JPH1114418A - Correction method for measurement error of heating resistor-type air-flow-rate measuring instrument - Google Patents

Correction method for measurement error of heating resistor-type air-flow-rate measuring instrument

Info

Publication number
JPH1114418A
JPH1114418A JP9165587A JP16558797A JPH1114418A JP H1114418 A JPH1114418 A JP H1114418A JP 9165587 A JP9165587 A JP 9165587A JP 16558797 A JP16558797 A JP 16558797A JP H1114418 A JPH1114418 A JP H1114418A
Authority
JP
Japan
Prior art keywords
heating resistor
air flow
type air
flow
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9165587A
Other languages
Japanese (ja)
Inventor
Chihiro Kobayashi
千尋 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9165587A priority Critical patent/JPH1114418A/en
Publication of JPH1114418A publication Critical patent/JPH1114418A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a correction method in which a flow rate can be measured with high accuracy even in a pulsating flow accompanied by a reverse flow by a method wherein a flowrate signal from a heating resistor is inverted, the generation time of the reverse flow is found so as to know a reverse flow rate and the flow-rate signal before its inversion is corrected and processed. SOLUTION: An air-flow-rate waveform as a detection value from a heating-resistor- type air-flow-rate measuring apparatus which is used for an internal-combustion engine or the like is divided into routines in two systems inside a correction device, and one of them is inverted and processed. By its inversion, a phase is advanced, a pulsating amplitude becomes large, and a waveform in which a reverse flow portion is turned down near the zero of a flow rate is obtained. When a turned-down point is detected precisely, a reverse flow section can be known. By using an inverted result and by using a signal detected by the vehicle-operating-state detection means of the speed of rotation of an engine or the like, a correction amount is computed by a prescribed method. On the basis of the correction amount, an output which is not inverted is corrected and processed so as to be output as an air-flow-rate signal. By this method, the fuel of an engine can be controlled with high accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば熱線等を使
って熱線から空気への放熱量を基に空気流量を測定する
空気流量測定装置における誤差補正方法に係り、自動車
の内燃機関エンジンに吸入される空気流量を測定する際
に、吸気脈動により生じる測定装置の測定誤差補正方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting an error in an air flow measuring device for measuring an air flow rate based on a heat radiation amount from a hot wire to air using, for example, a hot wire and the like. The present invention relates to a method for correcting a measurement error of a measuring device caused by intake pulsation when measuring a measured air flow rate.

【0002】[0002]

【従来の技術】発熱抵抗体式空気流量測定装置の脈動影
響による検出誤差としては、発熱抵抗体の持つ非線形な
出力特性と脈動振幅により生じるマイナス誤差と、吸気
管内に生じる逆流影響によるプラス誤差とがある。
2. Description of the Related Art As a detection error due to a pulsation effect of a heating resistor type air flow measuring device, a minus error caused by a nonlinear output characteristic and a pulsation amplitude of a heating resistor and a plus error caused by a backflow effect generated in an intake pipe. is there.

【0003】この脈動域における誤差低減方法としては
特公平1−43884号公報に示すように、少なくとも一つの
曲がりを有した副空気通路内に発熱抵抗体を配置する方
法が知られている。
As a method of reducing an error in the pulsation region, a method of disposing a heating resistor in a sub air passage having at least one bend is known as disclosed in Japanese Patent Publication No. 1-43888.

【0004】また、本発明に最も近い技術としては、特
開平8−62012号公報に、発熱抵抗体の応答遅れを改善す
るために発熱抵抗体式空気流量測定装置からの出力信号
に対して逆変換を行い、真の流量波形に近づけてその波
形を流量変換(リニアライズ)処理して流量を算出する方
法が開示されている。
A technique closest to the present invention is disclosed in Japanese Unexamined Patent Application Publication No. Hei 8-62012, in which an output signal from a heating resistor type air flow measuring device is inversely converted to improve a response delay of the heating resistor. A method of calculating the flow rate by performing a flow rate conversion (linearization) process on the waveform so as to approach a true flow rate waveform is disclosed.

【0005】[0005]

【発明が解決しようとする課題】流量検出素子である発
熱抵抗体は、その構造上流れの方向を検出することは困
難である。このため、逆流が生じると発熱抵抗体は逆流
も順流と判断して検出してしまい、その分誤差として検
出してしまう。
It is difficult to detect the direction of flow of the heating resistor which is a flow rate detecting element due to its structure. For this reason, when a backflow occurs, the heating resistor determines that the backflow is also a forward flow and detects it, and detects it as an error.

