JP2003287453A - Intake-air flow measuring apparatus - Google Patents

Intake-air flow measuring apparatus

Info

Publication number
JP2003287453A
JP2003287453A JP2002088261A JP2002088261A JP2003287453A JP 2003287453 A JP2003287453 A JP 2003287453A JP 2002088261 A JP2002088261 A JP 2002088261A JP 2002088261 A JP2002088261 A JP 2002088261A JP 2003287453 A JP2003287453 A JP 2003287453A
Authority
JP
Japan
Prior art keywords
flow rate
air flow
intake air
output
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002088261A
Other languages
Japanese (ja)
Other versions
JP4019413B2 (en
Inventor
Noboru Kitahara
昇 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002088261A priority Critical patent/JP4019413B2/en
Priority to DE2003113616 priority patent/DE10313616B4/en
Publication of JP2003287453A publication Critical patent/JP2003287453A/en
Application granted granted Critical
Publication of JP4019413B2 publication Critical patent/JP4019413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/6965Circuits therefor, e.g. constant-current flow meters comprising means to store calibration data for flow signal calculation or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a mean intake-air flow rate to be found by a computing operation does not agree with a mean value of a true intake-air flow rate because in conventional cass a region to be corrected with reference to an output of a flow rate sensor is limited to an inverse region in which a flow-rate converted value of the output of the sensor is negative. <P>SOLUTION: By a correction-reference-value decision means 22, a correction reference value Qx according to an operating state of an engine is found. By a backflow-side output correction means 23, a backflow output value Vg on the side of a backflow direction from the correction reference value Qx is corrected from among an output value V of the flow rate sensor 8 so as to find a backflow-side correction output value Vg'. By a flow-rate calculation means 9, the mean intake-air flow rate Q is found on the basis of an intake-air flow rate Qj to be found from an output value Vj in a forward flow direction from the correction reference value Qx from among the output value V of the flow rate sensor 8 and on the basis of a backflow-side intake-air flow rate Qg to be found from the correction output value Vg'. Therefore, the mean intake-air flow rate Q is measured with high accuracy according to a wide operation of the engine irrespective of the operating state of the engine. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関(以下、
エンジン)に吸い込まれる吸入空気流量測定装置に関す
る。
TECHNICAL FIELD The present invention relates to an internal combustion engine (hereinafter,
The present invention relates to an intake air flow rate measuring device sucked into an engine.

【0002】[0002]

【従来の技術】エンジンの吸気管には、エンジンに吸い
込まれる吸入空気流量を測定するための流量センサが搭
載されている。流量センサとしては、発熱抵抗体を用い
て吸気管内を流れる空気の順流と逆流の空気流量を測定
するものが知られている。この流量センサによるエンジ
ンの低回転・高負荷域(逆流が大きく発生する領域)時
における出力特性を、図9の実線Aに示す。上記したタ
イプのセンサ出力から演算される吸入空気流量は、図1
0の実線Bの流量変化として示される。なお、この時の
真の吸入空気流量の変化は図10の破線αである。
2. Description of the Related Art An intake pipe of an engine is equipped with a flow rate sensor for measuring a flow rate of intake air taken into the engine. As a flow rate sensor, there is known a flow rate sensor that measures a forward flow rate and a reverse flow rate of air flowing in the intake pipe by using a heating resistor. The solid line A in FIG. 9 shows the output characteristic of the flow sensor when the engine is in the low rotation / high load region (a region where a large backflow occurs). The intake air flow rate calculated from the sensor output of the above type is shown in FIG.
It is shown as the flow rate change of the solid line B of 0. The change in the true intake air flow rate at this time is indicated by the broken line α in FIG. 10.

【0003】図10の破線αと実線Bとを比較して明ら
かなように、センサ出力から求めた流量(実線B)は、
順流側よりも逆流側において、真の吸入空気流量(破線
α)に対する誤差が大きくなっている。このため、セン
サ出力から求められる平均吸入空気流量は、真の吸入空
気流量の平均値よりも大きな値になってしまう。
As is clear by comparing the broken line α and the solid line B in FIG. 10, the flow rate (solid line B) obtained from the sensor output is
The error with respect to the true intake air flow rate (broken line α) is larger on the reverse flow side than on the forward flow side. Therefore, the average intake air flow rate obtained from the sensor output becomes a value larger than the average value of the true intake air flow rate.

【0004】上記の不具合を回避する技術として、特開
平9−15013号公報に開示された技術が知られてい
る。この技術は、流量センサのセンサ出力が逆流域(流
量がマイナスの領域)の時に、その出力を図9の一点鎖
線A’に示すように補正するものである。このように補
正された補正値から吸入空気流量を演算すると、エンジ
ンの低回転・高負荷域時において、図10の一点鎖線
B’に示す流量変化となり、演算によって求められる平
均吸入空気流量が、真の吸入空気流量の平均値と略一致
するようになる。
As a technique for avoiding the above-mentioned problems, the technique disclosed in Japanese Patent Laid-Open No. 9-15013 is known. In this technique, when the sensor output of the flow rate sensor is in the reverse flow area (the area where the flow rate is negative), the output is corrected as shown by the chain line A'in FIG. When the intake air flow rate is calculated from the correction value thus corrected, the flow rate changes shown by the one-dot chain line B ′ in FIG. 10 when the engine is in the low rotation / high load range, and the average intake air flow rate obtained by the calculation is The average value of the true intake air flow rate is almost the same.

