG. 1 is a system schematic diagram showing a hardware configuration of an embodiment of the present invention.

【図2】同上実施例の感温式流量計の回路構成を示す回
路図。
FIG. 2 is a circuit diagram showing a circuit configuration of a temperature-sensitive flow meter according to the above embodiment.

【図3】同上実施例の感温式流量計の回路構成を示す回
路図。
FIG. 3 is a circuit diagram showing a circuit configuration of a temperature-sensitive flow meter of the above embodiment.

【図4】同上実施例における正方向の出力を示すタイム
チャート。
FIG. 4 is a time chart showing the output in the forward direction in the above-mentioned embodiment.

【図5】同上実施例における負方向の出力を示すタイム
チャート。
FIG. 5 is a time chart showing the output in the negative direction in the above embodiment.

【図6】本発明の他の実施例のハードウェア構成を示す
概略図。
FIG. 6 is a schematic diagram showing a hardware configuration of another embodiment of the present invention.

【図7】従来の感温式流量計の回路構成を示す回路図。FIG. 7 is a circuit diagram showing a circuit configuration of a conventional temperature-sensitive flow meter.

【図8】逆流成分検知による平均流量誤差の発生を示す
タイムチャート。
FIG. 8 is a time chart showing the occurrence of an average flow rate error due to backflow component detection.

【図9】逆流成分発生時の真の機関吸入空気流量を示す
タイムチャート。
FIG. 9 is a time chart showing a true engine intake air flow rate when a backflow component is generated.

【符号の説明】[Explanation of symbols]

1 感温式流量計 2 イグニッションスイッチ 3 A/D変換器 RH1 感温抵抗 RH2 感温抵抗 11 エンジン 13 吸気通路 16 コントロールユニット 21 中央隔壁 22 遮蔽壁 23 遮蔽壁1 Temperature-sensitive flow meter 2 Ignition switch 3 A / D converter R H1 Temperature-sensitive resistor R H2 Temperature-sensitive resistor 11 Engine 13 Intake passage 16 Control unit 21 Central partition wall 22 Shield wall 23 Shield wall

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の吸入空気流量を検出する吸入空
気流量検出装置において、 正流方向に流れる吸入空気流量成分のみを検出する正流
成分検出手段と、逆流方向に流れる吸入空気流量成分の
みを検出する逆流成分検出手段と、吸入空気流量の正流
成分検出値と逆流成分検出値とに基づいて機関の吸入空
気流量を検出する吸入空気量検出手段とを、設けたこと
を特徴とする内燃機関の吸入空気流量検出装置。
1. An intake air flow rate detecting device for detecting an intake air flow rate of an internal combustion engine, comprising: a normal flow component detecting means for detecting only an intake air flow rate component flowing in a forward flow direction; and an intake air flow rate component flowing in a reverse flow direction only. And a backflow component detection unit for detecting the intake air flow rate of the engine based on the forward flow component detection value and the backflow component detection value of the intake air flow rate. Intake air flow rate detection device for internal combustion engine.
【請求項2】内燃機関の吸入空気通路内に、吸入空気流
の逆流成分を遮断し正流成分のみを通過させる正流成分
通過手段と、吸入空気流の正流成分を遮断し逆流成分の
みを通過させる逆流成分通過手段とを備え、前記正流成
分検出手段及び逆流成分検出手段が夫々正流成分通過手
段及び逆流成分通過手段を通過する正流成分及び逆流成
分の流量の検出することにより構成されることを特徴と
する請求項1記載の内燃機関の吸入空気流量検出装置。
2. A normal flow component passing means for blocking a reverse flow component of an intake air flow and passing only a normal flow component in an intake air passage of an internal combustion engine, and a normal flow component for blocking a forward flow component of the intake air flow and only a reverse flow component. And a backflow component passing means for passing the backflow component, and the forward flow component detecting means and the backflow component detecting means detect the flow rates of the forward flow component and the backflow component passing through the forward flow component passing means and the backflow component passing means, respectively. The intake air flow rate detecting device for an internal combustion engine according to claim 1, which is configured.
【請求項3】正流成分通過手段及び逆流成分通過手段
は、夫々正流、逆流に対して入口が吸入空気流通方向と
直角に開口され、出口が吸入空気流通方向に対して平行
に開口されていることを特徴とする請求項2記載の内燃
機関の吸入空気流量検出装置。
3. The forward flow component passing means and the backward flow component passing means respectively have an inlet opening at right angles to the intake air flow direction and an outlet opening parallel to the intake air flow direction with respect to the forward flow and the reverse flow, respectively. The intake air flow rate detecting device for an internal combustion engine according to claim 2, wherein
【請求項4】吸入空気流量を検出する吸入空気流量検出
装置が感温抵抗式であることを特徴とする請求項1記載
の内燃機関の吸入空気流量検出装置。
4. The intake air flow rate detecting device for an internal combustion engine according to claim 1, wherein the intake air flow rate detecting device for detecting the intake air flow rate is a temperature sensitive resistance type.
JP6027749A 1994-02-25 1994-02-25 Intake air flow rate detector of internal combustion engine Pending JPH07234143A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6027749A JPH07234143A (en) 1994-02-25 1994-02-25 Intake air flow rate detector of internal combustion engine
KR1019950003633A KR0163456B1 (en) 1994-02-25 1995-02-24 Intake air flow rate detector of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6027749A JPH07234143A (en) 1994-02-25 1994-02-25 Intake air flow rate detector of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH07234143A true JPH07234143A (en) 1995-09-05

