JPH07167697A - Intake air flow rate detector for internal combustion engine - Google Patents

Intake air flow rate detector for internal combustion engine

Info

Publication number
JPH07167697A
JPH07167697A JP5315365A JP31536593A JPH07167697A JP H07167697 A JPH07167697 A JP H07167697A JP 5315365 A JP5315365 A JP 5315365A JP 31536593 A JP31536593 A JP 31536593A JP H07167697 A JPH07167697 A JP H07167697A
Authority
JP
Japan
Prior art keywords
flow rate
intake air
air flow
detected
backflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5315365A
Other languages
Japanese (ja)
Inventor
Hajime Hosoya
肇 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP5315365A priority Critical patent/JPH07167697A/en
Publication of JPH07167697A publication Critical patent/JPH07167697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve a detecting accuracy of intake air flow rate by detecting generation of a backflow even if an intake air pulsation including a backflow component occurs. CONSTITUTION:Maximum and minimum points of intake air flow rate Q to be detected by a temperature sensitive flowmeter are detected at steps S1, S2. A lapse time from the detected maximum point to the detected minimum point is calculated at a step S6. When a difference between the lapse time and a reference time to be estimated based on an engine operating state is a predetermined value or more at a step S7 and the minimum value is a predetennined value or less at a step S8, a backflow component is regarded as being detected, and a backflow correction is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の吸入空気流量
検出装置に関し、詳しくは、内燃機関の吸気通路中に配
置した感温抵抗に基づいて機関吸入空気流量を検出する
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake air flow rate detecting device for an internal combustion engine, and more particularly to a device for detecting an engine intake air flow rate based on a temperature-sensitive resistance arranged in an intake passage of the internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関の電子制御燃料噴射装置におい
ては、機関の吸入空気流量Qを検出するための空気流量
計(エアフローメータ)を備え、この空気流量計で検出
された吸入空気流量Qと機関回転数Neとから基本燃料
噴射量Tp=K×Q/Ne(Kは定数)を演算するよう
構成されたものが知られており、前記空気流量計とし
て、実開昭59−78926号公報等に開示されるよう
な感温式流量計が用いられている。
2. Description of the Related Art An electronically controlled fuel injection system for an internal combustion engine is equipped with an air flow meter (air flow meter) for detecting an intake air flow rate Q of the engine, and the intake air flow rate Q detected by this air flow meter is It is known that the basic fuel injection amount Tp = K × Q / Ne (K is a constant) is calculated from the engine speed Ne and the air flow meter is disclosed in Japanese Utility Model Laid-Open No. 59-78926. A temperature sensitive flow meter as disclosed in U.S. Pat.

【0003】前記感温式流量計は、いわゆるホットワイ
ヤ型或いはホットフィルム型などの感温抵抗を吸気通路
に配置し、かかる感温抵抗に電流を供給して一定温度
(抵抗値)に発熱させ、吸入空気による温度低下を電流
の増大により補い、その電流値から吸入空気流量を求め
ている。即ち、図2中の感温式流量計1を例にして説明
すれば、感温抵抗RH (ホットワイヤ又はホットフィル
ム)の他、温度補償抵抗RK , 基準抵抗Rs , 固定抵抗
1 , 2 を備え、これらによりブリッジ回路Bが構成
されている。
In the temperature-sensitive flow meter, a so-called hot wire type or hot film type temperature sensitive resistor is arranged in the intake passage, and a current is supplied to the temperature sensitive resistor to generate heat at a constant temperature (resistance value). The temperature decrease due to the intake air is compensated for by increasing the current, and the intake air flow rate is calculated from the current value. That is, the temperature-sensitive flowmeter 1 in FIG. 2 will be described as an example. In addition to the temperature-sensitive resistance R H (hot wire or hot film), temperature compensation resistance R K, reference resistance R s, fixed resistance R 1 , R 2 and the bridge circuit B is constituted by them.

【0004】そして、このブリッジ回路Bの感温抵抗R
H 及び基準抵抗Rs が直列に接続されている側の分圧点
の電位(基準抵抗Rs の端子電圧)と、温度補償抵抗R
K 及び固定抵抗R1 , 2 が直列に接続されている側の
分圧点の電位(固定抵抗R2の端子電圧)とが差動増幅
器OPに入力されるようになっており、この差動増幅器
OPの出力に応じてトランジスタTrを介してブリッジ
回路Bへの供給電流が補正される。
The temperature sensing resistor R of the bridge circuit B
H and the reference resistance R s are connected in series, the potential of the voltage dividing point (the terminal voltage of the reference resistance R s ) and the temperature compensation resistance R
K and the potential at the voltage dividing point on the side where the fixed resistors R 1 and R 2 are connected in series (the terminal voltage of the fixed resistor R 2 ) are input to the differential amplifier OP. The supply current to the bridge circuit B is corrected via the transistor Tr according to the output of the dynamic amplifier OP.