【0005】[0005]

【発明が解決しようとする課題】上記公報に開示される
技術は、上述したように、エンジンの低回転・高負荷域
時において、流量センサの出力を補正してから求められ
る吸入空気流量の平均値を、真の吸入空気流量の平均値
と略一致させることができる。しかし、流量センサの出
力に対して補正を加える領域は、順流域と逆流域を境と
して逆流域(センサ出力による算出流量がマイナス側の
領域)に限定されているため、演算によって求めた平均
吸入空気流量と、真の吸入空気流量の平均値とが一致し
なくなってしまう。
As described above, the technique disclosed in the above publication discloses the average intake air flow rate obtained by correcting the output of the flow rate sensor in the low engine speed / high load range. The value can be substantially matched with the average value of the true intake air flow rate. However, the area to correct the output of the flow sensor is limited to the reverse flow area (the area where the flow rate calculated by the sensor output is the negative side) with the forward flow area and the reverse flow area as the boundary, so the average inhalation calculated The air flow rate and the true average value of the intake air flow rate do not match.

【0006】具体的には、例えば、エンジン回転数の上
昇等により、真の吸入空気流量の平均値がやや上昇した
場合は、補正を加える逆流域(センサ出力による算出流
量がマイナス側の領域)が減少して、補正される領域が
小さくなる(あるいはなくなる)ため、流量センサの逆
流側の出力に正確な補正を加えることができなくなり、
演算によって求められる平均吸入空気流量と、真の吸入
空気流量の平均値とが一致しなくなってしまう。
Specifically, for example, when the average value of the true intake air flow rate is slightly increased due to an increase in the engine speed or the like, a reverse flow region to be corrected (a region where the flow rate calculated by the sensor output is on the negative side). Is reduced, and the area to be corrected becomes smaller (or disappears), so it becomes impossible to accurately correct the output on the backflow side of the flow sensor,
The average intake air flow rate obtained by the calculation and the average value of the true intake air flow rate do not match.

【0007】また、例えば、スロットルバルブの開度が
変化した場合や、吸入バルブのリフト量が変化した場合
などでは、吸気脈動の順方向流量と逆方向流量との割合
(および吸気脈動幅)が変動する。つまり、この場合に
おいて、補正を加える逆流域(センサ出力による算出流
量がマイナス側の領域)が変動することになり、演算に
よって求められる平均吸入空気流量と、真の吸入空気流
量の平均値とが一致しなくなってしまう。
Further, for example, when the opening degree of the throttle valve changes or when the lift amount of the intake valve changes, the ratio of the forward flow rate to the reverse flow rate of the intake pulsation (and the intake pulsation width) is changed. fluctuate. That is, in this case, the backflow region to which correction is applied (the region where the flow rate calculated by the sensor output is on the negative side) fluctuates, and the average intake air flow rate obtained by calculation and the average value of the true intake air flow rate are It will not match.

【0008】[0008]

【発明の目的】本発明は、上記の事情に鑑みてなされた
ものであり、次の2つを目的としている。第1の目的
は、エンジンの運転状態に応じて流量センサの逆流側の
出力を的確に補正することで、エンジンの運転状態によ
らず、エンジンの広い運転範囲に亘って、平均吸入空気
流量を高い精度で測定する。第2の目的は、エンジンの
運転状態に応じて流量センサから求められる逆流側の吸
入空気流量を的確に補正することで、エンジンの運転状
態によらず、エンジンの広い運転範囲に亘って、平均吸
入空気流量を高い精度で測定する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and has the following two objects. The first purpose is to accurately correct the backflow side output of the flow rate sensor according to the operating state of the engine, so that the average intake air flow rate can be obtained over a wide operating range of the engine regardless of the operating state of the engine. Measure with high accuracy. The second purpose is to accurately correct the intake air flow rate on the reverse flow side, which is obtained from the flow rate sensor according to the operating state of the engine, so that the average value is obtained over a wide operating range of the engine regardless of the operating state of the engine. Measure the intake air flow rate with high accuracy.

【0009】[0009]

【課題を解決するための手段】次に各請求項に対応した
手段を説明する。なお、この各手段に示す符号は、理解
を補助する目的で付したものである。 〔請求項1の手段〕エンジンの運転状態に応じて吸気管
内を流れる真の空気流は、順流側と逆流側の分岐部の吸
入空気流量が変動したり、吸気脈動の順方向流量と逆方
向流量との割合が変化したりする。そこで、エンジンの
運転状態に応じて補正基準値(Qx)を求める。そし
て、流量センサの出力値(V)のうち、補正基準値(Q
x)よりも逆流方向側の出力値(Vg)を補正して逆流
側補正出力値(Vg’)を求め、この逆流側補正出力値
(Vg’)と、流量センサの出力値(V)のうち、補正
基準値(Qx)よりも順流方向側の出力値(Vj)とを
基に、平均吸入空気流量(Q)を求める。
Next, the means corresponding to each claim will be described. The reference numerals shown in the respective means are added for the purpose of assisting understanding. [Means of Claim 1] The true air flow flowing in the intake pipe in accordance with the operating state of the engine is such that the intake air flow rate at the branch portion on the forward flow side and the reverse flow side fluctuates or the forward flow rate of the intake pulsation is in the reverse direction. The ratio with the flow rate may change. Therefore, the correction reference value (Qx) is calculated according to the operating state of the engine. Then, of the output value (V) of the flow rate sensor, the correction reference value (Q
x), the output value (Vg) on the backflow side is corrected to obtain the backflow correction output value (Vg '), and the backflow correction output value (Vg') and the output value (V) of the flow sensor are calculated. Among them, the average intake air flow rate (Q) is obtained based on the output value (Vj) on the forward flow direction side of the correction reference value (Qx).

【0010】このように、請求項1の手段を採用するこ
とにより、エンジンの運転状態に応じて、吸気脈動の逆
流側における流量センサの出力値を適切に補正すること
ができるため、エンジンの運転状態によらず、エンジン
の広い運転範囲に亘って、平均吸入空気流量を高い精度
で測定することができる。
As described above, by adopting the means of claim 1, the output value of the flow rate sensor on the backflow side of the intake pulsation can be appropriately corrected according to the operating state of the engine, so that the operation of the engine is performed. Regardless of the state, the average intake air flow rate can be measured with high accuracy over a wide operating range of the engine.