【0006】エンジンの吸気管内を流れる空気流は、吸
気バルブの開閉に伴い脈動流となる。この脈動の大きさ
はスロットルバルブが比較的閉じた場合には小さく、ス
ロットルバルブの全開付近となるにつれて大きな脈動流
となる。
The air flow flowing in the intake pipe of the engine becomes a pulsating flow as the intake valve opens and closes. The magnitude of this pulsation is small when the throttle valve is relatively closed, and becomes large as the throttle valve is fully opened.

【0007】その概要を図9に基づき説明する。回転数
を一定に保ちながらスロットルバルブを徐々に開けてい
くと吸入流速(流量)の増加に伴い、吸気管内の脈動振
幅も徐々に大きくなり、ある程度大きくなると発熱抵抗
体の出力は、自身の持つ非線形性及び応答遅れによりマ
イナスの誤差を持つ流量を指示してしまう。
The outline will be described with reference to FIG. When the throttle valve is gradually opened while the rotation speed is kept constant, the pulsation amplitude in the intake pipe gradually increases with an increase in the suction flow velocity (flow rate), and when the throttle valve becomes somewhat large, the output of the heating resistor has its own. A flow rate having a negative error is indicated due to non-linearity and response delay.

【0008】この発生メカニズムを図10に示す。上記
脈動振幅がさらに大きくなると、吸気管内の流れは逆流
を伴うような流れになる。しかしながら発熱抵抗体は、
その構造上流れの方向を検出することは困難であり、順
流でも逆流でも単に流速として検出する。そのため、逆
流が生じても発熱抵抗体はそれを素直に流速として検出
してしまい、その結果プラス側の誤差を示すのである。
FIG. 10 shows the mechanism of this occurrence. When the pulsation amplitude further increases, the flow in the intake pipe becomes a flow accompanied by a backflow. However, the heating resistor is
Due to its structure, it is difficult to detect the direction of the flow, and the flow is detected simply as the flow velocity in both the forward flow and the backward flow. For this reason, even if a backflow occurs, the heating resistor directly detects it as a flow velocity, and as a result, an error on the positive side is shown.

【0009】これらの理由により発熱抵抗体式空気流量
測定装置を使用した場合には逆流時には何らかの誤差補
正が必ず必要となるのである。
For these reasons, when a heating resistor type air flow measuring device is used, some kind of error correction is necessarily required at the time of backflow.

【0010】従来の技術に示した少なくとも一つの曲が
りを有する副空気通路内に発熱抵抗体を配置した技術で
は、前記の非線形な出力特性と脈動振幅により生じるマ
イナス誤差はある程度防ぐことは可能である。しかし、
逆流によるプラス誤差の低減については十分な効果が得
られない。この構造ではエンジンからエアクリーナ方向
への逆流を、副空気通路により壁を作ることで、発熱抵
抗体に直接逆流としてあたる分の影響を低減することは
可能であるが、逆流として戻る分による順流の増加分が
低減できないのである。
In the prior art in which the heating resistor is disposed in the sub air passage having at least one bend, it is possible to prevent the negative error caused by the non-linear output characteristic and the pulsation amplitude to some extent. . But,
A sufficient effect cannot be obtained with respect to the reduction of the plus error due to the backflow. With this structure, the backflow from the engine to the air cleaner direction can be reduced by directly forming a backflow on the heating resistor by creating a wall with the auxiliary air passage. The increase cannot be reduced.

【0011】また、逆変換を使用した技術においては、
発熱抵抗体式空気流量測定装置からの出力信号(電圧信
号)を逆変換して、その後に流量変換を行うため、逆変
換そのものの精度が検出流量の精度として現れてしま
う。これは、逆変換の処理そのものは処理装置により組
み込まれたプログラム等により行うためばらつきは無い
が、発熱抵抗体の応答のばらつき等による検出時のばら
つきが流量精度に影響を及ぼしてしまうのである。
Also, in the technique using the inverse transformation,
Since the output signal (voltage signal) from the heating resistor type air flow measuring device is inversely converted and then the flow rate conversion is performed, the accuracy of the inverse conversion itself appears as the accuracy of the detected flow rate. This is because there is no variation because the inverse conversion process itself is performed by a program or the like incorporated in the processing device, but variation at the time of detection due to variation in the response of the heating resistor or the like affects the flow rate accuracy.

