JPH07119524A - Intake air flow rate detection device of internal combustion engine - Google Patents

Intake air flow rate detection device of internal combustion engine

Info

Publication number
JPH07119524A
JPH07119524A JP5258598A JP25859893A JPH07119524A JP H07119524 A JPH07119524 A JP H07119524A JP 5258598 A JP5258598 A JP 5258598A JP 25859893 A JP25859893 A JP 25859893A JP H07119524 A JPH07119524 A JP H07119524A
Authority
JP
Japan
Prior art keywords
flow rate
intake air
air flow
detection
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5258598A
Other languages
Japanese (ja)
Inventor
Hajime Hosoya
肇 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP5258598A priority Critical patent/JPH07119524A/en
Publication of JPH07119524A publication Critical patent/JPH07119524A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain the accuracy of flow rate detection by calculating an average flow rate of the intake air flow rate basing on the adopted detection value as well as by detecting the maximal point of the intake air flow rate variations and selecting the detected value of the intake air flow rate after comparing the maximal point occurring interval time with the standard time. CONSTITUTION:A temperature sensing type flow meter 1 is impressed with power supply voltage through an ignition switch 2. The output voltage of the temperature sensing type flow meter 1 is inputted into a microcomputer 4 through an A/D transducer 3. Further the detection signal of an engine speed sensor 5 is inputted into the microcomputer 4 which then controls the fuel supply quantity to the internal combustion engine in accordance with each input signal. At this time, the microcomputer 4 calculates an average flow rate of the intake air flow rate basing on the adopted detection value as well as detects the maximal point of the intake air flow rate variations and selects the detected value of the intake air flow rate by comparing the maximal point occurring interval time with the standard time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の吸入空気流量
検出装置に関し、詳しくは、内燃機関の吸気通路中に配
置した感温抵抗に基づいて機関吸入空気流量を検出する
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake air flow rate detecting device for an internal combustion engine, and more particularly to a device for detecting an engine intake air flow rate based on a temperature-sensitive resistance arranged in an intake passage of the internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関の電子制御燃料噴射装置におい
ては、機関の吸入空気流量Qを検出するための空気流量
計(エアフローメータ)を備え、この空気流量計で検出
された吸入空気流量Qと機関回転数Neとから基本燃料
噴射量Tp=K×Q/Ne(Kは定数)を演算するよう
構成されたものが知られており、前記空気流量計とし
て、実開昭59−78926号公報等に開示されるよう
な感温式流量計が用いられている。
2. Description of the Related Art An electronically controlled fuel injection system for an internal combustion engine is equipped with an air flow meter (air flow meter) for detecting an intake air flow rate Q of the engine, and the intake air flow rate Q detected by this air flow meter is It is known that the basic fuel injection amount Tp = K × Q / Ne (K is a constant) is calculated from the engine speed Ne and the air flow meter is disclosed in Japanese Utility Model Laid-Open No. 59-78926. A temperature sensitive flow meter as disclosed in U.S. Pat.

【0003】前記感温式流量計は、いわゆるホットワイ
ヤ型或いはホットフィルム型などの感温抵抗を吸気通路
に配置し、かかる感温抵抗に電流を供給して一定温度
(抵抗値)に発熱させ、吸入空気による温度低下を電流
の増大により補い、その電流値から吸入空気流量を求め
ている。即ち、図2中の感温式流量計1を例にして説明
すれば、感温抵抗RH (ホットワイヤ又はホットフィル
ム)の他、温度補償抵抗RK , 基準抵抗Rs , 固定抵抗
1 , 2 を備え、これらによりブリッジ回路Bが構成
されている。
In the temperature-sensitive flow meter, a so-called hot wire type or hot film type temperature sensitive resistor is arranged in the intake passage, and a current is supplied to the temperature sensitive resistor to generate heat at a constant temperature (resistance value). The temperature decrease due to the intake air is compensated for by increasing the current, and the intake air flow rate is calculated from the current value. That is, the temperature-sensitive flowmeter 1 in FIG. 2 will be described as an example. In addition to the temperature-sensitive resistance R H (hot wire or hot film), temperature compensation resistance R K, reference resistance R s, fixed resistance R 1 , R 2 and the bridge circuit B is constituted by them.