Family

ID=12229685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6027749A Pending JPH07234143A (en) 1994-02-25 1994-02-25 Intake air flow rate detector of internal combustion engine

Country Status (2)

Country Link
JP (1) JPH07234143A (en)
KR (1) KR0163456B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049997A1 (en) * 1996-06-25 1997-12-31 Specialised Laboratory Equipment Ltd. Flow transducer
WO2015029459A1 (en) * 2013-09-02 2015-03-05 日立オートモティブシステムズ株式会社 Thermal flow sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049997A1 (en) * 1996-06-25 1997-12-31 Specialised Laboratory Equipment Ltd. Flow transducer
WO2015029459A1 (en) * 2013-09-02 2015-03-05 日立オートモティブシステムズ株式会社 Thermal flow sensor
JP2015049135A (en) * 2013-09-02 2015-03-16 日立オートモティブシステムズ株式会社 Thermal flow sensor
US10190899B2 (en) 2013-09-02 2019-01-29 Hitachi Automotive Systems, Ltd. Thermal flow sensor

Also Published As

Publication number Publication date
KR0163456B1 (en) 1999-03-30
KR950025416A (en) 1995-09-15

Similar Documents

Publication Publication Date Title
US4502325A (en) Measurement of mass airflow into an engine
JPS6233528B2 (en)
US6711490B2 (en) Intake air amount computing apparatus and method for the same, and intake pressure computing apparatus and method for the same
US4463601A (en) Method and apparatus for measuring mass airflow
JPH0733803B2 (en) Fuel control device for electronic fuel injection engine
US7096723B2 (en) Method and device for determining the throughput of a flowing medium
JPH0421809B2 (en)
JPH07234143A (en) Intake air flow rate detector of internal combustion engine
GB2285511A (en) Method and device for measuring intake air mass
JPWO2002103301A1 (en) Heating resistance type flow measuring device
JPH07167697A (en) Intake air flow rate detector for internal combustion engine
JPH06265385A (en) Air flow rate measuring instrument
JP2003287453A (en) Intake-air flow measuring apparatus
JP3200005B2 (en) Heating resistance type air flow measurement device
JP2001153702A (en) Method for correcting measuring error of heat generating resistor type air flow measuring apparatus
JPH07209051A (en) Air flow rate measuring device
JP2001108500A (en) Heat generation resistance-type flow rate-measuring device
JPH08285651A (en) Air flow rate measuring device
JPH1114418A (en) Correction method for measurement error of heating resistor-type air-flow-rate measuring instrument
JP2003004496A (en) Flow rate measuring instrument
JPS6141919A (en) Hot wire type flow meter
JPS63173831A (en) Atmospheric pressure correcting method for volume flow meter in internal combustion engine
KR100224351B1 (en) Method for correcting air sensor having distortion output
JPH07198438A (en) Temperature sensitive intake air flow rate detector of internal engine
JP2000314646A (en) Heating resistance-type flow-rate measuring apparatus