JPH05149186A - Intake air flow rate detecting device for internal combustion engine - Google Patents

Intake air flow rate detecting device for internal combustion engine

Info

Publication number
JPH05149186A
JPH05149186A JP31245191A JP31245191A JPH05149186A JP H05149186 A JPH05149186 A JP H05149186A JP 31245191 A JP31245191 A JP 31245191A JP 31245191 A JP31245191 A JP 31245191A JP H05149186 A JPH05149186 A JP H05149186A
Authority
JP
Japan
Prior art keywords
temperature
intake air
flow rate
air flow
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31245191A
Other languages
Japanese (ja)
Inventor
Naomi Tomizawa
尚己 冨澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP31245191A priority Critical patent/JPH05149186A/en
Publication of JPH05149186A publication Critical patent/JPH05149186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent a detected value, being excessive to a true intake air flow rate, from being outputted right after a power supply is closed to a temperature-sensitive flow meter. CONSTITUTION:A lapse time (t) starting from turning ON of an ignition switch and a power supply is closed to a temperature-sensitive type flow meter is measured at steps S1-S4. When, the lapse time (t) at a step 6, is within the error occurring time T (at a step S5) of the temperature-sensitive type flow meter set according to a source voltage VB, an intake air flow rate Q set based on a throttle valve opening alpha and an engine rotation speed N produces a final output at a step S7. When a time T exceeds the lapse time (t), the intake air flow rate Q normally based on the output of a temperature-sensitive type flow meter 1 in regaded as a finally detected result at stop 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の吸入空気流量
検出装置に関し、詳しくは、内燃機関の吸気通路中に配
置した感温抵抗に基づいて機関吸入空気流量を検出する
感温式流量計における電源投入直後における検出誤差を
補償する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake air flow rate detecting device for an internal combustion engine, and more particularly to a temperature sensitive flow meter for detecting an engine intake air flow rate based on a temperature sensitive resistance arranged in an intake passage of the internal combustion engine. The present invention relates to a technique for compensating for a detection error immediately after the power is turned on.

【0002】[0002]

【従来の技術】内燃機関の電子制御燃料噴射装置におい
ては、機関の吸入空気流量Qを検出するための空気流量
計(エアフローメータ)を備え、この空気流量計で検出
された吸入空気流量Qと機関回転速度Nとから基本燃料
噴射量Tp=K×Q/N(Kは定数)を演算する構成さ
れたものが知られており、前記空気流量計として、実開
昭59−78926号公報等に開示されるような感温式
流量計が用いられるものがある。
2. Description of the Related Art An electronically controlled fuel injection system for an internal combustion engine is equipped with an air flow meter (air flow meter) for detecting the intake air flow rate Q of the engine, and the intake air flow rate Q detected by this air flow meter is It is known that the basic fuel injection amount Tp = K × Q / N (K is a constant) is calculated from the engine rotation speed N, and the air flow meter is disclosed in Japanese Utility Model Laid-Open No. 59-78926. In some cases, a temperature-sensitive flow meter as disclosed in US Pat.

【0003】前記感温式流量計は、いわゆるホットワイ
ヤ型或いはホットフィルム型などの感温抵抗を吸気通路
に配置し、電流を供給して一定温度(抵抗値)に発熱さ
せ、吸入空気による温度低下を電流の増大により補い、
その電流値から吸入空気流量を求めている。即ち、図2
中の感温式流量計1を例にして説明すれば、感温抵抗R
H (ホットワイヤ又はホットフィルム)の他、温度補償
抵抗RK , 基準抵抗Rs , 固定抵抗R1 , 2 を備え、
これらによりブリッジ回路Bが構成されている。
In the temperature-sensitive flow meter, a so-called hot-wire type or hot-film type temperature-sensitive resistor is arranged in the intake passage, and an electric current is supplied to generate heat at a constant temperature (resistance value). The decrease is compensated by the increase in current,
The intake air flow rate is calculated from the current value. That is, FIG.
Taking the temperature-sensitive flow meter 1 in the example as an example, the temperature-sensitive resistance R
In addition to H (hot wire or hot film), temperature compensation resistance R K, reference resistance R s, fixed resistances R 1 and R 2 are provided,
The bridge circuit B is configured by these.

【0004】そして、このブリッジ回路Bの感温抵抗R
H 及び基準抵抗Rs が直列に接続されている側の分圧点
の電位(基準抵抗Rsの端子電圧)と、温度補償抵抗R
K 及び固定抵抗R1 , 2 が直列に接続されている側の
分圧点の電位(固定抵抗R2 の端子電圧)とが差動増幅
器OPに入力されるようになっており、この差動増幅器
OPの出力に応じてトランジスタTrを介してブリッジ
回路Bへの供給電流が補正される。
The temperature sensitive resistor R of the bridge circuit B
H and the reference resistance R s are connected in series, the potential at the voltage dividing point (the terminal voltage of the reference resistance R s ) and the temperature compensation resistance R
K and the potential of the voltage dividing point (the terminal voltage of the fixed resistor R 2 ) on the side where the fixed resistors R 1 and R 2 are connected in series are input to the differential amplifier OP, and the difference The supply current to the bridge circuit B is corrected via the transistor Tr according to the output of the dynamic amplifier OP.