【0004】そして、このブリッジ回路Bの感温抵抗R
H 及び基準抵抗Rs が直列に接続されている側の分圧点
の電位(基準抵抗Rs の端子電圧)と、温度補償抵抗R
K 及び固定抵抗R1 , 2 が直列に接続されている側の
分圧点の電位(固定抵抗R2の端子電圧)とが差動増幅
器OPに入力されるようになっており、この差動増幅器
OPの出力に応じてトランジスタTrを介してブリッジ
回路Bへの供給電流が補正される。
The temperature sensing resistor R of the bridge circuit B
H and the reference resistance R s are connected in series, the potential of the voltage dividing point (the terminal voltage of the reference resistance R s ) and the temperature compensation resistance R
K and the potential at the voltage dividing point on the side where the fixed resistors R 1 and R 2 are connected in series (the terminal voltage of the fixed resistor R 2 ) are input to the differential amplifier OP. The supply current to the bridge circuit B is corrected via the transistor Tr according to the output of the dynamic amplifier OP.

【0005】つまり、ブリッジ回路Bが平衡している状
態において、機関の吸入空気流量が例えば増大すると、
感温抵抗RH がこの空気流によってより冷却されてその
抵抗値が減少し、基準抵抗Rs の端子電圧が増大して、
ブリッジ回路Bが非平衡状態となり、差動増幅器OPの
出力が増大する。これにより、トランジスタTrによっ
て制御されるブリッジ回路Bへの供給電流が増大し、感
温抵抗RH が加熱されてその抵抗値が増大することによ
り、ブリッジ回路Bの平衡条件が回復される。
That is, when the intake air flow rate of the engine increases, for example, when the bridge circuit B is in equilibrium,
The temperature sensitive resistance R H is further cooled by this air flow, its resistance value decreases, and the terminal voltage of the reference resistance R s increases,
The bridge circuit B becomes unbalanced and the output of the differential amplifier OP increases. As a result, the supply current to the bridge circuit B controlled by the transistor Tr increases, the temperature-sensitive resistor R H is heated, and its resistance value increases, whereby the balanced condition of the bridge circuit B is restored.

【0006】ここで、吸入空気の温度が例えば低下する
と、感温抵抗RH が冷却されてその抵抗値が減少する
が、感温抵抗RH と同一雰囲気にある温度補償抵抗RK
も同時に冷却されてその抵抗値が減少するから、ブリッ
ジ回路Bへ供給される電流値が吸入空気の温度変化によ
り変化することが抑制される。従って、機関の吸入空気
流量Qとブリッジ回路Bへの供給電流とが吸入空気温度
に無関係に対応することになり、基準抵抗Rs の端子電
圧を検出することにより、吸入空気流量Qを測定するこ
とができる。
Here, when the temperature of the intake air decreases, for example, the temperature-sensitive resistor R H is cooled and its resistance value decreases, but the temperature-compensating resistor R K in the same atmosphere as the temperature-sensitive resistor R H.
At the same time, the resistance value of the bridge circuit B is reduced and the resistance value of the bridge circuit B is reduced, so that the current value supplied to the bridge circuit B is prevented from changing due to the temperature change of the intake air. Therefore, the intake air flow rate Q of the engine and the current supplied to the bridge circuit B correspond independently of the intake air temperature, and the intake air flow rate Q is measured by detecting the terminal voltage of the reference resistance R s. be able to.

【0007】[0007]

【発明が解決しようとする課題】ところで、スロットル
弁開度が大きくしかも機関回転数が低回転域又は高回転
域にあるときには、逆流成分を含んだ吸気脈動がシリン
ダ側から感温式流量計の感温抵抗RH の部分まで伝わる
場合がある。このとき、感温式流量計では、流れの方向
が判別できないため、逆流も正方向と同様に検知し(図
10参照)、この結果、平均流量として真の吸入空気流量
(図11参照)よりも大きな値が検出されることになって
しまうという問題があった。
By the way, when the throttle valve opening is large and the engine speed is in the low speed region or the high speed region, the intake pulsation including the backflow component is applied to the temperature sensitive flowmeter from the cylinder side. It may reach the temperature-sensitive resistance R H. At this time, since the temperature-sensitive flow meter cannot determine the flow direction, backflow is detected in the same way as in the forward direction (Fig.
As a result, there is a problem that a value larger than the true intake air flow rate (see FIG. 11) is detected as the average flow rate.