【0005】つまり、ブリッジ回路Bが平衡している状
態において、機関の吸入空気流量が例えば増大すると、
感温抵抗RH がこの空気流によってより冷却されてその
抵抗値が減少し、基準抵抗Rs の端子電圧が増大して、
ブリッジ回路Bが非平衡状態となり、差動増幅器OPの
出力が増大する。これにより、トランジスタTrによっ
て制御されるブリッジ回路Bへの供給電流が増大し、感
温抵抗RH が加熱されてその抵抗値が増大することによ
り、ブリッジ回路Bの平衡条件が回復される。
That is, when the intake air flow rate of the engine increases, for example, when the bridge circuit B is in equilibrium,
The temperature sensitive resistance R H is further cooled by this air flow, its resistance value decreases, and the terminal voltage of the reference resistance R s increases,
The bridge circuit B becomes unbalanced and the output of the differential amplifier OP increases. As a result, the supply current to the bridge circuit B controlled by the transistor Tr increases, the temperature-sensitive resistor R H is heated, and its resistance value increases, whereby the balanced condition of the bridge circuit B is restored.

【0006】ここで、吸入空気の温度が例えば低下する
と、感温抵抗RH が冷却されてその抵抗値が減少する
が、感温抵抗RH と同一雰囲気にある温度補償抵抗RK
も同時に冷却されてその抵抗値が減少するから、ブリッ
ジ回路Bへ供給される電流値が吸入空気の温度変化によ
り変化することが抑制される。従って、機関の吸入空気
流量Qとブリッジ回路Bへの供給電流とが吸入空気温度
に無関係に対応することになり、基準抵抗Rs の端子電
圧を検出することにより、吸入空気流量Qを測定するこ
とができる。
Here, when the temperature of the intake air decreases, for example, the temperature-sensitive resistor R H is cooled and its resistance value decreases, but the temperature-compensating resistor R K in the same atmosphere as the temperature-sensitive resistor R H.
At the same time, the resistance value of the bridge circuit B is reduced and the resistance value of the bridge circuit B is reduced, so that the current value supplied to the bridge circuit B is prevented from changing due to the temperature change of the intake air. Therefore, the intake air flow rate Q of the engine and the current supplied to the bridge circuit B correspond independently of the intake air temperature, and the intake air flow rate Q is measured by detecting the terminal voltage of the reference resistance R s. be able to.

【0007】[0007]

【発明が解決しようとする課題】ところで、スロットル
弁開度が大きくしかも機関回転数が低回転域又は高回転
域にあるときには、逆流成分を含んだ吸気脈動がシリン
ダ側から感温式流量計の感温抵抗RH の部分まで伝わる
場合がある。このとき、感温式流量計では、流れの方向
が判別できないため、逆流も正方向と同様に検知し(図
8参照)、この結果、平均流量として真の吸入空気流量
(図9参照)よりも大きな値が検出されることになって
しまうという問題があった。
By the way, when the throttle valve opening is large and the engine speed is in the low speed region or the high speed region, the intake pulsation including the backflow component is applied to the temperature sensitive flowmeter from the cylinder side. It may reach the temperature-sensitive resistance R H. At this time, since the flow direction cannot be discriminated by the temperature-sensitive flow meter, the reverse flow is also detected in the same manner as the forward direction (see FIG. 8), and as a result, the true intake air flow rate (see FIG. 9) is obtained as the average flow rate. However, there was a problem that a large value would be detected.

【0008】上記のようにして機関の吸入空気流量が真
の値よりも多く検出されると、該検出値に基づく電子燃
料噴射制御によって余分な燃料が噴射供給され、空燃比
をオーバーリッチ化させることになってしまう。本発明
は上記問題点に鑑みなされたものであり、逆流成分を含
んだ吸気脈動が発生しても、流量検出の精度を維持でき
るようにし、以て、燃料噴射制御の精度を向上させるこ
とを目的とする。
When the intake air flow rate of the engine is detected to be larger than the true value as described above, the extra fuel is injected and supplied by the electronic fuel injection control based on the detected value to make the air-fuel ratio overrich. I will end up. The present invention has been made in view of the above problems, and it is possible to maintain the accuracy of flow rate detection even when intake pulsation including a backflow component occurs, and thereby improve the accuracy of fuel injection control. To aim.