【0005】つまり、ブリッジ回路Bが平衡している状
態において、機関の吸入空気流量が例えば増大すると、
感温抵抗RH がこの空気流によってより冷却されてその
抵抗値が減少し、基準抵抗Rs の端子電圧が増大して、
ブリッジ回路Bが非平衡状態となり、差動増幅器OPの
出力が増大する。これにより、トランジスタTrによっ
て制御されるブリッジ回路Bへの供給電流が増大し、感
温抵抗RH が加熱されてその抵抗値が増大することによ
り、ブリッジ回路Bの平衡条件が回復される。
That is, when the intake air flow rate of the engine increases, for example, when the bridge circuit B is in equilibrium,
The temperature-sensitive resistance R H is further cooled by this air flow, its resistance value decreases, and the terminal voltage of the reference resistance R s increases,
The bridge circuit B becomes unbalanced and the output of the differential amplifier OP increases. As a result, the supply current to the bridge circuit B controlled by the transistor Tr increases, the temperature-sensitive resistor R H is heated, and its resistance value increases, whereby the balanced condition of the bridge circuit B is restored.

【0006】ここで、吸入空気の温度が例えば低下する
と、感温抵抗RH が冷却されてその抵抗値が減少する
が、感温抵抗RH と同一雰囲気にある温度補償抵抗RK
も同時に冷却されてその抵抗値が減少するから、ブリッ
ジ回路Bへ供給される電流値が吸入空気の温度変化によ
り変化することが抑制される。従って、機関の吸入空気
流量とブリッジ回路Bへの供給電流とが吸入空気温度に
無関係に対応することになり、基準抵抗Rs の端子電圧
を検出することにより、吸入空気流量を測定することが
できる。
Here, when the temperature of the intake air decreases, for example, the temperature-sensitive resistor R H is cooled and its resistance value decreases, but the temperature-compensating resistor R K in the same atmosphere as the temperature-sensitive resistor R H.
At the same time, the resistance value of the bridge circuit B is decreased and the resistance value of the bridge circuit B is decreased. Therefore, the change of the current value supplied to the bridge circuit B due to the temperature change of the intake air is suppressed. Therefore, the intake air flow rate of the engine and the current supplied to the bridge circuit B correspond independently of the intake air temperature, and the intake air flow rate can be measured by detecting the terminal voltage of the reference resistance R s. it can.

【0007】[0007]

【発明が解決しようとする課題】ところで、上記のよう
な感温抵抗を用いた感温式流量計においては、前述のよ
うに、感温抵抗の温度を一定に保つように供給電流の制
御がなされる構成であり、この感温式流量計に電源電圧
を投入してから周囲温度状態にある感温抵抗が通常制御
温度(例えば400 ℃程度)に達するまでには、熱容量に
応じた所定時間を必要とすることになり、特に、ホット
ワイヤ型に比べて一般に熱容量の大きなホットフィルム
型の感温式流量計においては、通常制御温度に達するま
でに比較的長い時間を要することになってしまう。
By the way, in the above-mentioned temperature sensitive flow meter using the temperature sensitive resistor, as described above, the supply current is controlled so as to keep the temperature of the temperature sensitive resistor constant. It takes a certain amount of time according to the heat capacity from turning on the power supply voltage to the temperature sensitive flow meter until the temperature sensitive resistance in the ambient temperature state reaches the normal control temperature (for example, about 400 ° C). In particular, in the case of a hot film type temperature sensitive flow meter, which generally has a larger heat capacity than the hot wire type, it takes a relatively long time to reach the normal control temperature. ..

【0008】ここで、感温抵抗の温度が電源投入時から
通常制御温度付近に達するまでの間は、ブリッジ回路が
非平衡状態となって、感温抵抗の温度を上昇させるべく
高い電流が供給されることになり、このときの高い電流
は、吸入空気流量の増大による感温抵抗の温度低下に因
るものではなく、周囲温度状態から通常制御温度付近に
まで感温抵抗の温度を上昇させるために必要とされるも
のであるから、電源投入から通常制御温度付近に達する
までの間は、実際には吸入空気流量を高精度に検出する
ことができずに、吸入空気流量が真の流量よりも大きく
検出されてしまう(図4参照)。
[0008] Here, the bridge circuit is in an unbalanced state and a high current is supplied to raise the temperature of the temperature-sensitive resistor from the time when the temperature of the temperature-sensitive resistor is turned on until it reaches the vicinity of the normal control temperature. The high current at this time does not depend on the temperature drop of the temperature sensing resistor due to the increase of the intake air flow rate, but raises the temperature of the temperature sensing resistor from the ambient temperature state to around the normal control temperature. Since it is required for this, the intake air flow rate cannot actually be detected with high accuracy between the time the power is turned on and the temperature near the normal control temperature. Will be detected larger than that (see FIG. 4).

【0009】このため、感温抵抗が通常制御温度付近に
達するまでの間に始動状態に入ると、真の吸入空気流量
よりも大きな空気流量に基づいて基本燃料噴射量が演算
されることによって、機関吸入混合気の空燃比をリッチ
化させ、始動特性や排ガス特性に悪影響を与える惧れが
あった。尚、図4は、感温抵抗を一定流量の空気流中に
配置し、電源投入時から感温抵抗の温度上昇に伴って検
出誤差が減少していく様子を実験で求めた結果を示す。
Therefore, if the starting state is entered before the temperature-sensitive resistance reaches the vicinity of the normal control temperature, the basic fuel injection amount is calculated based on the air flow rate larger than the true intake air flow rate. There was a fear that the air-fuel ratio of the engine intake air-fuel mixture would be made rich and the starting characteristics and exhaust characteristics would be adversely affected. Note that FIG. 4 shows the results of experiments in which the temperature-sensitive resistor is arranged in an air flow of a constant flow rate and the detection error decreases as the temperature of the temperature-sensitive resistor rises after the power is turned on.