【0008】上記のようにして機関の吸入空気流量が真
の値よりも多く検出されると、該検出値に基づく電子燃
料噴射制御によって余分な燃料が噴射供給され、空燃比
をオーバーリッチ化させることになってしまう。本発明
は上記問題点に鑑みなされたものであり、逆流成分を含
んだ吸気脈動が発生しても、流量検出の精度を維持でき
るようにし、以て、燃料噴射制御の精度を向上させるこ
とを目的とする。
When the intake air flow rate of the engine is detected to be larger than the true value as described above, the extra fuel is injected and supplied by the electronic fuel injection control based on the detected value to make the air-fuel ratio overrich. I will end up. The present invention has been made in view of the above problems, and it is possible to maintain the accuracy of flow rate detection even when intake pulsation including a backflow component occurs, and thereby improve the accuracy of fuel injection control. To aim.

【0009】[0009]

【課題を解決するための手段】そのため本発明にかかる
内燃機関の吸入空気流量検出装置は、図1に示すように
構成される。図1において、感温式流量検出手段は、内
燃機関の吸気通路中に配置した感温抵抗の吸入空気流量
に応じた抵抗値変化に基づいて機関の吸入空気流量を検
出する。
Therefore, an intake air flow rate detecting device for an internal combustion engine according to the present invention is constructed as shown in FIG. In FIG. 1, the temperature-sensitive flow rate detecting means detects the intake air flow rate of the engine based on the resistance value change of the temperature-sensitive resistance arranged in the intake passage of the internal combustion engine according to the intake air flow rate.

【0010】また、流量極大点検出手段は、感温式流量
検出手段で検出される吸入空気流量変化の極大点を検出
し、検出値選択手段は、流量極大点検出手段で検出され
た極大点の発生間隔時間と基準時間との比較に基づいて
吸入空気流量の検出値を取捨選択する。そして、平均流
量演算手段は、検出値選択手段で採用された検出値に基
づいて吸入空気流量の平均流量を演算する。
Further, the maximum flow rate detecting means detects the maximum point of the change in the intake air flow rate detected by the temperature sensitive flow rate detecting means, and the detected value selecting means detects the maximum point detected by the maximum flow rate detecting means. The detection value of the intake air flow rate is selected based on the comparison between the occurrence interval time and the reference time. Then, the average flow rate calculation means calculates the average flow rate of the intake air flow rate based on the detection value adopted by the detection value selection means.

【0011】[0011]

【作用】逆流成分を含む吸気脈動が発生しているときに
は、図10に示すように、感温式流量検出手段は逆流成分
も正方向として検出することになるから、正方向のみを
検出する場合よりもその極大点の発生周期が短くなる。
そこで、感温式流量検出手段で検出される吸入空気流量
変化の極大点を検出し、該検出された極大点の発生周期
が逆流成分を含まないときの発生周期よりも短い場合に
は、当該極大点が逆流成分の検知によるものであると見
做し、逆流成分を検知した検出値を不採用とし、正方向
の流れを検知した結果のみを採用させる。そして、正方
向のみの検出値を用いて平均流量を演算させるものであ
る。
When the intake pulsation including the backflow component is generated, as shown in FIG. 10, the temperature-sensitive flow rate detecting means also detects the backflow component as the positive direction, so that only the forward direction is detected. The generation cycle of the maximum point becomes shorter than that.
Therefore, if the maximum point of the change in the intake air flow rate detected by the temperature-sensitive flow rate detection means is detected and the generation cycle of the detected maximum point is shorter than the generation cycle when the backflow component is not included, Considering that the maximum point is due to the detection of the backflow component, the detection value of the backflow component detected is not adopted, and only the result of the detection of the forward flow is adopted. Then, the average flow rate is calculated by using the detected value only in the positive direction.