【0011】〔請求項2の手段〕エンジンの運転状態に
応じて吸気管内を流れる真の空気流は、順流側と逆流側
の分岐部の吸入空気流量が変動したり、吸気脈動の順方
向流量と逆方向流量との割合が変化したりする。そこ
で、エンジンの運転状態に応じて補正基準値(Qx)を
求める。そして、流量センサの出力値(V)のうち、補
正基準値(Qx)よりも逆流方向側の出力値(Vg)か
ら求められる吸入空気流量(Qg)を補正して逆流側補
正吸入空気流量(Qg’)を求めるとともに、流量セン
サの出力値(V)のうち、補正基準値(Qx)よりも順
流方向側の出力値(Vj)から吸入空気流量(Qj)を
求め、求めた両者(Qg’、Qj)を基に平均吸入空気
流量(Q)を求める。
[Means for Claim 2] The true airflow flowing in the intake pipe in accordance with the operating state of the engine is such that the intake air flow rate at the branch portion on the forward flow side and the reverse flow side fluctuates, or the forward flow rate of the intake pulsation. And the reverse flow rate may change. Therefore, the correction reference value (Qx) is calculated according to the operating state of the engine. Then, of the output values (V) of the flow rate sensor, the intake air flow rate (Qg) obtained from the output value (Vg) on the reverse flow direction side of the correction reference value (Qx) is corrected to correct the reverse flow side corrected intake air flow rate ( Qg ') is calculated, and the intake air flow rate (Qj) is calculated from the output value (Vj) of the flow rate sensor on the side of the forward flow direction of the correction reference value (Qx). Then, the average intake air flow rate (Q) is calculated based on ', Qj).

【0012】このように、請求項2の手段を採用するこ
とにより、エンジンの運転状態に応じて、吸気脈動の逆
流側の吸入空気流量を適切に補正することができるた
め、エンジンの運転状態によらず、エンジンの広い運転
範囲に亘って、平均吸入空気流量を高い精度で測定する
ことができる。
As described above, by adopting the means of claim 2, it is possible to appropriately correct the intake air flow rate on the reverse flow side of the intake pulsation according to the operating state of the engine. Therefore, the average intake air flow rate can be measured with high accuracy over a wide operating range of the engine.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を、2つの実
施例と変形例を用いて説明する。 〔第1実施例〕図1〜図7を参照して吸入空気流量測定
装置1を用いた燃料噴射装置2を説明する。燃料噴射装
置2は、図1に示されるように、吸入空気流量を測定す
る吸入空気流量測定装置1の他に、吸入空気流量に応じ
た所定の噴射量を算出する燃料噴射量演算装置3と、こ
の燃料噴射量演算装置3で算出された噴射量を所定のタ
イミングで噴射する燃料噴射弁4とから構成される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to two examples and modifications. [First Embodiment] A fuel injection device 2 using an intake air flow rate measuring device 1 will be described with reference to FIGS. As shown in FIG. 1, the fuel injection device 2 includes an intake air flow rate measurement device 1 for measuring the intake air flow rate, and a fuel injection amount calculation device 3 for calculating a predetermined injection amount according to the intake air flow rate. The fuel injection valve 4 injects the injection amount calculated by the fuel injection amount calculation device 3 at a predetermined timing.

【0014】吸入空気流量測定装置1は、エンジン5の
吸気管6(図2参照)に取り付けられ、エンジン5に吸
引される吸入空気流量を検出するためのエアフロメータ
7(図2、図3参照)と、エアフロメータ7に取り付け
られる流量センサ8(図3参照)の出力から吸入空気流
量を算出する流量算出手段9(図1参照)とを備える。
The intake air flow rate measuring device 1 is attached to an intake pipe 6 (see FIG. 2) of an engine 5 and is used to detect an intake air flow rate sucked into the engine 5 (see FIGS. 2 and 3). ) And a flow rate calculating means 9 (see FIG. 1) for calculating the intake air flow rate from the output of the flow rate sensor 8 (see FIG. 3) attached to the air flow meter 7.

【0015】ここで、先ずエンジン5の吸入系の概略構
成を図2を参照して説明する。エンジン5の吸入系は、
エアクリーナ10で濾過された空気をエンジン5の各気
筒11へ導く吸気管6を備えるものであり、その吸気管
6には、上述したエアフロメータ7の他に、スロットル
バルブ12、サージタンク13が介在されている。そし
て、エンジン5のピストン14が下降する際に吸入バル
ブ15が開弁動作して、エアクリーナ10で濾過された
空気がエンジン5の気筒11内に吸引される。
First, a schematic structure of the intake system of the engine 5 will be described with reference to FIG. The intake system of the engine 5
An intake pipe 6 for guiding the air filtered by the air cleaner 10 to each cylinder 11 of the engine 5 is provided. The intake pipe 6 includes a throttle valve 12 and a surge tank 13 in addition to the air flow meter 7 described above. Has been done. When the piston 14 of the engine 5 descends, the intake valve 15 opens so that the air filtered by the air cleaner 10 is sucked into the cylinder 11 of the engine 5.

【0016】エアフロメータ7の構造を図3を参照して
説明する。エアフロメータ7は、エンジン5の吸気管6
に取り付けられるセンサボディ16と、このセンサボデ
ィ16に形成された副流路17内に保持される流量セン
サ8とで構成される。なお、副流路17は、吸気管6内
を流れる吸入空気の一部が迂回して流れるように設けら
れる。
The structure of the air flow meter 7 will be described with reference to FIG. The air flow meter 7 is an intake pipe 6 of the engine 5.
The sensor body 16 attached to the sensor body 16 and the flow rate sensor 8 held in the sub-flow passage 17 formed in the sensor body 16. The sub-flow passage 17 is provided so that a part of the intake air flowing in the intake pipe 6 bypasses and flows.