【0010】本発明は上記問題点に鑑みなされたもので
あり、感温式流量計への電源投入から感温抵抗が通常制
御温度付近に達するまでの間において、機関の吸入空気
流量が誤検出されることによって、吸入空気流量の検出
値を用いる燃料制御に悪影響を及ぼすことを抑止し、引
いては始動時の燃料制御性を向上させ得る内燃機関の吸
入空気流量検出装置を提供することを目的とする。
The present invention has been made in view of the above problems, and the intake air flow rate of the engine is erroneously detected during the period from the power-on of the temperature-sensitive flow meter until the temperature-sensitive resistance reaches the vicinity of the normal control temperature. Accordingly, it is possible to suppress the adverse effect on the fuel control using the detected value of the intake air flow rate, and eventually to provide the intake air flow rate detection device for the internal combustion engine, which can improve the fuel controllability at the time of starting. To aim.

【0011】[0011]

【課題を解決するための手段】そのため本発明にかかる
内燃機関の吸入空気流量検出装置は、図1に示すように
構成される。図1において、感温式流量計は、内燃機関
の吸気通路中に配置した感温抵抗の吸入空気流量に応じ
た抵抗値変化に基づいて機関吸入空気流量の検出値を出
力する。
Therefore, an intake air flow rate detecting device for an internal combustion engine according to the present invention is constructed as shown in FIG. In FIG. 1, a temperature-sensitive flow meter outputs a detected value of an engine intake air flow rate based on a resistance value change of a temperature-sensitive resistance arranged in an intake passage of an internal combustion engine according to an intake air flow rate.

【0012】また、経過時間計測手段は、感温式流量計
への電源投入からの経過時間を計測する。そして、検出
切り換え手段は、経過時間計測手段により計測される経
過時間が所定時間以内であるときに、前記感温式流量計
による検出結果に代えて、機関始動時に相当する吸入空
気流量以下の所定吸入空気流量を検出結果として出力す
る。
The elapsed time measuring means measures the elapsed time since the power was turned on to the temperature sensitive flow meter. When the elapsed time measured by the elapsed time measuring means is within a predetermined time, the detection switching means replaces the detection result of the temperature-sensitive flow meter with a predetermined value equal to or less than the intake air flow rate corresponding to the engine start. The intake air flow rate is output as the detection result.

【0013】ここで、検出切り換え手段における前記所
定時間を、前記感温式流量計の電源電圧に応じて可変設
定する検出切り換え時間設定手段を設けることが好まし
い。更に、可変制御される機関吸気系の開口面積を検出
する開口面積検出手段と、機関の回転速度を検出する回
転速度検出手段とを設けると共に、検出切り換え手段に
おける所定吸入空気流量を、前記開口面積と回転速度と
の検出値に基づいて可変設定する切り換え出力設定手段
を設けると良い。
Here, it is preferable to provide detection switching time setting means for variably setting the predetermined time in the detection switching means in accordance with the power supply voltage of the temperature-sensitive flow meter. Further, an opening area detecting means for detecting the opening area of the engine intake system which is variably controlled and a rotation speed detecting means for detecting the rotation speed of the engine are provided, and a predetermined intake air flow rate in the detection switching means is set to the opening area. It is advisable to provide a switching output setting means for variably setting based on the detected values of the rotation speed and the rotation speed.

【0014】[0014]

【作用】かかる構成によると、感温式流量計に対して電
源が投入されてから所定時間内において、感温式流量計
の検出値を出力する代わりに、機関始動時に相当する吸
入空気流量以下の所定吸入空気流量が出力されるから、
感温抵抗が周囲温度状態から通常制御温度付近に達する
までの間において、真の吸入空気流量に対して過大な吸
入空気流量が検出値として出力されることが回避され
る。
According to this structure, within a predetermined time after the power supply to the temperature-sensitive flow meter is turned on, instead of outputting the detected value of the temperature-sensitive flow meter, the intake air flow rate is equal to or less than that when the engine is started. Since the predetermined intake air flow rate of is output,
It is possible to prevent an excessive intake air flow rate from being output as a detected value with respect to the true intake air flow rate, until the temperature-sensitive resistance reaches from the ambient temperature state to near the normal control temperature.

【0015】また、感温抵抗が周期温度状態から通常制
御温度付近に達するまでの時間は、電源電圧に応じて変
化するから、前記所定時間を前記電源電圧に応じて可変
設定することで、検出誤差の発生期間に応じて検出出力
を切り換えることができる。更に、感温式流量計の検出
値に代えて出力される所定吸入空気流量を、吸気系の開
口面積と機関回転速度とに基づいて可変設定させれば、
固定値を採用する場合に比べ真の吸入空気流量に近い検
出値を出力させることが可能となる。
Further, since the time required for the temperature sensitive resistance to reach the vicinity of the normal control temperature from the cyclic temperature state changes according to the power supply voltage, the predetermined time is variably set according to the power supply voltage to detect it. The detection output can be switched according to the error generation period. Furthermore, if the predetermined intake air flow rate output instead of the detection value of the temperature sensitive flow meter is variably set based on the opening area of the intake system and the engine rotation speed,
It becomes possible to output a detection value close to the true intake air flow rate as compared with the case where a fixed value is adopted.

【0016】[0016]

【実施例】以下に本発明の実施例を説明する。図2は実
施例のハードウェア構成を示し、感温式流量計1には電
源電圧(バッテリ電圧)VB がイグニッションスイッチ
2を介して印加される。そして、この感温式流量計1の
出力電圧Usは、A/D変換器3を介してマイクロコン
ピュータ4に入力される。
EXAMPLES Examples of the present invention will be described below. FIG. 2 shows the hardware configuration of the embodiment, in which the power supply voltage (battery voltage) V B is applied to the temperature-sensitive flow meter 1 via the ignition switch 2. The output voltage Us of the temperature-sensitive flow meter 1 is input to the microcomputer 4 via the A / D converter 3.