【0012】[0012]

【実施例】以下に本発明の実施例を説明する。図2に実
施例のハードウェア構成を示す。この図2において、感
温式流量検出手段としての感温式流量計1には、電源電
圧(バッテリ電圧)VB がイグニッションスイッチ2を
介して印加される。そして、この感温式流量計1の出力
電圧Usは、A/D変換器3を介してマイクロコンピュ
ータ4に入力される。
EXAMPLES Examples of the present invention will be described below. FIG. 2 shows the hardware configuration of the embodiment. In FIG. 2, the power supply voltage (battery voltage) V B is applied to the temperature-sensitive flow meter 1 as the temperature-sensitive flow rate detecting means via the ignition switch 2. The output voltage Us of the temperature-sensitive flow meter 1 is input to the microcomputer 4 via the A / D converter 3.

【0013】この他、機関回転数Ne(rpm)を検出
する回転数センサ5が設けられ、前記感温式流量計1の
出力電圧Usと共に、前記回転数センサ5の検出信号が
前記マイクロコンピュータ4に入力されるようになって
いる。ここで、マイクロコンピュータ4は、前記感温式
流量計1で検出された機関吸入空気流量Qと、前記回転
数センサ5で検出された機関回転数Neとに基づいて基
本燃料噴射量Tp=K×Q/Ne(Kは定数)を演算す
ると共に、この基本燃料噴射量Tpを適宜補正して最終
的な燃料噴射量Tiを演算し、この燃料噴射量Tiに相
当するパルス幅の噴射パルス信号を、機関回転に同期し
た所定タイミングで、図示しない電磁式燃料噴射弁に出
力することによって、内燃機関への燃料供給を電子制御
するものである。
In addition to the above, a rotation speed sensor 5 for detecting the engine rotation speed Ne (rpm) is provided, and the detection signal of the rotation speed sensor 5 together with the output voltage Us of the temperature-sensitive flow meter 1 is supplied to the microcomputer 4. It is designed to be input to. Here, the microcomputer 4 determines the basic fuel injection amount Tp = K based on the engine intake air flow rate Q detected by the temperature-sensitive flow meter 1 and the engine rotation speed Ne detected by the rotation speed sensor 5. × Q / Ne (K is a constant) is calculated, the basic fuel injection amount Tp is appropriately corrected to calculate the final fuel injection amount Ti, and an injection pulse signal having a pulse width corresponding to the fuel injection amount Ti is calculated. Is output to an electromagnetic fuel injection valve (not shown) at a predetermined timing synchronized with the engine rotation, thereby electronically controlling the fuel supply to the internal combustion engine.

【0014】尚、前記感温式流量計1の構成及び作用に
ついては先に説明したので、ここでは感温式流量計1の
詳細な説明は省略する。次に、マイクロコンピュータ4
によって行われる機関の平均吸入空気流量Qavの検出の
様子を、図3のフローチャートに従って説明する。尚、
本実施例において、流量極大点検出手段,検出値選択手
段,平均流量演算手段としての機能は、前記図3のフロ
ーチャートに示すようにマイクロコンピュータ4がソフ
トウェア的に備えているものとする。
Since the structure and operation of the temperature-sensitive flow meter 1 have been described above, a detailed description of the temperature-sensitive flow meter 1 will be omitted here. Next, the microcomputer 4
The state of detection of the average intake air flow rate Qav of the engine performed by means of will be described with reference to the flowchart of FIG. still,
In the present embodiment, the functions of the maximum flow rate detecting means, the detected value selecting means, and the average flow rate calculating means are assumed to be provided in software by the microcomputer 4 as shown in the flow chart of FIG.

【0015】図3のフローチャートにおいて、まず、ス
テップ1(図中ではS1としてある。以下同様)では、
A/D変換器3を介して読み込んだ出力電圧Usを変換
テーブルによって変換して得られた吸入空気流量Qに基
づいて、吸入空気流量Q変化における極大点を検出す
る。前記極大点の検出は、最新に読み込んだ吸入空気流
量Qと前回に読み込まれた吸入空気流量Q-1との差を逐
次演算させ、前記差の符合が正から負に反転した点を、
吸気脈動の極大点として判定させるようにする(図4参
照)。
In the flowchart of FIG. 3, first, in step 1 (denoted as S1 in the figure, the same applies hereinafter),
The maximum point in the change of the intake air flow rate Q is detected based on the intake air flow rate Q obtained by converting the output voltage Us read through the A / D converter 3 by the conversion table. To detect the maximum point, the difference between the latest read intake air flow rate Q and the last read intake air flow rate Q −1 is sequentially calculated, and the point where the sign of the difference is inverted from positive to negative,
The maximum point of the intake pulsation is determined (see FIG. 4).