【0009】[0009]

【課題を解決するための手段】そのため本発明にかかる
内燃機関の吸入空気流量検出装置は、図1に示すよう
に、内燃機関の吸気通路中に配置した感温抵抗の吸入空
気流量に応じた抵抗値変化に基づいて機関の吸入空気流
量を検出する感温式流量検出手段Aと、前記感温式流量
検出手段Aで検出される吸入空気流量変化の極大点を検
出する流量極大点検出手段Bと、前記感温式流量検出手
段Aで検出される吸入空気流量変化の極小点を検出する
流量極小点検出手段Cと、機関運転状態に基づいて吸気
脈動の極大点から極小点までの基準時間を推定する基準
時間推定手段Dと、前記流量極大点検出手段Bで検出さ
れた極大点から前記流量極小点検出手段Cで検出された
極小点までの経過時間と前記基準時間との比較に基づい
て、逆流の有無を判定する逆流判定手段Eと、逆流有り
と判定されたときに前記感温式流量検出手段Aで検出さ
れる吸入空気流量を補正する逆流補正手段Fと、を含ん
で構成した。
Therefore, as shown in FIG. 1, an intake air flow rate detecting device for an internal combustion engine according to the present invention responds to the intake air flow rate of a temperature-sensitive resistor arranged in an intake passage of the internal combustion engine. Temperature sensitive flow rate detecting means A for detecting the intake air flow rate of the engine based on the resistance value change, and flow rate maximum point detecting means for detecting the maximum point of the intake air flow rate change detected by the temperature sensitive flow rate detecting means A. B, a flow rate minimum point detection unit C that detects a minimum point of the intake air flow rate change detected by the temperature-sensitive flow rate detection unit A, and a reference from a maximum point of the intake pulsation to a minimum point based on the engine operating state. For comparing the reference time estimating means D for estimating the time and the reference time with the elapsed time from the maximum point detected by the flow maximum point detecting means B to the minimum point detected by the minimum flow rate detecting means C. Based on the A backflow determining section E for the intake air flow rate detected by the temperature sensitive type flow rate detecting means A was configured to include a reverse flow correction means F for correcting when it is determined that there backflow.

【0010】[0010]

【作用】逆流成分を含む吸気脈動が発生しているときに
は、図8に示すように、感温式流量検出手段は逆流成分
も正方向として検出することになり、逆流成分が正方向
に折り返された出力値が出力されることとなる。従っ
て、逆流成分が存在しない場合に較べて、その極大点か
ら極小点までの経過時間は短くなる。そこで、感温式流
量検出手段で検出される吸入空気流量変化の極大点及び
極小点を検出し、機関運転状態に基づいて推定される吸
気脈動の極大点から極小点までの基準時間と、該検出さ
れた極大点から極小点までの経過時間との差が所定時間
以上ある場合には、当該極小点が逆流成分を検知したこ
とにより発生した極小点であるとして逆流有りと判定す
る。
When the intake pulsation including the backflow component is generated, the temperature-sensitive flow rate detecting means also detects the backflow component as the positive direction as shown in FIG. 8, and the backflow component is folded back in the positive direction. Output value will be output. Therefore, the elapsed time from the maximum point to the minimum point is shorter than when the backflow component does not exist. Therefore, the maximum point and the minimum point of the intake air flow rate change detected by the temperature-sensitive flow rate detecting means are detected, and the reference time from the maximum point to the minimum point of the intake pulsation estimated based on the engine operating state, When the difference from the detected maximum point to the minimum point has a predetermined time or more, it is determined that the minimum point is the minimum point generated by detecting the backflow component, and the backflow is present.

【0011】逆流有りと判定されたときには、検知した
検出値に基づいて検出された吸入空気流量を補正する。
When it is determined that there is a backflow, the detected intake air flow rate is corrected based on the detected value.

【0012】[0012]

【実施例】以下に本発明の実施例を説明する。図2に実
施例のハードウェア構成を示す。この図2において、感
温式流量検出手段としての感温式流量計1には、電源電
圧(バッテリ電圧)VB がイグニッションスイッチ2を
介して印加される。そして、この感温式流量計1の出力
電圧Usは、A/D変換器3を介してマイクロコンピュ
ータ4に入力される。
EXAMPLES Examples of the present invention will be described below. FIG. 2 shows the hardware configuration of the embodiment. In FIG. 2, the power supply voltage (battery voltage) V B is applied to the temperature-sensitive flow meter 1 as the temperature-sensitive flow rate detecting means via the ignition switch 2. The output voltage Us of the temperature-sensitive flow meter 1 is input to the microcomputer 4 via the A / D converter 3.

【0013】この他、機関回転数Ne(rpm)を検出
する回転数センサ5が設けられ、前記感温式流量計1の
出力電圧Usと共に、前記回転数センサ5の検出信号が
前記マイクロコンピュータ4に入力されるようになって
いる。また、図示しないスロットルバルブの開度TVO
を検出するスロットルセンサ6が設けられ、やはり検出
信号が前記マイクロコンピュータ4に入力されるように
なっている。
In addition to the above, a rotation speed sensor 5 for detecting the engine rotation speed Ne (rpm) is provided, and the detection signal of the rotation speed sensor 5 together with the output voltage Us of the temperature-sensitive flow meter 1 is supplied to the microcomputer 4. It is designed to be input to. The opening TVO of the throttle valve (not shown)
A throttle sensor 6 for detecting is detected, and a detection signal is also input to the microcomputer 4.