【0017】この他、機関回転速度Nを検出する回転速
度検出手段としての回転センサ5、及び、感温式流量計
1の感温抵抗RH が配置される図示しない機関吸気通路
に介装されるスロットル弁の開度αを検出する開口面積
検出手段としてのスロットルセンサ6が設けられ、前記
感温式流量計1の出力電圧Usと共に、これら各センサ
からの検出信号も前記マイクロコンピュータ4に入力さ
れるようになっている。
In addition, a rotation sensor 5 as a rotation speed detecting means for detecting the engine rotation speed N, and a temperature-sensitive resistor RH of the temperature-sensitive flow meter 1 are provided in an engine intake passage (not shown). A throttle sensor 6 as an opening area detecting means for detecting the opening α of the throttle valve is provided, and the detection signals from these sensors are input to the microcomputer 4 together with the output voltage Us of the temperature-sensitive flow meter 1. It is supposed to be done.

【0018】ここで、マイクロコンピュータ1は、機関
吸入空気流量Qと機関回転速度Nとの検出値に基づいて
基本燃料噴射量Tp=K×Q/N(Kは定数)を演算す
ると共に、この基本燃料噴射量Tpを適宜補正して最終
的な燃料噴射量Tiを演算し、この燃料噴射量Tiに相
当するパルス幅の噴射パルス信号を、機関回転に同期し
た所定タイミングで、図示しない電磁式燃料噴射弁に出
力することによって、機関への燃料供給を電子制御する
ものである。
Here, the microcomputer 1 calculates the basic fuel injection amount Tp = K × Q / N (K is a constant) based on the detected values of the engine intake air flow rate Q and the engine rotation speed N, and The final fuel injection amount Ti is calculated by appropriately correcting the basic fuel injection amount Tp, and an injection pulse signal having a pulse width corresponding to this fuel injection amount Ti is generated at a predetermined timing synchronized with the engine rotation by an electromagnetic system (not shown). The fuel supply to the engine is electronically controlled by outputting to the fuel injection valve.

【0019】尚、前記感温式流量計1の構成及び作用に
ついては先に説明したので、ここでは感温式流量計1の
詳細な説明は省略する。次に、マイクロコンピュータ4
によって行われる吸入空気流量Qの検出の様子を、図3
のフローチャートに従って説明する。尚、本実施例にお
いて、検出切り換え手段,経過時間計測手段,検出切り
換え時間設定手段,切り換え出力設定手段としての機能
は、前記図3のフローチャートに示すようにマイクロコ
ンピュータ4が備えているものとする。
Since the structure and operation of the temperature-sensitive flow meter 1 have been described above, a detailed description of the temperature-sensitive flow meter 1 will be omitted here. Next, the microcomputer 4
Fig. 3 shows how the intake air flow rate Q is detected by
It will be described according to the flowchart of In this embodiment, it is assumed that the microcomputer 4 has the functions of the detection switching means, the elapsed time measuring means, the detection switching time setting means, and the switching output setting means, as shown in the flow chart of FIG. ..

【0020】図3のフローチャートにおいて、まず、ス
テップ1(図中ではS1としてある。以下同様)では、
イグニッションスイッチ2のオン・オフを判別する。イ
グニッションスイッチ2がオフであるときには、ステッ
プ2へ進んで、感温式流量計1への電源投入からの経過
時間tを計測するためのタイマーをゼロリセットし、イ
グニッションスイッチ2がオンであるときには、ステッ
プ3へ進む。
In the flow chart of FIG. 3, first, in step 1 (denoted as S1 in the figure, the same applies hereinafter),
The on / off state of the ignition switch 2 is determined. When the ignition switch 2 is off, the routine proceeds to step 2, where the timer for measuring the elapsed time t from the power-on of the temperature-sensitive flow meter 1 is reset to zero, and when the ignition switch 2 is on, Go to step 3.

【0021】ステップ3では、初めてイグニッションス
イッチ2がオンされた状態であるか否かを判別し、イグ
ニッションスイッチ2がオンされた初回であるとき、換
言すれば、感温式流量計1への電源投入時であるときに
は、ステップ4へ進んで、前記タイマーのカウント(電
源投入からの経過時間の計測)を開始させる。ステップ
5では、感温式流量計1の電源電圧VB をパラメータと
して予め切り換え制御時間Tを設定してあるマップを参
照し、現状の電源電圧VB に対応する切り換え制御時間
Tを設定する。
In step 3, it is judged whether or not the ignition switch 2 is turned on for the first time, and when the ignition switch 2 is turned on for the first time, in other words, the power source to the temperature-sensitive flow meter 1 is determined. When the power is on, the routine proceeds to step 4, where the counting of the timer (measurement of elapsed time from power-on) is started. In step 5, the switching control time T corresponding to the current power supply voltage V B is set by referring to a map in which the switching control time T is set in advance using the power supply voltage V B of the temperature sensitive flow meter 1 as a parameter.

【0022】次のステップ6では、前記タイマーで計測
されるイグニッションスイッチ2オンからの経過時間t
と、前記切り換え制御時間Tとを比較する。そして、経
過時間tが前記切り換え制御時間Tに達していないとき
には、ステップ7へ進む。ステップ7では、予めスロッ
トル弁開度αと機関回転速度Nとに対応する吸入空気流
量Qのデータを記憶したマップを参照し、スロットル弁
開度αと機関回転速度Nとの最新検出値に対応する吸入
空気流量Qを検索して求める。
In the next step 6, the elapsed time t from when the ignition switch 2 is turned on, which is measured by the timer, is t.
And the switching control time T are compared. When the elapsed time t has not reached the switching control time T, the process proceeds to step 7. In step 7, the map in which the data of the intake air flow rate Q corresponding to the throttle valve opening α and the engine speed N is stored beforehand is referred to, and the latest detected values of the throttle valve opening α and the engine speed N are corresponded. The intake air flow rate Q to be obtained is searched and obtained.