【0017】流量センサ8は、発熱抵抗体を用いて吸入
空気の順流方向の吸入空気流量と、逆流方向の吸入空気
流量とを測定するものであり、検出された吸入空気流量
を電気的な信号として出力する。なお、この実施例で
は、流量センサ8は吸入空気流量に応じた電圧値を出力
する例を示すが、電流値を出力するものであっても良
い。具体的に、この実施例の流量センサ8は、流量セン
サ8を通過する吸入空気流量に対し、図4の実線Aに示
す出力電圧を発生するものであり、順流方向の吸入空気
流量が増大するに従って出力電圧が所定曲線を描いて上
昇し、逆流方向の吸入空気流量が増大するに従って出力
電圧が所定曲線(上昇曲線とは異なった曲線)を描いて
下降するものである。
The flow rate sensor 8 measures the intake air flow rate in the forward flow direction of the intake air and the intake air flow rate in the reverse flow direction by using a heating resistor, and the detected intake air flow rate is an electrical signal. Output as. Although the flow rate sensor 8 outputs a voltage value according to the intake air flow rate in this embodiment, it may output a current value. Specifically, the flow rate sensor 8 of this embodiment generates the output voltage shown by the solid line A in FIG. 4 with respect to the intake air flow rate passing through the flow rate sensor 8, and the intake air flow rate in the forward flow direction increases. Accordingly, the output voltage rises in a predetermined curve, and as the intake air flow rate in the reverse flow direction increases, the output voltage falls in a predetermined curve (a curve different from the rising curve).

【0018】次に、吸入空気流量測定装置1の概略を、
図1(a)を参照して説明する。流量センサ8の出力電
圧は、ECU(エンジン・コントロール・ユニットの
略)20に設けられた流量算出手段9において、平均吸
入空気流量に換算される。流量算出手段9は、流量セン
サ8の出力電圧に対応した吸入空気流量(順流、逆流を
含む)が設定されたマップあるいは演算式を備えるもの
であり、吸気脈動等によって変動する流量センサ8の出
力電圧から、吸気脈動等によって変動する吸入空気流量
を求め、その値から平均吸入空気流量を求めるものであ
る。
Next, an outline of the intake air flow rate measuring device 1 will be described.
A description will be given with reference to FIG. The output voltage of the flow rate sensor 8 is converted into an average intake air flow rate by the flow rate calculation means 9 provided in the ECU (abbreviation of engine control unit) 20. The flow rate calculation means 9 includes a map or an arithmetic expression in which the intake air flow rate (including forward flow and reverse flow) corresponding to the output voltage of the flow rate sensor 8 is set, and the output of the flow rate sensor 8 that fluctuates due to intake pulsation or the like. The intake air flow rate that fluctuates due to intake pulsation or the like is obtained from the voltage, and the average intake air flow rate is obtained from the value.

【0019】上記の構成のように、流量センサ8の出力
特性(図4の実線A)を用いて平均吸入空気流量を求め
ると、従来技術の項で説明した不具合が発生する。つま
り、流量センサ8の電圧出力の変化は、図4の実線Aに
示されるものであり、例えば、エンジン5の低回転・高
負荷域時では、上記実線Aに基づいて求められる吸入空
気流量が図5の実線Bに示される値となり、実際の吸入
空気流量(真の吸入空気流量)の変化(図5の破線α)
に対し、順流側よりも逆流側において誤差(真の吸入空
気流量と演算流量との差)が大きくなってしまう。この
ため、流量センサ8の出力から求められる平均吸入空気
流量は、真の吸入空気流量の平均値よりも大きな値にな
ってしまう。
When the average intake air flow rate is obtained by using the output characteristic of the flow rate sensor 8 (solid line A in FIG. 4) as in the above-described configuration, the problems described in the section of the prior art occur. That is, the change in the voltage output of the flow rate sensor 8 is shown by the solid line A in FIG. 4, and for example, when the engine 5 is in the low rotation and high load range, the intake air flow rate obtained based on the solid line A is The value becomes the value indicated by the solid line B in FIG. 5, and the change in the actual intake air flow rate (true intake air flow rate) (broken line α in FIG. 5)
On the other hand, the error (the difference between the true intake air flow rate and the calculated flow rate) becomes larger on the reverse flow side than on the forward flow side. Therefore, the average intake air flow rate obtained from the output of the flow rate sensor 8 becomes larger than the average value of the true intake air flow rate.

【0020】上記の不具合を回避するために、この実施
例の吸入空気流量測定装置1は、流量センサ8の電圧出
力のうち、逆流側の電圧出力をエンジン5の運転状態に
応じて補正し、その補正値を基に平均吸入空気流量を求
めるように設けている。
In order to avoid the above-mentioned problems, the intake air flow rate measuring device 1 of this embodiment corrects the voltage output on the reverse flow side of the voltage output of the flow rate sensor 8 according to the operating state of the engine 5, The average intake air flow rate is determined based on the correction value.

【0021】この具体的な構成を図1(b)及び図4、
図5を参照して説明する。本実施例の吸入空気流量測定
装置1は、上記図1(a)の構成の他に、エンジン5の
運転状態を検出する運転状態検出手段21と、この運転
状態検出手段21によって検出されたエンジン5の運転
状態に応じて補正基準値Qxを決定する補正基準値決定
手段22と、流量センサ8の出力値Vのうち、補正基準
値Qxよりも逆流方向側の出力値Vgを補正して逆流側
補正出力値Vg’(図4の一点鎖線に示される値)を求
める逆流側出力補正手段23とを備える。
This specific structure is shown in FIGS.
This will be described with reference to FIG. In addition to the configuration shown in FIG. 1A, the intake air flow rate measuring device 1 of the present embodiment has an operating state detecting means 21 for detecting the operating state of the engine 5, and an engine detected by the operating state detecting means 21. The correction reference value determining means 22 for determining the correction reference value Qx according to the operating state of No. 5, and the output value Vg of the output value V of the flow rate sensor 8 on the backflow direction side of the correction reference value Qx are corrected to cause backflow. The reverse flow side output correction means 23 for obtaining the side correction output value Vg ′ (value shown by the alternate long and short dash line in FIG. 4).