【0014】ここで、マイクロコンピュータ4は、前記
感温式流量計1で検出された機関吸入空気流量Qと、前
記回転数センサ5で検出された機関回転数Neとに基づ
いて基本燃料噴射量Tp=K×Q/Ne(Kは定数)を
演算すると共に、この基本燃料噴射量Tpを適宜補正し
て最終的な燃料噴射量Tiを演算し、この燃料噴射量T
iに相当するパルス幅の噴射パルス信号を、機関回転に
同期した所定タイミングで、図示しない電磁式燃料噴射
弁に出力することによって、内燃機関への燃料供給を電
子制御するものである。
Here, the microcomputer 4 determines the basic fuel injection amount based on the engine intake air flow rate Q detected by the temperature-sensitive flow meter 1 and the engine speed Ne detected by the speed sensor 5. Tp = K × Q / Ne (K is a constant) is calculated, and the final fuel injection amount Ti is calculated by appropriately correcting the basic fuel injection amount Tp.
The fuel supply to the internal combustion engine is electronically controlled by outputting an injection pulse signal having a pulse width corresponding to i to an electromagnetic fuel injection valve (not shown) at a predetermined timing synchronized with the engine rotation.

【0015】尚、前記感温式流量計1の構成及び作用に
ついては先に説明したので、ここでは感温式流量計1の
詳細な説明は省略する。次に、マイクロコンピュータ4
によって行われる機関の平均吸入空気流量Qavの検出の
様子を、図3のフローチャートに従って説明する。尚、
本実施例において、流量極大点検出手段B、流量極小点
検出手段C、基準時間推定手段D、逆流判定手段E及び
逆流補正手段Fとしての機能は、前記図3のフローチャ
ートに示すようにマイクロコンピュータ4がソフトウェ
ア的に備えているものとする。
Since the structure and operation of the temperature-sensitive flow meter 1 have been described above, a detailed description of the temperature-sensitive flow meter 1 will be omitted here. Next, the microcomputer 4
The state of detection of the average intake air flow rate Qav of the engine performed by means of will be described with reference to the flowchart of FIG. still,
In the present embodiment, the functions of the maximum flow rate detecting means B, the minimum flow rate detecting means C, the reference time estimating means D, the backflow determining means E and the backflow correcting means F are as shown in the flow chart of FIG. 4 is provided as software.

【0016】図3のフローチャートにおいて、まず、ス
テップ1(図中ではS1としてある。以下同様)では、
A/D変換器3を介して読み込んだ出力電圧Usを変換
テーブルによって変換して得られた吸入空気流量Qに基
づいて、吸入空気流量Q変化における極大点Hを検出す
る。前記極大点Hの検出は、最新に読み込んだ吸入空気
流量Qと前回に読み込まれた吸入空気流量Q-1との差を
逐次演算させ、前記差の符合が正から負に反転した点
を、吸気脈動の極大点Hとして判定させるようにする
(図4参照)。
In the flow chart of FIG. 3, first, in step 1 (denoted as S1 in the figure. The same applies hereinafter),
The maximum point H in the change of the intake air flow rate Q is detected based on the intake air flow rate Q obtained by converting the output voltage Us read through the A / D converter 3 by the conversion table. In detecting the maximum point H, the difference between the latest read intake air flow rate Q and the previously read intake air flow rate Q −1 is sequentially calculated, and the point at which the sign of the difference is inverted from positive to negative, The maximum point H of the intake pulsation is determined (see FIG. 4).

【0017】即ち、当該ステップが流量極大点検出手段
Bの機能を奏している。そして、当該極大点Hにおける
吸入空気流量Qを極大値CONVとして記憶する。ステ
ップ2では、A/D変換器3を介して読み込んだ出力電
圧Usを変換テーブルによって変換して得られた吸入空
気流量Qに基づいて、吸入空気流量Q変化における極小
点Lを検出する。
That is, this step functions as the maximum flow rate point detecting means B. Then, the intake air flow rate Q at the maximum point H is stored as the maximum value CONV. In step 2, the minimum point L in the change of the intake air flow rate Q is detected based on the intake air flow rate Q obtained by converting the output voltage Us read through the A / D converter 3 by the conversion table.

【0018】前記極小点Lの検出は、最新に読み込んだ
吸入空気流量Qと前回に読み込まれた吸入空気流量Q-1
との差を逐次演算させ、前記差の符合が負から正に反転
した点を、吸気脈動の極小点Lとして判定させるように
する(図4参照)。即ち、当該ステップが流量極小点検
出手段Cの機能を奏している。そして、当該極小点Lに
おける吸入空気流量Qを極小値CONCとして記憶す
る。
The minimum point L is detected by the intake air flow rate Q read most recently and the intake air flow rate Q -1 read last time.
And the point at which the sign of the difference is inverted from negative to positive is determined as the minimum point L of the intake pulsation (see FIG. 4). That is, the step has the function of the minimum flow rate point detection means C. Then, the intake air flow rate Q at the minimum point L is stored as the minimum value CONC.