【0023】尚、前記スロットル弁開度αは、スロット
ル弁で可変制御される機関吸気系の開口面積を代表する
値であり、ステップ7では、吸気系の開口面積と機関回
転速度とを条件として始動時の吸入空気流量Qを間接的
に求め、真の吸入空気流量Qに略相当する値を最終設定
させるようにしてある。一方、ステップ6で、経過時間
tが切り換え制御時間Tを越えていると判別されたとき
には、ステップ8へ進み、感温式流量計1の出力電圧U
sを、予め設定された変換特性に基づいて吸入空気流量
Qに変換する処理を行う。
The throttle valve opening α is a value representative of the opening area of the engine intake system which is variably controlled by the throttle valve. In step 7, the opening area of the intake system and the engine speed are set as conditions. The intake air flow rate Q at the time of starting is indirectly obtained, and a value substantially corresponding to the true intake air flow rate Q is finally set. On the other hand, when it is determined in step 6 that the elapsed time t exceeds the switching control time T, the process proceeds to step 8 and the output voltage U of the temperature-sensitive flow meter 1
A process of converting s into the intake air flow rate Q based on a preset conversion characteristic is performed.

【0024】即ち、経過時間tが前記切り換え制御時間
Tに達していないときには、感温式流量計1の出力電圧
Usを用いずに、スロットル弁開度αと機関回転速度N
とから予測される吸入空気流量Qを最終的な検出値とし
て出力させ、経過時間tが前記切り換え制御時間Tを越
えてから感温式流量計1の出力電圧Usを用いて吸入空
気流量Qを検出値を設定させるものであり、上記のよう
にして切り換え制御される吸入空気流量Qの検出結果
は、前述の基本燃料噴射量Tpの演算に用いられる。
That is, when the elapsed time t has not reached the switching control time T, the throttle valve opening α and the engine speed N are used without using the output voltage Us of the temperature-sensitive flow meter 1.
The intake air flow rate Q predicted from the above is output as a final detected value, and after the elapsed time t exceeds the switching control time T, the intake air flow rate Q is calculated using the output voltage Us of the temperature-sensitive flow meter 1. The detection value is set, and the detection result of the intake air flow rate Q, which is switch-controlled as described above, is used for the calculation of the basic fuel injection amount Tp.

【0025】ここで、前記切り換え制御時間Tは、感温
式流量計1に電源が投入されてから感温抵抗RH が周囲
温度状態から通常制御温度状態に対するまでの間の検出
誤差特性に応じて予め設定されたものであり、電源電圧
B によって感温抵抗RH の温度上昇特性が変化するの
で、本実施例では、電源電圧VB に応じて前記切り換え
制御時間Tを可変設定するようにしてある。但し、簡便
には、前記切り換え制御時間Tを固定時間としても良
い。また、前記検出誤差特性は、感温抵抗RH の温度と
通常制御温度との差に起因するものであるから、電源投
入時の周囲温度をパラメータとしたり、また、イグニッ
ションスイッチ2が繰り返しオン・オフされる場合に対
応すべく、イグニッションスイッチ2オフからの経過時
間をパラメータとして、前記切り換え制御時間Tを可変
設定させるようにしても良い。
Here, the switching control time T depends on the detection error characteristic between the temperature sensing resistor RH and the normal control temperature state after the power is turned on to the temperature sensing flow meter 1. Te has been set in advance, since the temperature rise characteristic of the temperature-sensitive resistor R H by the power supply voltage V B changes, in this embodiment, so as to variably set the switching control time T according to the power supply voltage V B I am doing it. However, for simplicity, the switching control time T may be a fixed time. Since the detection error characteristic is caused by the difference between the temperature of the temperature sensitive resistor R H and the normal control temperature, the ambient temperature when the power is turned on is used as a parameter, and the ignition switch 2 is repeatedly turned on / off. The switching control time T may be variably set by using the elapsed time from the turning off of the ignition switch 2 as a parameter to cope with the case where the switching is turned off.

【0026】感温式流量計1においては、電源が投入さ
れてから感温抵抗RH が通常制御温度付近にまで温度上
昇する間は、真の吸入空気流量Qに対応する出力電圧よ
りも高い電圧を出力することになってしまい、電源投入
からの経過時間が短く感温抵抗RH の温度が低いときほ
ど大きな検出誤差を生じることになる(図4参照)。従
って、例えば、前記切り換え制御時間Tを、感温式流量
計1における検出誤差が許容レベル(検出誤差±4%)
になるまでの時間(図4における時間t2 であり、例え
ば0.3 〜1秒程度)とすれば、電源投入時から感温抵抗
H が周囲温度から所定の通常制御温度付近にまで暖め
られるまでの間において、大きな検出誤差を有する検出
値がそのまま出力されることを回避して、開度αと回転
速度Nとから予測されるより真の吸入空気流量Qに近い
始動時の吸入空気流量Qを検出値として出力させること
ができる。
In the temperature-sensitive flow meter 1, the temperature is higher than the output voltage corresponding to the true intake air flow rate Q while the temperature of the temperature-sensitive resistance R H rises up to around the normal control temperature after the power is turned on. Since a voltage is output, a larger detection error occurs as the elapsed time from power-on is shorter and the temperature of the temperature sensitive resistor R H is lower (see FIG. 4). Therefore, for example, when the switching control time T is set, the detection error in the temperature-sensitive flow meter 1 is at an allowable level (detection error ± 4%).
4 (time t 2 in FIG. 4, for example, about 0.3 to 1 second) until the temperature-sensitive resistor RH is warmed from the ambient temperature to a predetermined normal control temperature. During this period, the detection value having a large detection error is avoided from being output as it is, and the intake air flow rate Q at the time of starting, which is closer to the true intake air flow rate Q predicted from the opening α and the rotation speed N, is obtained. Can be output as a detection value.