【0022】そして、流量算出手段9は、流量センサ8
の出力値Vのうち、補正基準値Qxよりも順流方向側の
出力値Vjから求められる吸入空気流量Qj(図5の補
正基準値Qxより上の値)と、逆流側補正出力値Vg’
から求められる逆流側吸入空気流量Qg(図5の補正基
準値Qxより下の値)とを基に、平均吸入空気流量Qを
求めるように設けられている。
The flow rate calculating means 9 is provided with a flow rate sensor 8
Of the output value V of the intake air flow rate Qj (value above the correction reference value Qx in FIG. 5) obtained from the output value Vj on the forward flow side of the correction reference value Qx, and the backflow side correction output value Vg ′.
The average intake air flow rate Q is determined based on the backflow side intake air flow rate Qg (value below the correction reference value Qx in FIG. 5) obtained from

【0023】運転状態検出手段21は、例えばエンジン
回転数、スロットル開度、アクセル開度、吸入バルブ1
5のバルブリフト量、平均吸入空気流量のいずれか1
つ、あるいは複数を組み合わせて読み取るものである。
なお、この平均吸入空気流量は、流量センサ8によって
求められる数値を用いるものである。
The operating state detecting means 21 includes, for example, engine speed, throttle opening, accelerator opening, intake valve 1
One of valve lift amount and average intake air flow rate of 5
One or a combination of a plurality of them is read.
The average intake air flow rate uses a numerical value obtained by the flow rate sensor 8.

【0024】ここで、補正基準値決定手段22は、図6
に示すように、例えば吸入空気流量等の運転状態に応じ
て補正基準値Qxを、エンジン5のアイドリング時に設
定されるQiから、最大のQmax の範囲内で連続的(あ
るいは段階的)に可変するものである。この上限(Qma
x )は、図7に示すように、吸入空気流量が所定吸入空
気流量よりも多く、吸気脈動が小さいような運転状態の
時には、補正基準値Qxが吸気脈動する吸入空気流量に
対して交差しないように設定されるものである。このよ
うに設けられることによって、不要な補正をキャンセル
することができる。
Here, the correction reference value determining means 22 is shown in FIG.
As shown in, the correction reference value Qx is continuously (or stepwise) varied within the maximum Qmax range from the Qi set when the engine 5 is idling, in accordance with the operating state such as the intake air flow rate. It is a thing. This upper limit (Qma
x), as shown in FIG. 7, the correction reference value Qx does not intersect the intake pulsating intake air flow rate in an operating state in which the intake air flow rate is larger than the predetermined intake air flow rate and the intake pulsation is small. Is set as follows. By being provided in this way, unnecessary correction can be canceled.

【0025】また、逆流側出力補正手段23は、補正基
準値Qxあるいはエンジン運転状態に応じて補正量(V
g→Vg’の変更量)を変更するように設けられてい
る。具体的な例を示すと、予めプログラムされたマップ
や演算式に基づいて、出力値Vgを、図4の破線で示す
範囲内の逆流側補正出力値Vg’に補正するものであ
る。なお、補正量を可変する演算式として、出力値Vg
に任意の定数を乗算したり、出力値Vgに任意の定数を
乗算した上に所定値(ゲインやオフセット)を加算した
り、出力値Vgに乗算する定数を流量の関数にするなど
を用いても良い。
Further, the backflow side output correction means 23 is provided with a correction amount (V) depending on the correction reference value Qx or the engine operating state.
It is provided so as to change (g → Vg ′ change amount). As a concrete example, the output value Vg is corrected to a backflow side corrected output value Vg ′ within the range shown by the broken line in FIG. 4 based on a preprogrammed map or arithmetic expression. The output value Vg is used as an arithmetic expression for varying the correction amount.
Is multiplied by an arbitrary constant, the output value Vg is multiplied by an arbitrary constant and a predetermined value (gain or offset) is added, or the constant for multiplying the output value Vg is used as a function of the flow rate. Is also good.

【0026】〔第1実施例の効果〕この実施例の吸入空
気流量測定装置1は、上述したように、エンジン5の運
転状態に応じて補正基準値Qxを求め、流量センサ8の
出力値Vのうち、補正基準値Qxよりも逆流方向側の出
力値Vgを補正して逆流側補正出力値Vg’を求める。
そして、流量センサ8の出力値Vのうち、補正基準値Q
xよりも順流方向側の出力値Vjから求められる吸入空
気流量Qjと、逆流側補正出力値Vg’から求められる
逆流側吸入空気流量Qgとを基に、平均吸入空気流量Q
を求めている。このように、エンジン5の運転状態に応
じて、吸気脈動の逆流側における流量センサ8の出力値
Vを適切に補正することができ、エンジン5の運転状態
によらず、エンジン5の広い運転範囲に亘って、平均吸
入空気流量Qを高い精度で測定することができる。
[Effects of First Embodiment] As described above, the intake air flow rate measuring device 1 of this embodiment obtains the correction reference value Qx according to the operating state of the engine 5 and outputs the output value V of the flow rate sensor 8. Of these, the output value Vg on the backflow direction side of the correction reference value Qx is corrected to obtain the backflow side corrected output value Vg ′.
Then, of the output value V of the flow rate sensor 8, the correction reference value Q
Based on the intake air flow rate Qj obtained from the output value Vj on the forward flow side of x and the reverse flow side intake air flow rate Qg obtained from the reverse flow side corrected output value Vg ′, the average intake air flow rate Q
Are seeking. In this way, the output value V of the flow rate sensor 8 on the reverse side of the intake pulsation can be appropriately corrected according to the operating state of the engine 5, and the wide operating range of the engine 5 can be achieved regardless of the operating state of the engine 5. Thus, the average intake air flow rate Q can be measured with high accuracy.