【0016】ステップ1で極大点が検出されると、次の
ステップ2では、当該極大点における吸入空気流量Qデ
ータを含め、極大点から所定時間内において読み込まれ
た所定数の吸入空気流量Qデータを平均流量演算のため
のデータとして記憶させる(図5参照)。4サイクル直
列内燃機関において気筒数をCylとすると、吸気行程位
相差時間、即ち、逆流成分を含まない吸気脈動周期は、
(60×2)/(Ne×Cyl)として求められるから、逆
流成分のサンプリングを回避するには、極大点から吸入
空気流量Qデータを記憶させる前記所定時間を(60×
2)/(Ne×Cyl×4)とすることが好ましく、ま
た、前記所定時間内における吸入空気流量Qデータの記
憶数は、2n (n=2〜4程度)とすることが好まし
い。
When the maximum point is detected in step 1, in the next step 2, a predetermined number of intake air flow rate Q data read within a predetermined time from the maximum point, including the intake air flow rate Q data at the maximum point. Is stored as data for calculating the average flow rate (see FIG. 5). In a 4-cycle in-line internal combustion engine, assuming that the number of cylinders is Cyl, the intake stroke phase difference time, that is, the intake pulsation cycle that does not include the backflow component,
Since it is calculated as (60 × 2) / (Ne × Cyl), in order to avoid sampling the backflow component, the predetermined time for storing the intake air flow rate Q data from the maximum point is (60 × 2)
2) / (Ne × Cyl × 4), and the number of stored intake air flow rate Q data within the predetermined time is preferably 2 n (n = about 2 to 4).

【0017】尚、検出された極大点の前後の所定時間内
で検出された吸入空気流量データを平均流量演算用とし
て記憶させるようにしても良い。上記のようにして、極
大点を検出すると共に、該極大点から所定時間内におけ
る吸入空気流量Qデータを記憶させると、次のステップ
3では、今回求められた極大点と前回正方向の流れに対
応する極大点として採用された極大点との間隔時間が、
前記逆流成分を含まない吸気脈動周期=(60×2)/
(Ne×Cyl)に略一致するか否かを判別する。
The intake air flow rate data detected within a predetermined time before and after the detected maximum point may be stored for calculating the average flow rate. As described above, when the maximum point is detected and the intake air flow rate Q data within a predetermined time from the maximum point is stored, in the next step 3, the maximum point obtained this time and the flow in the positive direction last time are determined. The interval time between the corresponding maximum point and the maximum point
Inspiratory pulsation cycle that does not include the backflow component = (60 × 2) /
It is determined whether or not it substantially matches (Ne × Cyl).

【0018】ここで、正方向流れに対応する前回の極大
点から吸気脈動周期=(60×2)/(Ne×Cyl)を大
きく下回る時間周期で今回の極大点が検出された場合に
は、今回の極大点は逆流成分を検出した結果であると見
做し、今回の極大点を起点として記憶させた吸入空気流
量Qのデータをステップ4で不採用とした後、再度ステ
ップ1へ進み、新たに極大点を検出させる。
Here, when the current maximum point is detected in a time period much shorter than the intake pulsation period = (60 × 2) / (Ne × Cyl) from the previous maximum point corresponding to the forward flow, It is considered that the maximum point this time is the result of detecting the backflow component, and the data of the intake air flow rate Q stored with the maximum point of this time as the starting point is not adopted in step 4, and then the process proceeds to step 1 again. A new maximum point is detected.