【0027】このため、電源投入から感温抵抗RH が通
常制御温度付近にまで暖められるまでの間に始動(クラ
ンキング)が開始されても、開度α(開口面積)と回転
速度Nとから求められる始動時の空気流量相当を出力さ
せることができるから、真のシリンダ吸入空気量に略見
合った基本燃料噴射量Tpを演算させることが可能とな
って、始動時の空燃比が適正化され、始動性及び始動時
の排ガス特性が改善される。
Therefore, even if the starting (cranking) is started during the time from turning on the power until the temperature-sensitive resistor R H is warmed to near the normal control temperature, the opening α (opening area) and the rotation speed N are Since it is possible to output the amount of air flow at the time of starting that is obtained from the above, it is possible to calculate the basic fuel injection amount Tp that approximately matches the true cylinder intake air amount, and the air-fuel ratio at the time of starting is optimized. As a result, startability and exhaust gas characteristics at the time of starting are improved.

【0028】ここで、前述のように感温式流量計1に対
する電源投入直後ほど大きな検出誤差を有することにな
るから、図4における時間t1 、即ち、ブリッジ回路の
平衡が極端に崩れ最大出力電圧を出力するような検出不
能期間(最大検出誤差期間)においてのみ、開度αと回
転速度Nとに基づいて吸入空気流量Q検出値の設定を行
わせ、時間t1 から検出誤差が収束する時間t2 (例え
ば8秒程度)までの期間は、検出誤差はあるものの誤差
レベルが低下するから、そのまま感温式流量計1の出力
を用いるようにしても良い。この場合、図3のフローチ
ャートにおける切り換え制御時間Tを、図4における時
間t1 相当になるようにマッチングさせれば良い。
As described above, since the detection error becomes larger as soon as the temperature-sensitive flowmeter 1 is turned on, the time t 1 in FIG. 4, that is, the balance of the bridge circuit is extremely disturbed and the maximum output is obtained. The intake air flow rate Q detection value is set based on the opening α and the rotation speed N only during the undetectable period (maximum detection error period) in which the voltage is output, and the detection error converges from time t 1. In the period up to time t 2 (for example, about 8 seconds), although there is a detection error, the error level decreases, so the output of the temperature-sensitive flow meter 1 may be used as it is. In this case, the switching control time T in the flowchart of FIG. 3 may be matched so as to correspond to the time t 1 in FIG.

【0029】更に、本実施例では、開度αと回転速度N
とに基づいて予測される吸入空気流量Qを、感温式流量
計1による検出出力に代えて出力させるようにしたが、
機関の始動状態で得られると予測される吸入空気流量Q
以下の所定吸入空気流量(例えば0〜数10kg/h)を
予め設定しておき、電源投入からの所定時間内において
は、前記所定吸入空気流量(固定値)を検出値として出
力させるようにしても良い。
Further, in this embodiment, the opening α and the rotation speed N
The intake air flow rate Q predicted based on the above is output instead of the detection output by the temperature-sensitive flow meter 1.
Intake air flow rate Q expected to be obtained when the engine is started
The following predetermined intake air flow rate (for example, 0 to several tens kg / h) is set in advance, and the predetermined intake air flow rate (fixed value) is output as a detection value within a predetermined time after the power is turned on. Is also good.

【0030】即ち、感温式流量計1が吸入空気流量Qを
過大に検出することになる電源投入直後において、少な
くとも真の吸入空気流量Qよりも大きな検出値が最終的
に出力されることが回避されれば、開口面積と機関回転
速度とから間接的に吸入空気流量Qを求める場合に比べ
て精度は悪化するものの、少なくとも始動時に吸入空気
流量の検出誤差によって空燃比がオーバーリッチ化し
て、排ガス特性の悪化(未燃成分の排出量増大)を招く
ことを防止できる。換言すれば、開口面積と機関回転速
度とに基づく吸入空気流量Qの可変設定は、始動時の真
の吸入空気流量Qに追従した値を出力させることが可能
であるのに対し、固定値の出力は、始動時の真の吸入空
気流量Qの変化には対応できないものの、少なくとも真
の吸入空気流量よりも過大な検出値が出力されて未燃焼
成分が排出されることを回避し得る簡便な方法である。
That is, immediately after the power is turned on when the temperature-sensitive flow meter 1 detects the intake air flow rate Q excessively, at least a detected value larger than the true intake air flow rate Q is finally output. If avoided, the accuracy will deteriorate as compared with the case where the intake air flow rate Q is indirectly determined from the opening area and the engine rotation speed, but at least the detection error of the intake air flow rate at the time of start-up causes the air-fuel ratio to become rich, It is possible to prevent the deterioration of the exhaust gas characteristics (increase in the emission amount of unburned components). In other words, the variable setting of the intake air flow rate Q based on the opening area and the engine rotation speed can output a value that follows the true intake air flow rate Q at the start, whereas Although the output cannot cope with the change in the true intake air flow rate Q at the time of starting, it is simple and easy to avoid that a detection value that is at least larger than the true intake air flow rate is output and unburned components are discharged. Is the way.

【0031】上記のように固定値を感温式流量計1の出
力に代えて出力させる場合には、感温式流量計1の検出
誤差が収束されるまでの期間を固定値出力期間としても
良いが、感温式流量計1の検出誤差が非常に大きな電源
投入直後の期間(時間t1 )までとすることが好まし
く、時間t1 までに限定されるのであれば、この期間で
は吸入空気流量Qが零であると強制的に出力させても、
前記時間t1 が短い時間であるためにこの間に始動が開
始されても始動性に大きく悪影響を及ぼすことはない。
When a fixed value is output instead of the output of the temperature-sensitive flow meter 1 as described above, the period until the detection error of the temperature-sensitive flow meter 1 is converged may be used as the fixed value output period. Although it is good, it is preferable that the detection error of the temperature-sensitive flow meter 1 is up to a period (time t 1 ) immediately after power-on, and if it is limited to the time t 1 , the intake air is reduced during this period. Even if the flow rate Q is forced to be output when it is zero,
Since the time t 1 is short, even if the start is started during this time, the startability is not adversely affected.