【0027】〔第2実施例〕上記の第1実施例では、流
量センサ8の出力値Vのうち、補正基準値Qxよりも順
流方向側の出力値Vjから求められる吸入空気流量Qj
と、補正基準値Qxよりも逆流方向側の出力値Vgを補
正した逆流側補正出力値Vg’から求められる逆流側吸
入空気流量Qgとを基に、平均吸入空気流量Qを求めた
例を示した。これに対し、この第2実施例の吸入空気流
量測定装置1は、図8に示す構成を採用するものであ
り、ECU20内の逆流側出力補正手段23において、
流量センサ8の出力値Vのうち、補正基準値Qxよりも
逆流方向側の出力値Vgから求められる逆流側吸入空気
流量Qgを補正して逆流側補正吸入空気流量Qg’を求
める。そして、流量算出手段9において、流量センサ8
の出力値Vのうち、補正基準値Qxよりも順流方向側の
出力値Vjから求められる吸入空気流量Qjと、上記で
求めた逆流側補正吸入空気流量Qg’とから、平均吸入
空気流量Qを求めるものである。
[Second Embodiment] In the first embodiment, the intake air flow rate Qj obtained from the output value Vj of the flow sensor 8 on the forward flow side of the correction reference value Qx.
And the backflow-side intake air flow rate Qg obtained from the backflow-side corrected output value Vg ′ obtained by correcting the output value Vg on the backflow direction side of the correction reference value Qx are shown as examples in which the average intake air flow rate Q is obtained. It was On the other hand, the intake air flow rate measuring device 1 of the second embodiment adopts the configuration shown in FIG. 8, and in the reverse flow side output correcting means 23 in the ECU 20,
Among the output values V of the flow rate sensor 8, the reverse flow side intake air flow rate Qg obtained from the output value Vg on the reverse flow direction side of the correction reference value Qx is corrected to obtain the reverse flow side corrected intake air flow rate Qg '. Then, in the flow rate calculation means 9, the flow rate sensor 8
Among the output values V of the above, the average intake air flow rate Q is calculated from the intake air flow rate Qj obtained from the output value Vj on the forward flow direction side of the correction reference value Qx and the back flow side corrected intake air flow rate Qg ′ obtained above. It is what you want.

【0028】このように設けることによって、エンジン
5の運転状態に応じて、吸気脈動の逆流側の吸入空気流
量を適切に補正することができ、エンジン5の運転状態
によらず、エンジン5の広い運転範囲に亘って、平均吸
入空気流量Qを高い精度で測定することができる。
By providing in this way, the intake air flow rate on the backflow side of the intake pulsation can be appropriately corrected according to the operating state of the engine 5, and the engine 5 can be operated widely regardless of the operating state of the engine 5. The average intake air flow rate Q can be measured with high accuracy over the operating range.

【0029】〔変形例〕上記の第1実施例では、補正基
準値Qxよりも順流方向側の出力値Vjから求められる
吸入空気流量Qjと、逆流側補正出力値Vg’から求め
られる逆流側吸入空気流量Qgと、から平均吸入空気流
量Qを求める例を示した。しかし、補正基準値Qxより
も順流方向側の出力値Vjと、逆流側補正出力値Vg’
から直接平均吸入空気流量Qを求めても良い。つまり、
例えば、補正基準値Qxよりも順流方向側の出力値Vj
と、逆流側補正出力値Vg’とを平均化し、その平均値
から平均吸入空気流量Qを求めても良い。
[Modification] In the first embodiment described above, the intake air flow rate Qj obtained from the output value Vj on the forward flow direction side of the correction reference value Qx and the reverse flow side intake air obtained from the reverse flow side correction output value Vg ′. An example of obtaining the average intake air flow rate Q from the air flow rate Qg has been shown. However, the output value Vj on the forward flow direction side of the correction reference value Qx and the reverse flow side correction output value Vg '
The average intake air flow rate Q may be directly obtained from That is,
For example, the output value Vj on the forward flow direction side of the correction reference value Qx
And the backflow side corrected output value Vg ′ may be averaged, and the average intake air flow rate Q may be obtained from the average value.

【図面の簡単な説明】[Brief description of drawings]

【図1】燃料噴射装置の概略ブロック図である(第1実
施例)。
FIG. 1 is a schematic block diagram of a fuel injection device (first embodiment).

【図2】エンジンの吸気系を示す概略図である(第1実
施例)。
FIG. 2 is a schematic diagram showing an intake system of the engine (first embodiment).

【図3】エアフロメータの断面図である(第1実施
例)。
FIG. 3 is a sectional view of an air flow meter (first embodiment).

【図4】流量センサの出力と吸入空気流量の関係を示す
グラフである(第1実施例)。
FIG. 4 is a graph showing the relationship between the output of the flow rate sensor and the intake air flow rate (first embodiment).

【図5】演算により求められる吸入空気流量の変化を示
すグラフである(第1実施例)。
FIG. 5 is a graph showing a change in intake air flow rate obtained by calculation (first embodiment).

【図6】補正基準値と吸入空気流量の関係を示すグラフ
である(第1実施例)。
FIG. 6 is a graph showing the relationship between the correction reference value and the intake air flow rate (first embodiment).

【図7】通常運転時における吸入空気流量の変化を示す
グラフである(第1実施例)。
FIG. 7 is a graph showing a change in intake air flow rate during normal operation (first embodiment).

【図8】吸入空気流量測定装置を用いた燃料噴射装置の
概略ブロック図である(第2実施例)。
FIG. 8 is a schematic block diagram of a fuel injection device using an intake air flow rate measurement device (second embodiment).