【0019】即ち、逆流成分を含む吸気脈動が発生する
と、図6に示すように、正方向の流れの脈動ピークの間
に、逆流成分を検知した結果としての脈動ピークが表れ
るから、隣接する極大点の間隔は脈動成分を含まない場
合(図6参照)に比べて半分程度に小さくなる。そこ
で、正方向の流れに対応するものとして採用した極大点
から次に極大点が検出されるまでの間隔が、正方向の流
れの脈動周期(所定時間)に比べて極端に短い場合に
は、今回の極大点は逆流成分に対応するものと認定す
る。そして、逆流成分に対応する極大点であると認めら
れたときには、当該極大点を起点として記憶させた複数
の流量データを最終的な平均流量の演算に用いないよう
にし、正方向の流れに対応するものとして認められた極
大点を起点として記憶させた複数の流量データのみを取
捨選択させて平均流量の演算に用いるものである。
That is, when an intake pulsation containing a backflow component occurs, a pulsation peak as a result of detecting the backflow component appears between the pulsation peaks of the forward flow, as shown in FIG. The interval between the points is reduced to about half as compared with the case where the pulsation component is not included (see FIG. 6). Therefore, when the interval from the maximum point adopted as one corresponding to the flow in the positive direction to the detection of the next maximum point is extremely shorter than the pulsation cycle (predetermined time) of the positive flow, It is recognized that the maximum point this time corresponds to the backflow component. Then, when it is recognized that it is the maximum point corresponding to the backflow component, a plurality of flow rate data stored with the maximum point as the starting point is not used for the final average flow rate calculation, and the flow in the forward direction is dealt with. It is used to calculate the average flow rate by selecting and discarding only a plurality of flow rate data stored with the maximum point recognized as the starting point.

【0020】一方、ステップ3で、前回正方向の流れに
対応する極大点として採用された極大点と今回検出され
た極大点との間隔時間が、前記逆流成分を含まない吸気
脈動周期=(60×2)/(Ne×Cyl)に略一致すると
判別された場合には(図7参照)、今回の極大点は正方
向の流れを検出した結果の極大点であると見做す。そし
て、今回の極大点を起点として記憶させた複数の吸入空
気流量Qデータを用いて平均流量を演算させるべく、ス
テップ5へ進む。
On the other hand, in step 3, the interval time between the maximum point that was previously adopted as the maximum point corresponding to the flow in the positive direction and the maximum point detected this time is the intake pulsation cycle that does not include the backflow component = (60 When it is determined that it substantially matches (× 2) / (Ne × Cyl) (see FIG. 7), the current maximum point is regarded as the maximum point as a result of detecting the flow in the positive direction. Then, in order to calculate the average flow rate using the plurality of intake air flow rate Q data stored with the current maximum point as the starting point, the process proceeds to step 5.

【0021】ステップ5では、前述のようにして正方向
の流れ成分を検出したものとして認められた複数の吸入
空気流量Qのデータの周波数分析を高速フーリエ変換な
どを用いて行い(図8参照)、次のステップ6では、0
Hzの周波数成分(直流成分)のみを用いて逆フーリエ
変換することで、時間軸上の波形に戻すことで、平均流
量Qavを求める(図9参照)。
In step 5, the frequency analysis of the data of the plurality of intake air flow rates Q recognized as having detected the flow component in the positive direction as described above is performed by using the fast Fourier transform or the like (see FIG. 8). , In the next step 6, 0
By performing an inverse Fourier transform using only the frequency component (DC component) of Hz to restore the waveform on the time axis, the average flow rate Qav is obtained (see FIG. 9).

【0022】このように、逆流成分を検出した結果を採
用せずに、正方向の流れを検出したと認められる領域に
おいて検出された吸入空気流量Qデータのみを用いて平
均流量を演算させるから、たとえ逆流成分を含む吸気脈
動が発生しても、逆流成分に影響されて平均流量が真の
吸入空気流量よりも大きく演算されることを回避でき、
以て、燃料制御精度を向上させることができる。
As described above, the average flow rate is calculated using only the intake air flow rate Q data detected in the region where it is recognized that the forward flow is detected without using the result of detecting the backflow component. Even if the intake pulsation including the backflow component occurs, it is possible to avoid that the average flow rate is calculated to be larger than the true intake air flowrate due to the backflow component.
As a result, the fuel control accuracy can be improved.