【0012】[0012]

【課題を解決するための手段】上記課題に対応するた
め、まず副空気通路構造を工夫してマイナスの誤差をあ
る程度抑え、かつ十分大きな逆流が生じた場合には、副
空気通路内に逆流が進入し易い一つ以上の曲がりを持つ
副空気通路等を設けて、その内部に発熱抵抗体を配置し
た。更に処理装置内部において、逆変換を行い直接流量
変換を行わずに逆流の発生時間等を求めることにより逆
流量を知り、その逆流量に応じて逆変換前の流量信号に
対して補正処理を行うこととした。
In order to cope with the above-mentioned problem, first, the sub-air passage structure is devised to suppress a negative error to some extent, and when a sufficiently large back flow occurs, the back flow is generated in the sub-air passage. An auxiliary air passage or the like having one or more bends which are easy to enter is provided, and a heating resistor is disposed inside the auxiliary air passage. Further, in the processing device, the reverse flow is obtained by obtaining the reverse flow generation time and the like without performing the reverse conversion and directly performing the flow rate conversion, and correcting the flow signal before the reverse conversion in accordance with the reverse flow. I decided that.

【0013】[0013]

【発明の実施の形態】本発明の実施例を図面に基づき詳
細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail with reference to the drawings.

【0014】まず最初に、発熱抵抗体式空気流量測定装
置の動作原理について説明する。図6は発熱抵抗体式空
気流量測定装置の概略構成回路図である。発熱抵抗体式
空気流量測定装置の駆動回路1は大きく分けてブリッジ
回路とフィードバック回路から成り立っている。吸入空
気流量測定を行うための発熱抵抗体3RH,吸入空気温
度を補償するための感温抵抗体4RC及びR10,R1
1でブリッジ回路を組み、オペアンプOP1を使いフィ
ードバックをかけながら発熱抵抗体3RHと感温抵抗体
4RCの間に一定温度差を保つように、発熱抵抗体3R
Hに加熱電流Ihを流して、空気流量に応じた出力信号
V2を出力する。つまり流速の速い場合には発熱抵抗体
3RHから奪われる熱量が多いため加熱電流Ihを多く
流す。これに対して流速の遅い場合には発熱抵抗体Rh
から奪われる熱量が少ないため、加熱電流も少なくてす
むのである。ここで発熱抵抗体3Rhから奪われる熱量
は空気の流れの方向によらず、順流でも逆流でも同じで
あるため逆流時にも加熱電流Ihが流れて発熱抵抗体式
空気流量測定装置の過大検出誤差が生じるのである。
First, the operating principle of the heating resistor type air flow measuring device will be described. FIG. 6 is a schematic configuration circuit diagram of a heating resistor type air flow measuring device. The driving circuit 1 of the heating resistor type air flow measuring device is roughly composed of a bridge circuit and a feedback circuit. Heating resistor 3RH for measuring the intake air flow rate, temperature sensitive resistor 4RC and R10, R1 for compensating the intake air temperature
1 and a feedback circuit using an operational amplifier OP1 so as to maintain a constant temperature difference between the heating resistor 3RH and the temperature-sensitive resistor 4RC.
The heating current Ih flows through H, and an output signal V2 corresponding to the air flow rate is output. That is, when the flow velocity is high, a large amount of heat is taken out of the heating resistor 3RH, so that a large amount of the heating current Ih flows. On the other hand, when the flow velocity is low, the heating resistor Rh
Since the amount of heat taken away from the heater is small, the heating current can be reduced. Here, the amount of heat taken from the heating resistor 3Rh does not depend on the direction of the air flow, and is the same whether it is in the forward flow or in the backward flow. It is.

【0015】図7は発熱抵抗式空気流量計の一例を示す
横断面であり、図8はその上流(左側)から見た外観図
である。
FIG. 7 is a cross-sectional view showing an example of a heating resistance type air flow meter, and FIG. 8 is an external view seen from the upstream side (left side).

【0016】発熱抵抗体式空気流量測定装置の構成とし
ては、駆動回路を構成する回路基板2を内蔵するハウジ
ング部材1及び非導電性部材により形成される副空気通
路構成部材10等があり、副空気通路構成部材10の中
には空気流量検出のための発熱抵抗体3,吸入空気温度
を補償するための感温抵抗体4が、導電性部材により構
成された支持体5を介して回路基板2と電気的に接続さ
れるように配置され、ハウジング,回路基板,副空気通
路,発熱抵抗体,感温抵抗体等、これらを発熱抵抗体式
空気流量測定装置の一体のモジュールとして構成されて
いる。
The configuration of the heating resistor type air flow measuring device includes a housing member 1 containing a circuit board 2 constituting a drive circuit and a sub air passage forming member 10 formed of a non-conductive member. A heat generating resistor 3 for detecting the air flow rate and a temperature sensitive resistor 4 for compensating for the intake air temperature are provided in the passage constituting member 10 via a support 5 made of a conductive member. And a housing, a circuit board, a sub air passage, a heating resistor, a temperature-sensitive resistor, and the like, which are configured as an integrated module of a heating resistor type air flow measuring device.