【0019】ステップ3では、スロットルセンサ6によ
り検出されるスロットルバルブの開度TVOがTVO=
0であるか否かを判断し、機関がアイドル状態になった
か否かを判断する。そして、TVO=0であると判断さ
れた場合には、ステップ4に進み、前記ステップ1で記
憶した吸入空気流量Qの極大値CONVを最大値MAX
として記憶する(MAX=CONV)。
At step 3, the opening TVO of the throttle valve detected by the throttle sensor 6 is TVO =
It is determined whether it is 0 and whether the engine has become idle. When it is judged that TVO = 0, the routine proceeds to step 4, where the maximum value CONV of the intake air flow rate Q stored at step 1 is set to the maximum value MAX.
Is stored as (MAX = CONV).

【0020】一方、TVO≠0であると判断された場合
には、ステップ4をジャンプして、現在記憶している最
大値MAXをそのまま保持する。ステップ5では、吸入
空気流量Qの最大値MAXが得られてからの次の極小点
Lが得られるまでのサンプリング数NUMをカウントす
る(図5参照)。ステップ6では、吸入空気流量Qの最
大値MAXが得られてからの次の極小点Lが得られるま
での経過時間DURを次式に従って演算する(図5参
照)。但し、TSAMP〔msec〕はサンプリングを行う際の
サンプリング周期である。
On the other hand, when it is judged that TVO ≠ 0, step 4 is skipped and the maximum value MAX currently stored is held as it is. In step 5, the number of samplings NUM from when the maximum value MAX of the intake air flow rate Q is obtained to when the next minimum point L is obtained is counted (see FIG. 5). In step 6, the elapsed time DUR from when the maximum value MAX of the intake air flow rate Q is obtained to when the next minimum point L is obtained is calculated according to the following equation (see FIG. 5). However, T SAMP [msec] is a sampling period when sampling is performed.

【0021】DUR=NUM×TSAMP〔msec〕 4サイクル直列内燃機関において気筒数をCylとする
と、吸気行程位相差時間、即ち逆流成分を含まない吸気
脈動周期TM は、 TM =(60×2×1000)/(Ne×Cyl)〔msec〕 として求められる(図7参照)。ここで、逆流が発生す
る場合には、前記吸気行程位相差時間の2分の1以下の
時間近傍で発生するので、もって、当該逆流発生に伴う
吸入空気流量Q変化における極小点Lは、必ず吸気脈動
周期TM の半周期TMMMM=(60×1000)/(Ne×Cyl)〔msec〕 以下で発生することとなる(図6参照)。
DUR = NUM × T SAMP [msec] Assuming that the number of cylinders is Cyl in a four-cycle in-line internal combustion engine, the intake stroke phase difference time, that is, the intake pulsation period T M that does not include the backflow component is T M = (60 × 2 × 1000) / (Ne × Cyl) [msec] (see FIG. 7). Here, when the backflow occurs, it occurs near the time of half or less of the intake stroke phase difference time. Therefore, the minimum point L in the change of the intake air flow rate Q due to the occurrence of the backflow is always The half cycle of the inspiratory pulsation period T M is T MM T MM = (60 × 1000) / (Ne × Cyl) [msec] or less (see FIG. 6).

【0022】即ち、当該ステップが基準時間推定手段D
の機能を奏している。ここで、ステップ7では、吸気脈
動周期TM の半周期TMMと前記ステップ6で演算した経
過時間DURとの差異が所定時間N×TSAMP〔msec〕以
上であるか否かを判断する。ここで、Nの最小値は1と
することが望ましい。即ち、TMM−DUR≧N×TSAMP
〔msec〕であると判断された場合には、極小点Lが吸気
脈動周期TM の半周期TMM以前に発生している場合であ
ると判断できる。
That is, the step is the reference time estimating means D.
Playing the function of. Here, in step 7, it is determined whether or not the difference between the half cycle T MM of the intake pulsation cycle T M and the elapsed time DUR calculated in step 6 is a predetermined time N × T SAMP [msec] or more. Here, it is desirable that the minimum value of N is 1. That is, T MM −DUR ≧ N × T SAMP
When it is determined to be [msec], it can be determined that the minimum point L occurs before the half cycle T MM of the intake pulsation cycle T M.

【0023】さらに、ステップ8では、極小値CONC
が前記ステップ4で記憶した最大値MAXと前回に読み
込まれた極小値CONC-1との中間値より小さいか否か
判断する。そして、CONC<(MAX+CONC-1
/2であると判断された場合には、当該極小点Lは逆流
の発生による極小点Lであるとして、ステップ9に進
む。
Further, in step 8, the minimum value CONC
Is smaller than the intermediate value between the maximum value MAX stored in step 4 and the minimum value CONC -1 read last time. And, CONC <(MAX + CONC -1 )
When it is determined that the minimum point L is / 2, it is determined that the minimum point L is the minimum point L due to the occurrence of backflow, and the process proceeds to step 9.