【0023】尚、感温式流量計1の出力の読み込み周期
(A/D変換周期)は、固定値であっても良いし、ま
た、機関回転数Neの増大に変化させるようにしても良
い。また、逆流成分を含む吸気脈動の発生領域は、機関
回転数Neとスロットル弁開度とによって略特定できる
から、逆流の非発生条件が回転数Ne及びスロットル弁
開度から検出されたときには、上記のような極大点の検
出に基づく吸入空気流量検出データの取捨選択を行なわ
せず単純な平滑化処理を施すようにしても良いし、ま
た、機関回転数Neとスロットル弁開度とに基づいて平
均流量の演算に用いる吸入空気流量データのサンプリン
グ間隔やサンプリング範囲を変化させるようにしても良
い。
The output read cycle (A / D conversion cycle) of the temperature sensitive flow meter 1 may be a fixed value or may be changed to increase the engine speed Ne. . Further, the generation region of the intake pulsation including the backflow component can be substantially specified by the engine speed Ne and the throttle valve opening. Therefore, when the non-generation condition of the backflow is detected from the rotation speed Ne and the throttle valve opening, It is also possible to perform a simple smoothing process without selecting the intake air flow rate detection data based on the detection of the maximum point, or based on the engine speed Ne and the throttle valve opening. The sampling interval or sampling range of the intake air flow rate data used for calculating the average flow rate may be changed.

【0024】[0024]

【発明の効果】以上説明したように本発明によると、逆
流成分を含む吸気脈動が発生しても、機関吸入空気流量
の平均値として真の吸入空気流量に対応する値を求める
ことができ、以て、燃料噴射制御の精度向上に寄与でき
るという効果がある。
As described above, according to the present invention, even if the intake pulsation including the backflow component occurs, a value corresponding to the true intake air flow rate can be obtained as an average value of the engine intake air flow rate. Thus, there is an effect that it can contribute to the improvement of the accuracy of fuel injection control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構成を示すブロック図。FIG. 1 is a block diagram showing the basic configuration of the present invention.

【図2】本発明の実施例のハードウェア構成を示すシス
テム概略図。
FIG. 2 is a system schematic diagram showing a hardware configuration of an embodiment of the present invention.

【図3】実施例における平均流量の検出の様子を示すフ
ローチャート。
FIG. 3 is a flowchart showing how the average flow rate is detected in the embodiment.

【図4】吸入空気流量の極大点の検出の様子を示すタイ
ムチャート。
FIG. 4 is a time chart showing how the maximum point of the intake air flow rate is detected.

【図5】極大点を起点する検出データの記憶制御を示す
タイムチャート。
FIG. 5 is a time chart showing storage control of detection data starting from a maximum point.

【図6】逆流成分を含む吸気脈動の様子を示すタイムチ
ャート。
FIG. 6 is a time chart showing a state of intake pulsation including a backflow component.

【図7】逆流成分を含まない吸気脈動の様子を示すタイ
ムチャート。
FIG. 7 is a time chart showing how intake pulsation does not include a backflow component.

【図8】極大点を起点する検出データの記憶制御を示す
タイムチャート。
FIG. 8 is a time chart showing storage control of detection data starting from a maximum point.

【図9】逆流成分を含まない吸気脈動の様子を示すタイ
ムチャート。
FIG. 9 is a time chart showing a state of intake pulsation that does not include a backflow component.

【図10】逆流成分検知による平均流量誤差の発生を示す
タイムチャート。
FIG. 10 is a time chart showing the occurrence of an average flow rate error due to backflow component detection.

【図11】逆流成分発生時の真の機関吸入空気流量を示す
タイムチャート。
FIG. 11 is a time chart showing a true engine intake air flow rate when a backflow component is generated.