【0032】但し、始動開始が通常行われる図4の時間
1 から時間t2 までの期間においても、機関始動時に
相当する吸入空気流量以下の固定された吸入空気流量を
最終的に出力させることは、真の吸入空気流量Qの変動
に全く追従できないことになり、始動性の悪化を招く惧
れがあるので、時間t1 から時間t2 までの期間につい
ては前述のように開度αと回転速度Nとに基づく吸入空
気流量Qの検出を行わせるか、又は、検出誤差は含むも
のの感温式流量計1の出力を最終的な検出結果とするこ
とが望まれる。
However, even during the period from the time t 1 to the time t 2 in FIG. 4 in which the start of the engine is normally started, the fixed intake air flow rate below the intake air flow rate corresponding to the engine start is finally output. Is not able to follow the fluctuation of the true intake air flow rate Q at all, and there is a possibility that the startability is deteriorated. Therefore, as described above, during the period from time t 1 to time t 2 , It is desired to detect the intake air flow rate Q based on the rotation speed N or to use the output of the temperature-sensitive flow meter 1 as a final detection result although it includes a detection error.

【0033】また、始動時にはスロットル弁が全閉状態
であることが多いので、回転速度Nのみをパラメータと
して始動時の吸入空気流量Qを予測させ、これを感温式
流量計1の出力に代えて出力させるようにしても良い。
尚、感温抵抗RH は、いわゆるホットワイヤ型,ホット
フィルム型のいずれであっても良いが、熱容量が大きく
検出誤差が収束されるまでの時間(図4における時間t
2 )が長いときほど、本実施例に示す制御を行うことに
よる効果が大きい。
Further, since the throttle valve is often in the fully closed state at the time of starting, the intake air flow rate Q at the time of starting is predicted by using only the rotation speed N as a parameter, and this is replaced with the output of the temperature-sensitive flow meter 1. You may make it output it.
The temperature-sensitive resistance R H may be either a so-called hot wire type or a hot film type, but the time until the detection error converges due to a large heat capacity (time t in FIG. 4).
The longer the value of 2 ), the greater the effect of performing the control shown in this embodiment.

【0034】[0034]

【発明の効果】以上説明したように本発明によると、感
温式流量計の検出誤差が大きい電源投入直後において、
感温式流量計の検出値に代えて機関始動時に相当する吸
入空気流量以下の所定吸入空気流量を出力させることに
より、真の吸入空気流量に対して過大な検出値が出力さ
れることを回避でき、以て、吸入空気流量の検出値に基
づいて燃料制御を行わせるときに、始動性及び始動時の
排ガス特性を改善できる。
As described above, according to the present invention, immediately after the power is turned on, the temperature-sensitive flowmeter has a large detection error.
By avoiding the detection value of the temperature-sensing flow meter, by outputting a predetermined intake air flow rate that is less than or equal to the intake air flow rate corresponding to engine startup, it is possible to avoid outputting an excessively large detection value for the true intake air flow rate. Therefore, when the fuel control is performed based on the detected value of the intake air flow rate, the startability and the exhaust gas characteristic at the start can be improved.

【0035】また、感温式流量計の出力を用いない所定
時間を、感温式流量計の電源電圧に応じて可変設定させ
れば、感温式流量計の検出誤差特性に見合った期間で、
出力の切り換えを行わせることが可能となる。更に、感
温式流量計の検出値に代えて出力される所定吸入空気流
量を、吸気系の開口面積と機関回転速度とに基づいて設
定させれば、感温式流量計の検出値を実質的に用いるこ
とができない期間においても、真の吸入空気流量変動に
略対応させて吸入空気流量の検出値を得ることができ
る。
Further, if the predetermined time without using the output of the temperature-sensitive flow meter is variably set according to the power supply voltage of the temperature-sensitive flow meter, it is possible to set a period suitable for the detection error characteristic of the temperature-sensitive flow meter. ,
It becomes possible to switch the output. Furthermore, if the predetermined intake air flow rate output instead of the detection value of the temperature-sensitive flow meter is set based on the opening area of the intake system and the engine rotation speed, the detection value of the temperature-sensitive flow meter will be substantially Even in a period in which the intake air flow rate cannot be used for a long time, the detected value of the intake air flow rate can be obtained by substantially corresponding to the fluctuation of the true intake air flow rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構成を示すブロック図。FIG. 1 is a block diagram showing a basic configuration of the present invention.

【図2】本発明の実施例のハードウェア構成を示すシス
テム概略図。
FIG. 2 is a system schematic diagram showing a hardware configuration of an embodiment of the present invention.

【図3】実施例における流量検出の様子を示すフローチ
ャート。
FIG. 3 is a flowchart showing how the flow rate is detected in the embodiment.

【図4】感温式流量計の検出誤差特性を示す線図。FIG. 4 is a diagram showing a detection error characteristic of a temperature-sensitive flow meter.