【0024】即ち、ステップ7及び8により逆流判定手
段の機能が奏される。ステップ9では、極小値CONC
を記憶した極小点Lから次の極小点LNEXTまでの空気流
量QG を次式に従って演算する。 QG =2×Q0 −Q 但し、Q0 は流量が0のときの、出力電圧Usを変換し
て得られた零時吸入空気流量である。
That is, steps 7 and 8 serve the function of the backflow determining means. In step 9, the minimum value CONC
The air flow rate Q G from the stored minimum point L to the next minimum point L NEXT is calculated according to the following equation. Q G = 2 × Q 0 −Q where Q 0 is the zero-time intake air flow rate obtained by converting the output voltage Us when the flow rate is 0.

【0025】即ち、当該ステップが逆流補正手段Fの機
能を奏している。ステップ10では、次回の逆流判断の為
に、ステップ4において記憶した最大値MAXに相当す
る最大値MAXを次の極大点HNEXTにおける極大値CO
NVとすべきか否かを判断する。4サイクル直列内燃機
関において気筒数をCylとすると、逆流が発生しても、
該逆流は前記吸気行程位相差時間の2分の1以下の時間
近傍で発生するので、次の極小点LNEXTから、ノイズ等
では無い真の極大点までの周期TNEXTは、 TNEXT=(60×1000)/(MNeNEXT×Cyl×2)〔msec〕 として求められる。
That is, the step has the function of the backflow correction means F. In step 10, the maximum value MAX corresponding to the maximum value MAX stored in step 4 is set to the maximum value CO at the next maximum point H NEXT for the next backflow determination.
It is determined whether or not it should be NV. If the number of cylinders is Cyl in a 4-cycle in-line internal combustion engine, even if a backflow occurs,
Since the backflow occurs in the vicinity of the time of half the intake stroke phase difference time or less, the cycle T NEXT from the next minimum point L NEXT to the true maximum point which is not noise is T NEXT = ( It is calculated as 60 × 1000) / (MNe NEXT × Cyl × 2) [msec].

【0026】但し、MNeNEXTは次の極小点LNEXTの時
の機関回転数Ne(rpm)と次の極大点HNEXTの時の
機関回転数Ne(rpm)との平均値である。従って、
ステップ10では、次の極小点LNEXTから次の極大点H
NEXTまでの周期DURNEXTが、前記TNEXT以上か否か
(DURNEXT≧TNEXT)により次の極大点HNEXTにおけ
る極大値CONVNEXTとすべきか否かを判断する。そし
て、周期DURNEXTが、前記TNEXT以上であると判断さ
れた場合には、ステップ11で次の極大点HNEXTにおける
極大値CONVNEXTを次の最大値MAXとして記憶し
て、以下の演算を実行する。
However, MNe NEXT is an average value of the engine speed Ne (rpm) at the next minimum point L NEXT and the engine speed Ne (rpm) at the next maximum point H NEXT . Therefore,
In step 10, from the next minimum point L NEXT to the next maximum point H
Period DUR NEXT until NEXT is, determines whether to a maximum value CONV NEXT in the T NEXT or whether (DUR NEXT ≧ T NEXT) by the following maxima H NEXT. When it is determined that the cycle DUR NEXT is equal to or more than the T NEXT , the maximum value CONV NEXT at the next maximum point H NEXT is stored as the next maximum value MAX in step 11, and the following calculation is performed. Run.

【0027】即ち、逆流成分を含む吸気脈動が発生する
と、図6に示すように、正方向の流れの脈動ピークの間
に、逆流成分を検知した結果としての脈動ピークが表れ
るから、隣接する極大点から極小点までの間隔は吸気脈
動周期TM の半周期TMM以下となる。そこで、隣接する
極大点から極小点までの間隔は吸気脈動周期TM の半周
期T MM以下の場合には、今回の極小点は逆流成分に対応
するものと認定する。そして、極小点Lは逆流の発生に
よる極小点Lであると認められたときには、複数の流量
データをそのまま流量の演算に用いないようにし、空気
流量QG を用いることとする。
That is, intake pulsation including a backflow component is generated.
And between the pulsation peaks of the positive flow as shown in FIG.
, The pulsation peak as a result of detecting the backflow component appears.
Therefore, the interval from the adjacent maximum point to the minimum point is the inspiratory pulse.
Motion cycle TMHalf cycle TMMIt becomes the following. So adjacent
The interval from the maximum point to the minimum point is the intake pulsation cycle TMHalf a round
Period T MMIn the following cases, the minimum point this time corresponds to the backflow component
Authorize to do. Then, the minimum point L is
When it is recognized that the minimum point L is
Do not directly use the data for flow rate calculation,
Flow rate QGWill be used.

【0028】このように、逆流成分を検出した結果を採
用せずに、逆流成分を含む吸気脈動が発生した場合に
は、該逆流の発生を検出し、補正するようにしたので、
逆流成分に影響されて平均流量が真の吸入空気流量より
も大きく演算されることを回避でき、以て、燃料制御精
度を向上させることができる。
As described above, when the result of detecting the backflow component is not adopted and the intake pulsation including the backflow component occurs, the occurrence of the backflow is detected and corrected.
It is possible to avoid that the average flow rate is calculated to be larger than the true intake air flow rate due to the influence of the backflow component, so that the fuel control accuracy can be improved.