【符号の説明】[Explanation of symbols]

1 感温式流量計 2 イグニッションスイッチ 3 A/D変換器 4 マイクロコンピュータ 5 回転数センサ RH 感温抵抗RH 1 Temperature-sensitive flow meter 2 Ignition switch 3 A / D converter 4 Microcomputer 5 Rotation speed sensor RH Temperature-sensitive resistance RH

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の吸気通路中に配置した感温抵抗
の吸入空気流量に応じた抵抗値変化に基づいて機関の吸
入空気流量を検出する感温式流量検出手段と、 前記感温式流量検出手段で検出される吸入空気流量変化
の極大点を検出する流量極大点検出手段と、 該流量極大点検出手段で検出された極大点の発生間隔時
間と基準時間との比較に基づいて吸入空気流量の検出値
を取捨選択する検出値選択手段と、 該検出値選択手段で採用された検出値に基づいて吸入空
気流量の平均流量を演算する平均流量演算手段と、 を含んで構成されたことを特徴とする内燃機関の吸入空
気流量検出装置。
1. A temperature sensitive flow rate detecting means for detecting an intake air flow rate of an engine based on a resistance value change of a temperature sensitive resistance arranged in an intake passage of an internal combustion engine according to an intake air flow rate, and the temperature sensitive system. Intake based on a comparison between the maximum flow point detection means for detecting the maximum point of the change in the intake air flow rate detected by the flow rate detection means, and the time interval between the maximum points detected by the maximum flow point detection means and the reference time. A detection value selection means for selecting the detection value of the air flow rate, and an average flow rate calculation means for calculating the average flow rate of the intake air flow rate based on the detection value adopted by the detection value selection means. An intake air flow rate detection device for an internal combustion engine, comprising:
JP5258598A 1993-10-15 1993-10-15 Intake air flow rate detection device of internal combustion engine Pending JPH07119524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5258598A JPH07119524A (en) 1993-10-15 1993-10-15 Intake air flow rate detection device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5258598A JPH07119524A (en) 1993-10-15 1993-10-15 Intake air flow rate detection device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH07119524A true JPH07119524A (en) 1995-05-09

Family

ID=17322498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5258598A Pending JPH07119524A (en) 1993-10-15 1993-10-15 Intake air flow rate detection device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH07119524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132624A1 (en) * 2012-03-07 2013-09-12 イビデン株式会社 Device for detecting state of diesel particulate filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132624A1 (en) * 2012-03-07 2013-09-12 イビデン株式会社 Device for detecting state of diesel particulate filter
CN103620169A (en) * 2012-03-07 2014-03-05 揖斐电株式会社 Device for detecting state of diesel particulate filter
JPWO2013132624A1 (en) * 2012-03-07 2015-07-30 イビデン株式会社 Particulate filter state detector
US9322315B2 (en) 2012-03-07 2016-04-26 Ibiden Co., Ltd. Particulate collection filter state detection device

Similar Documents

Publication Publication Date Title
JPH06207550A (en) Predicting method of flow rate of air in cylinder
JP2796432B2 (en) Compensation method of measurement error of thermal thin film air weighing device
JPS6112114B2 (en)
JPH0949452A (en) Control device for internal combustion engine
JPH08189408A (en) Atmospheric pressure estimating device in internal combustion engine
JPH07167697A (en) Intake air flow rate detector for internal combustion engine
JPH0575902B2 (en)
JP2524847B2 (en) Thermal intake air flow sensor
JPH07119524A (en) Intake air flow rate detection device of internal combustion engine
GB2216296A (en) Fuel injection control system for an automotive engine
JP2681569B2 (en) Intake air flow rate detection device for internal combustion engine
JPH0633824A (en) Intake air flow date detecting device for internal combustion engine
JPH02125967A (en) Ignition time controller for internal combustion engine
JP2715676B2 (en) Engine air volume detector
JP2672603B2 (en) Thermal air flow meter
JPH05149186A (en) Intake air flow rate detecting device for internal combustion engine
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine
JPH01195326A (en) Hot-wire air flowmeter
JP2631587B2 (en) Fuel supply control device for internal combustion engine
JP2627826B2 (en) Fuel supply control device for internal combustion engine
KR910004385B1 (en) Method and system for controlling internal combustion engine
JPS58185945A (en) Air-fuel ratio controller for internal-combustion engine
JPH05149173A (en) Fuel feed control device for internal combustion engine
JPH05149185A (en) Intake air flow rate detecting device for internal combustion engine
JPS5930897B2 (en) Electronically controlled fuel injection device