【図9】流量センサの出力と吸入空気流量の関係を示す
グラフである(従来例)。
FIG. 9 is a graph showing the relationship between the output of the flow rate sensor and the intake air flow rate (conventional example).

【図10】演算により求められる吸入空気流量の変化を
示すグラフである(従来例)。
FIG. 10 is a graph showing a change in intake air flow rate obtained by calculation (conventional example).

【符号の説明】[Explanation of symbols]

1 吸入空気流量測定装置 5 エンジン 6 吸気管 8 流量センサ 9 流量算出手段 21 運転状態検出手段 22 補正基準値決定手段 23 逆流側出力補正手段 Q 平均吸入空気流量 Qg 逆流方向側の流量センサの出力値から求められ
る吸入空気流量 Qg’ 逆流側補正吸入空気流量 Qj 順流方向側の流量センサの出力値から求められ
る吸入空気流量 Qx 補正基準値 V 流量センサの出力値 Vg 逆流方向側の流量センサの出力値 Vg’ 逆流側補正出力値 Vj 順流方向側の流量センサの出力値
1 Intake air flow rate measuring device 5 Engine 6 Intake pipe 8 Flow rate sensor 9 Flow rate calculating means 21 Operating state detecting means 22 Correction reference value determining means 23 Reverse flow side output correcting means Q Average intake air flow rate Qg Output value of flow rate sensor on the reverse flow side Intake air flow rate Qg 'calculated from the reverse flow side corrected intake air flow rate Qj Intake air flow rate Qx calculated from the output value of the flow rate sensor in the forward flow direction V reference value V Output value of the flow rate sensor Vg Output value of the flow rate sensor in the reverse flow direction Vg 'Reverse flow side corrected output value Vj Forward flow direction side flow sensor output value

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(a)エンジンの吸気管内に配置され、発
熱抵抗体を用いて前記吸気管内を流れる吸入空気の順流
方向の空気流量と逆流方向の空気流量とが測定可能な流
量センサと、 (b)前記エンジンの運転状態を検出する運転状態検出
手段と、 (c)この運転状態検出手段によって検出された前記エ
ンジンの運転状態に応じて補正基準値を決定する補正基
準値決定手段と、 (d)前記流量センサの出力値のうち、前記補正基準値
よりも逆流方向側の出力値を補正して逆流側補正出力値
を求める逆流側出力補正手段と、 (e)前記流量センサの出力値のうち、前記補正基準値
よりも順流方向側の出力値と、前記逆流側出力補正手段
で求められた前記逆流側補正出力値とに基づいて平均吸
入空気流量を求める流量算出手段と、を備える吸入空気
流量測定装置。
1. A flow rate sensor, which is disposed in an intake pipe of an engine and is capable of measuring an air flow amount in a forward flow direction and an air flow amount in a reverse flow direction of intake air flowing in the intake pipe by using a heating resistor. (B) an operating state detecting means for detecting an operating state of the engine; and (c) a correction reference value determining means for determining a correction reference value according to the operating state of the engine detected by the operating state detecting means, (D) Of the output values of the flow rate sensor, backflow side output correction means for correcting the output value on the backflow direction side of the correction reference value to obtain the backflow side corrected output value, and (e) the output of the flow rate sensor. Of the values, an output value on the forward flow direction side of the correction reference value and a flow rate calculation means for obtaining an average intake air flow rate based on the backflow side corrected output value obtained by the backflow side output correction means. Inhalation empty Air flow measurement device.
【請求項2】(f)エンジンの吸気管内に配置され、発
熱抵抗体を用いて前記吸気管内を流れる吸入空気の順流
方向の空気流量と逆流方向の空気流量とが測定可能な流
量センサと、 (g)前記エンジンの運転状態を検出する運転状態検出
手段と、 (h)この運転状態検出手段によって検出された前記エ
ンジンの運転状態に応じて補正基準値を決定する補正基
準値決定手段と、 (i)前記流量センサの出力値のうち、前記補正基準値
よりも逆流方向側の出力値から求められる吸入空気流量
を補正して逆流側補正吸入空気流量を求める逆流側出力
補正手段と、 (j)前記流量センサの出力値のうち、前記補正基準値
よりも順流方向側の出力値から求められる吸入空気流量
と、前記逆流側出力補正手段で求めた前記逆流側補正吸
入空気流量とから、平均吸入空気流量を求める流量算出
手段と、を備える吸入空気流量測定装置。
2. A flow rate sensor, which is disposed in an intake pipe of an engine and is capable of measuring an air flow amount in a forward flow direction and an air flow amount in a reverse flow direction of intake air flowing in the intake pipe by using a heating resistor. (G) operating state detecting means for detecting an operating state of the engine; (h) correction reference value determining means for determining a correction reference value according to the operating state of the engine detected by the operating state detecting means; (I) Backflow-side output correction means for calculating a backflow-side corrected intake air flow rate by correcting the intake airflow rate obtained from the output value on the backflow direction side of the correction reference value among the output values of the flow rate sensor, j) Of the output values of the flow rate sensor, from the intake air flow rate obtained from the output value on the forward flow direction side of the correction reference value, and the reverse flow side corrected intake air flow rate obtained by the reverse flow side output correction means. An intake air flow rate measuring device comprising: a flow rate calculating means for determining an average intake air flow rate.
JP2002088261A 2002-03-27 2002-03-27 Intake air flow rate measuring device Expired - Lifetime JP4019413B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002088261A JP4019413B2 (en) 2002-03-27 2002-03-27 Intake air flow rate measuring device
DE2003113616 DE10313616B4 (en) 2002-03-27 2003-03-26 Throughput rate meter with a flow rate sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088261A JP4019413B2 (en) 2002-03-27 2002-03-27 Intake air flow rate measuring device

Publications (2)