【0029】[0029]

【発明の効果】以上説明したように本発明によると、機
関運転状態に基づいて吸気脈動の極大点から極小点まで
の基準時間を推定し、逆流成分を含む吸気脈動が発生し
ても、極大点から極小点までの時間経過及び前記基準時
間に基づいて当該逆流を判断し、逆流に基づいた吸入空
気流量を求めることができ、以て、燃料噴射制御の精度
向上に寄与できるという効果がある。
As described above, according to the present invention, the reference time from the maximum point to the minimum point of the intake pulsation is estimated based on the engine operating state, and even if the intake pulsation including the backflow component is generated, the maximum value is obtained. There is an effect that the backflow can be judged based on the time lapse from the point to the minimum point and the reference time, and the intake air flow rate based on the backflow can be obtained, thus contributing to the improvement of the accuracy of fuel injection control. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構成を示すブロック図。FIG. 1 is a block diagram showing the basic configuration of the present invention.

【図2】本発明の実施例のハードウェア構成を示すシス
テム概略図。
FIG. 2 is a system schematic diagram showing a hardware configuration of an embodiment of the present invention.

【図3】同上実施例における制御内容を示すフローチャ
ート。
FIG. 3 is a flowchart showing the control contents in the above embodiment.

【図4】吸入空気流量の極大点,極小点の検出の様子を
示すタイムチャート。
FIG. 4 is a time chart showing how the maximum and minimum points of the intake air flow rate are detected.

【図5】経過時間DURを示すタイムチャート。FIG. 5 is a time chart showing an elapsed time DUR.

【図6】逆流成分を含む吸気脈動の様子を示すタイムチ
ャート。
FIG. 6 is a time chart showing a state of intake pulsation including a backflow component.

【図7】逆流成分を含まない吸気脈動の様子を示すタイ
ムチャート。
FIG. 7 is a time chart showing how intake pulsation does not include a backflow component.

【図8】逆流成分検知による平均流量誤差の発生を示す
タイムチャート。
FIG. 8 is a time chart showing the occurrence of an average flow rate error due to backflow component detection.

【図9】逆流成分発生時の真の機関吸入空気流量を示す
タイムチャート。
FIG. 9 is a time chart showing a true engine intake air flow rate when a backflow component is generated.

【符号の説明】[Explanation of symbols]

1 感温式流量計 2 イグニッションスイッチ 3 A/D変換器 4 マイクロコンピュータ 5 回転数センサ RH 感温抵抗RH 1 Temperature-sensitive flow meter 2 Ignition switch 3 A / D converter 4 Microcomputer 5 Rotation speed sensor RH Temperature-sensitive resistance RH

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の吸気通路中に配置した感温抵抗
の吸入空気流量に応じた抵抗値変化に基づいて機関の吸
入空気流量を検出する感温式流量検出手段と、 前記感温式流量検出手段で検出される吸入空気流量変化
の極大点を検出する流量極大点検出手段と、 前記感温式流量検出手段で検出される吸入空気流量変化
の極小点を検出する流量極小点検出手段と、 機関運転状態に基づいて吸気脈動の極大点から極小点ま
での基準時間を推定する基準時間推定手段と、 前記流量極大点検出手段で検出された極大点から前記流
量極小点検出手段で検出された極小点までの経過時間と
前記基準時間との比較に基づいて、逆流の有無を判定す
る逆流判定手段と、 逆流有りと判定されたときに前記感温式流量検出手段で
検出される吸入空気流量を補正する逆流補正手段と、 を含んで構成されたことを特徴とする内燃機関の吸入空
気流量検出装置。
1. A temperature sensitive flow rate detecting means for detecting an intake air flow rate of an engine based on a resistance value change of a temperature sensitive resistance arranged in an intake passage of an internal combustion engine according to an intake air flow rate, and the temperature sensitive system. Flow rate maximum point detecting means for detecting a maximum point of the change in intake air flow rate detected by the flow rate detecting means, and flow rate minimum point detecting means for detecting a minimum point of the intake air flow rate change detected by the temperature-sensitive flow rate detecting means A reference time estimating means for estimating a reference time from a maximum point of intake pulsation to a minimum point based on the engine operating state; and a maximum point detected by the maximum flow rate detecting means detected by the minimum flow rate detecting means. Based on the comparison between the elapsed time to the minimum point and the reference time, backflow determination means for determining the presence or absence of backflow, and inhalation detected by the temperature-sensitive flow rate detection means when it is determined that there is backflow Correct the air flow rate Intake air flow rate detection device for an internal combustion engine, characterized in that it is configured to include a reverse flow correction means.
JP5315365A 1993-12-15 1993-12-15 Intake air flow rate detector for internal combustion engine Pending JPH07167697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5315365A JPH07167697A (en) 1993-12-15 1993-12-15 Intake air flow rate detector for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5315365A JPH07167697A (en) 1993-12-15 1993-12-15 Intake air flow rate detector for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH07167697A true JPH07167697A (en) 1995-07-04