【符号の説明】[Explanation of symbols]

1 感温式流量計 2 イグニッションスイッチ 4 マイクロコンピュータ 5 回転速度センサ 6 スロットルセンサ 1 Temperature-sensitive flow meter 2 Ignition switch 4 Microcomputer 5 Rotation speed sensor 6 Throttle sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の吸気通路中に配置した感温抵抗
の吸入空気流量に応じた抵抗値変化に基づいて機関吸入
空気流量の検出値を出力する感温式流量計と、 前記感温式流量計への電源投入からの経過時間を計測す
る経過時間計測手段と、 該経過時間計測手段により計測される経過時間が所定時
間以内であるときに、前記感温式流量計による検出結果
に代えて、機関始動時に相当する吸入空気流量以下の所
定吸入空気流量を検出結果として出力する検出切り換え
手段と、 を含んで構成されたことを特徴とする内燃機関の吸入空
気流量検出装置。
1. A temperature-sensitive flow meter for outputting a detected value of an engine intake air flow rate based on a resistance value change of a temperature-sensitive resistance arranged in an intake passage of an internal combustion engine according to an intake air flow rate; The elapsed time measuring means for measuring the elapsed time after the power supply to the flow meter is turned on, and when the elapsed time measured by the elapsed time measuring means is within a predetermined time, the detection result by the temperature sensitive flow meter is displayed. Instead, an intake air flow rate detection device for an internal combustion engine, comprising: a detection switching unit that outputs a predetermined intake air flow rate equal to or less than the intake air flow rate corresponding to engine startup as a detection result.
【請求項2】前記検出切り換え手段における前記所定時
間を、前記感温式流量計の電源電圧に応じて可変設定す
る検出切り換え時間設定手段を設けたことを特徴とする
請求項1記載の内燃機関の吸入空気流量検出装置。
2. An internal combustion engine according to claim 1, further comprising detection switching time setting means for variably setting the predetermined time in the detection switching means in accordance with a power supply voltage of the temperature-sensitive flow meter. Intake air flow rate detector.
【請求項3】可変制御される機関吸気系の開口面積を検
出する開口面積検出手段と、 機関の回転速度を検出する回転速度検出手段と、 前記検出切り換え手段における所定吸入空気流量を、前
記開口面積と回転速度との検出値に基づいて可変設定す
る切り換え出力設定手段と、 を設けたことを特徴とする請求項1又は2のいずれかに
記載の内燃機関の吸入空気流量検出装置。
3. An opening area detection means for detecting an opening area of an engine intake system which is variably controlled, a rotation speed detection means for detecting a rotation speed of an engine, and a predetermined intake air flow rate in the detection switching means, 3. The intake air flow rate detection device for an internal combustion engine according to claim 1, further comprising: a switching output setting unit that variably sets based on detected values of an area and a rotation speed.
JP31245191A 1991-11-27 1991-11-27 Intake air flow rate detecting device for internal combustion engine Pending JPH05149186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31245191A JPH05149186A (en) 1991-11-27 1991-11-27 Intake air flow rate detecting device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31245191A JPH05149186A (en) 1991-11-27 1991-11-27 Intake air flow rate detecting device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH05149186A true JPH05149186A (en) 1993-06-15

Family

ID=18029356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31245191A Pending JPH05149186A (en) 1991-11-27 1991-11-27 Intake air flow rate detecting device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH05149186A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016109091A (en) * 2014-12-10 2016-06-20 日立オートモティブシステムズ株式会社 Electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173537A (en) * 1981-04-17 1982-10-25 Nissan Motor Co Ltd Fuel feed device of internal combustion engine
JPS5813132A (en) * 1981-07-17 1983-01-25 Hitachi Ltd Fuel control device by computer
JPH0160153B2 (en) * 1983-02-01 1989-12-21 Matsushita Electric Ind Co Ltd
JPH0539742A (en) * 1991-07-31 1993-02-19 Hitachi Ltd Internal combustion engine control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173537A (en) * 1981-04-17 1982-10-25 Nissan Motor Co Ltd Fuel feed device of internal combustion engine
JPS5813132A (en) * 1981-07-17 1983-01-25 Hitachi Ltd Fuel control device by computer
JPH0160153B2 (en) * 1983-02-01 1989-12-21 Matsushita Electric Ind Co Ltd
JPH0539742A (en) * 1991-07-31 1993-02-19 Hitachi Ltd Internal combustion engine control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016109091A (en) * 2014-12-10 2016-06-20 日立オートモティブシステムズ株式会社 Electronic device

Similar Documents

Publication Publication Date Title
JP6413582B2 (en) Control device for internal combustion engine
US4688425A (en) Direct-heated flow measuring apparatus having film resistor
JPS6140924B2 (en)
JP2812247B2 (en) Active state determination device for air-fuel ratio sensor
US4519237A (en) Oxygen-sensing system
JP2681569B2 (en) Intake air flow rate detection device for internal combustion engine
JP2524847B2 (en) Thermal intake air flow sensor
JPH07167697A (en) Intake air flow rate detector for internal combustion engine
JPH05149186A (en) Intake air flow rate detecting device for internal combustion engine
JP3277690B2 (en) Control device of heating means for air-fuel ratio sensor
JPH05149173A (en) Fuel feed control device for internal combustion engine
JPH05149185A (en) Intake air flow rate detecting device for internal combustion engine
JPH0633824A (en) Intake air flow date detecting device for internal combustion engine
JPH0684743B2 (en) Deterioration detection device for hot wire type air flow meter
JPH0633825A (en) Intake air flow rata detecting device for internal combustion engine
JP3883921B2 (en) Intake flow rate detection device for internal combustion engine
JPH05288113A (en) Sucked air flow detection apparatus for internal combustion engine
JPH10176594A (en) Combustion fluctuation detecting method for internal combustion engine
JPH0637863B2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2855379B2 (en) Fuel supply control device for internal combustion engine
JP2516086B2 (en) Intake air flow rate measuring device for internal combustion engine
JPH0810675Y2 (en) Intake air flow rate measuring device for internal combustion engine
JPH0531739B2 (en)
JPH0544742Y2 (en)
JPH07119524A (en) Intake air flow rate detection device of internal combustion engine