Publication Number Publication Date
JP2003287453A true JP2003287453A (en) 2003-10-10
JP4019413B2 JP4019413B2 (en) 2007-12-12

Family

ID=29234175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088261A Expired - Lifetime JP4019413B2 (en) 2002-03-27 2002-03-27 Intake air flow rate measuring device

Country Status (2)

Country Link
JP (1) JP4019413B2 (en)
DE (1) DE10313616B4 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242748A (en) * 2005-03-03 2006-09-14 Hitachi Ltd Heating resistor type air flow measurement apparatus and its measurement error correction method
JP2011012593A (en) * 2009-07-01 2011-01-20 Hitachi Automotive Systems Ltd Control device of internal combustion engine
WO2012032617A1 (en) * 2010-09-08 2012-03-15 トヨタ自動車株式会社 Flow quantity detecting device
JP2012180842A (en) * 2012-06-12 2012-09-20 Hitachi Automotive Systems Ltd Control device of internal combustion engine
JP2019086439A (en) * 2017-11-08 2019-06-06 株式会社デンソー Air flow rate measuring device and air flow rate measuring system
CN112814795A (en) * 2019-11-18 2021-05-18 丰田自动车株式会社 Engine controller and engine control method
WO2022163006A1 (en) * 2021-01-26 2022-08-04 日立Astemo株式会社 Air flow rate measuring device, electronic control device, and air flow rate measuring system
WO2024018567A1 (en) * 2022-07-20 2024-01-25 日立Astemo株式会社 Control device for internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3925377A1 (en) * 1989-08-01 1991-02-07 Bosch Gmbh Robert METHOD FOR CORRECTING THE MEASURING ERRORS OF A HOT FILM AIRMETER
DE59306068D1 (en) * 1992-07-28 1997-05-07 Siemens Ag METHOD FOR ADJUSTING THE AIR VALUES FROM A REPLACEMENT MAP, WHICH IS USED IN THE PULSATION OF THE AIR IN THE SUCTION TUBE OF A COMBUSTION ENGINE FOR CONTROLLING THE MIXTURE TREATMENT, TO THE CURRENTLY PRESENT STATE SIZE
DE4410789A1 (en) * 1994-03-28 1995-10-05 Bosch Gmbh Robert Method for correcting the output signal of an air mass meter
DE4433044A1 (en) * 1994-09-16 1996-03-21 Bosch Gmbh Robert Correction of measuring error which is caused by backflow of pulsing variable
JPH0915013A (en) * 1995-06-26 1997-01-17 Hitachi Ltd Heating type measuring method and device for air flow rate
JP3283800B2 (en) * 1997-09-11 2002-05-20 株式会社日立製作所 Heating resistor type air flow measurement device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242748A (en) * 2005-03-03 2006-09-14 Hitachi Ltd Heating resistor type air flow measurement apparatus and its measurement error correction method
JP2011012593A (en) * 2009-07-01 2011-01-20 Hitachi Automotive Systems Ltd Control device of internal combustion engine
US8340926B2 (en) 2009-07-01 2012-12-25 Hitachi Automotive Systems, Ltd. Internal combustion engine control apparatus
WO2012032617A1 (en) * 2010-09-08 2012-03-15 トヨタ自動車株式会社 Flow quantity detecting device
JP5403165B2 (en) * 2010-09-08 2014-01-29 トヨタ自動車株式会社 Flow rate detector
JP2012180842A (en) * 2012-06-12 2012-09-20 Hitachi Automotive Systems Ltd Control device of internal combustion engine
JP2019086439A (en) * 2017-11-08 2019-06-06 株式会社デンソー Air flow rate measuring device and air flow rate measuring system
CN112814795A (en) * 2019-11-18 2021-05-18 丰田自动车株式会社 Engine controller and engine control method
WO2022163006A1 (en) * 2021-01-26 2022-08-04 日立Astemo株式会社 Air flow rate measuring device, electronic control device, and air flow rate measuring system
WO2024018567A1 (en) * 2022-07-20 2024-01-25 日立Astemo株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
DE10313616B4 (en) 2010-10-07
JP4019413B2 (en) 2007-12-12
DE10313616A1 (en) 2003-11-13

Similar Documents

Publication Publication Date Title
US6711490B2 (en) Intake air amount computing apparatus and method for the same, and intake pressure computing apparatus and method for the same
JP2901613B2 (en) Fuel injection control device for automotive engine
KR100988190B1 (en) Exhaust emission control device of internal combustion engine
US6971358B2 (en) Intake system for internal combustion engine and method of controlling internal combustion engine
JP4019413B2 (en) Intake air flow rate measuring device
JP5403165B2 (en) Flow rate detector
JPH07247884A (en) Idling control method
JPH07293297A (en) Fuel control for internal combustion engine, device therefor and vehicle using it
JPS6278447A (en) Fuel injection controller of internal combustion engine
JP2006090212A (en) Control device for internal combustion engine
JP2008002833A (en) Device for correcting intake flow rate
JP2011252785A (en) Air intake volume correction method for internal combustion engines
JP2006138236A (en) Valve opening-area calculation device for internal combustion engine
JPH0762452B2 (en) Fuel injection control device for internal combustion engine
JP2550145B2 (en) Air amount detection device for internal combustion engine
JP2011157942A (en) Egr control device of internal combustion engine
JP2010048133A (en) Malfunction detecting device for air flow meter
JP2004170357A (en) Exhaust gas flow rate measuring device and exhaust gas flow rate measuring method
JP2001153702A (en) Method for correcting measuring error of heat generating resistor type air flow measuring apparatus
JP2524703B2 (en) Engine controller
JP2003004496A (en) Flow rate measuring instrument
JP2019100182A (en) Intake air volume measurement device
JPH0988711A (en) Intake air flow detector for internal combustion engine
JP2730760B2 (en) Engine intake air amount detection device
JP2009162089A (en) Suction air amount operation device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4019413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term