Family

ID=18064539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5315365A Pending JPH07167697A (en) 1993-12-15 1993-12-15 Intake air flow rate detector for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH07167697A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334083B1 (en) 1999-03-15 2001-12-25 Hitachi, Ltd. Intake air flow rate measurement apparatus
US6697743B2 (en) 2001-01-29 2004-02-24 Hitachi, Ltd. Apparatus for measuring intake air flow of internal combustion engine
WO2004094803A1 (en) * 2003-04-22 2004-11-04 Keihin Corporation Control device of internal combustion engine
WO2004094802A1 (en) * 2003-04-22 2004-11-04 Keihin Corporation Control device of internal combustion engine
KR100445141B1 (en) * 1995-12-13 2004-11-12 가부시끼가이샤 히다치 세이사꾸쇼 Air flow measurement device and air flow measurement method
KR100695982B1 (en) * 1997-09-11 2007-07-20 가부시키 가이샤 히다치 카 엔지니어링 Heat resistance resistor air flow measurement device, backflow determination method and error correction method
WO2021131673A1 (en) * 2019-12-25 2021-07-01 株式会社デンソー Measurement control device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445141B1 (en) * 1995-12-13 2004-11-12 가부시끼가이샤 히다치 세이사꾸쇼 Air flow measurement device and air flow measurement method
KR100695982B1 (en) * 1997-09-11 2007-07-20 가부시키 가이샤 히다치 카 엔지니어링 Heat resistance resistor air flow measurement device, backflow determination method and error correction method
DE19952294B4 (en) * 1999-03-15 2005-12-08 Hitachi, Ltd. Device for measuring a flow rate of the intake air
US6459984B1 (en) 1999-03-15 2002-10-01 Hitachi, Ltd. Intake air flow rate measurement apparatus
US6334083B1 (en) 1999-03-15 2001-12-25 Hitachi, Ltd. Intake air flow rate measurement apparatus
US6697743B2 (en) 2001-01-29 2004-02-24 Hitachi, Ltd. Apparatus for measuring intake air flow of internal combustion engine
WO2004094803A1 (en) * 2003-04-22 2004-11-04 Keihin Corporation Control device of internal combustion engine
US7191764B2 (en) 2003-04-22 2007-03-20 Keihin Corporation Control unit for an internal combustion engine
WO2004094802A1 (en) * 2003-04-22 2004-11-04 Keihin Corporation Control device of internal combustion engine
US7246603B2 (en) 2003-04-22 2007-07-24 Keihin Corporation Control unit for an internal combustion engine
CN100370125C (en) * 2003-04-22 2008-02-20 株式会社京滨 Control device of internal combustion engine
CN100374702C (en) * 2003-04-22 2008-03-12 株式会社京滨 Control device of internal combustion engine
WO2021131673A1 (en) * 2019-12-25 2021-07-01 株式会社デンソー Measurement control device
JP2021103150A (en) * 2019-12-25 2021-07-15 株式会社デンソー Measurement control device

Similar Documents

Publication Publication Date Title
JPH0412151A (en) Air fuel ratio controller of internal combustion engine
JPH08189408A (en) Atmospheric pressure estimating device in internal combustion engine
US7063081B2 (en) Deterioration determining apparatus and deterioration determining method for oxygen sensor
JPH07167697A (en) Intake air flow rate detector for internal combustion engine
US5461902A (en) Apparatus for thermally controlling an oxygen sensor of internal combustion engine
JPH01280645A (en) Fuel injection control device for engine
JP2524847B2 (en) Thermal intake air flow sensor
US5343745A (en) Apparatus and method for detecting intake air quantity for internal combustion engine
JP2008002833A (en) Device for correcting intake flow rate
JPH0364693B2 (en)
JP2003065138A (en) Atmospheric pressure detection method and device for controlling internal combustion engine
JPH0684743B2 (en) Deterioration detection device for hot wire type air flow meter
JP3407498B2 (en) Intake air flow rate detection device for internal combustion engine
JPH05248294A (en) Thermal type intake air amount detecting device
JP2524703B2 (en) Engine controller
JPH07119524A (en) Intake air flow rate detection device of internal combustion engine
JPH10176594A (en) Combustion fluctuation detecting method for internal combustion engine
JPH0633824A (en) Intake air flow date detecting device for internal combustion engine
JP2858289B2 (en) Engine intake air flow rate detection device
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine
JPH09203343A (en) Air-fuel ratio detecting device for internal combustion engine
JP2518667B2 (en) Intake air flow rate measuring device for internal combustion engine
JPH05149186A (en) Intake air flow rate detecting device for internal combustion engine
JPH0710050Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH07229442A (en) Intake air flow detecting device for engine