【0017】また、吸気管路を構成する主空気構成部材
20の壁面には穴25があけられており、この穴25よ
り前記発熱抵抗体式空気流量測定装置の副空気通路部分
を外部より挿入して、副空気通路構成部材の壁面とハウ
ジング部材1とをネジ7等で機械的強度を保つように固
定されている。
A hole 25 is formed in the wall surface of the main air constituting member 20 constituting the intake pipe, and a sub air passage portion of the heating resistor type air flow measuring device is inserted through the hole 25 from outside. The housing member 1 is fixed to the wall surface of the sub air passage component member with screws 7 so as to maintain mechanical strength.

【0018】ここで副空気通路が挿入される主空気通路
部分は、ほぼ円筒管であり、主空気通路の空気の流れる
有効断面積は、副空気通路の出入口の配置箇所でほぼ同
じである。また、副空気通路構成部材10と主空気通路
構成部材の間にシール材6を取り付けて、気密性を保っ
ている。
The main air passage portion into which the sub air passage is inserted is substantially a cylindrical tube, and the effective cross-sectional area of the main air passage through which the air flows is substantially the same at the location of the entrance and exit of the sub air passage. In addition, a seal member 6 is attached between the sub air passage component 10 and the main air passage component to maintain airtightness.

【0019】次に本発明の具体的な内容について説明す
る。
Next, the specific contents of the present invention will be described.

【0020】まず、図1は本発明の基本的な概念の一例
を示す概念図である。まず、発熱抵抗体式空気流量測定
装置からの検出値である空気流量波形を補正処理装置内
に取り込み、出力を2系統のルーチンに分け、一方のル
ーチンのみに逆変換処理を行う。
FIG. 1 is a conceptual diagram showing an example of the basic concept of the present invention. First, an air flow waveform which is a detection value from the heating resistor type air flow measuring device is taken into the correction processing device, the output is divided into two routines, and an inverse conversion process is performed only in one of the routines.

【0021】逆変換を行った結果及び、エンジン回転数
などの車両運転状態検出手段により検出した信号などを
使いそれらの結果に応じた補正量を算出し、その補正量
を前記もう一方の逆変換を行わない発熱抵抗体式空気流
量測定装置からの出力に補正処理を行い空気流量信号と
して出力する。この補正処理装置はアナログ回路または
デジタル回路で構成される。
Using the result of the inverse conversion and a signal detected by vehicle operating state detecting means such as the engine speed, a correction amount corresponding to the result is calculated, and the correction amount is converted to the other inverse conversion. The correction process is performed on the output from the heating resistor type air flow measuring device that does not perform the above operation, and the result is output as an air flow signal. This correction processing device is constituted by an analog circuit or a digital circuit.

【0022】次に補正処理装置の具体的な例としてエン
ジンの制御を行うエンジンコントロールユニット(EC
U)に、本発明を応用した例を図2に示す。発熱抵抗体
式空気流量測定装置からの検出波形をA/Dコンバータ
等を用いてデジタル値へ変換し、その後、図1と同様に
2系統のルーチンに分けて一方のルーチンのみに逆変換
処理を行う。
Next, as a specific example of the correction processing device, an engine control unit (EC) for controlling an engine
FIG. 2 shows an example of applying the present invention to U). The detection waveform from the heating resistor type air flow rate measuring device is converted into a digital value using an A / D converter or the like, and then, as in FIG. .

【0023】逆変換を行った結果、及び、車両運転状態
検出手段としてエンジン回転数信号等を使い、それらの
結果に応じた補正量を算出し、その補正量を前記のもう
一方の逆変換を行わない発熱抵抗体式空気流量測定装置
からの出力に補正処理を行い、空気流量信号として出力
する。
Using the result of the inverse conversion and an engine speed signal or the like as the vehicle operating state detecting means, a correction amount corresponding to the result is calculated, and the correction amount is converted to the other inverse conversion. Correction processing is performed on the output from the heating resistor type air flow measurement device that is not performed, and the correction is output as an air flow signal.

【0024】次に、具体的な補正方法について逆流によ
る検出誤差の低減を例にとり説明する。まず図3は流量
波形と順逆信号の検出方法について述べた例である。
Next, a specific correction method will be described by taking as an example the reduction of detection errors due to backflow. First, FIG. 3 is an example describing a method of detecting a flow waveform and a forward / reverse signal.

【0025】逆変換前の信号(発熱抵抗体式空気流量測
定装置検出波形)に対して逆変換を行うことにより、位
相が進み更に脈動振幅が大きくなり、流量の最小値はゼ
ロ付近で逆流分が折り返す波形となる。このためこの折
り返し点を正確に検出することにより逆流区間(時間T
2)が判る。
By performing the inverse conversion on the signal before the inverse conversion (the waveform detected by the airflow measuring device of the heating resistor type), the phase is advanced and the pulsation amplitude is further increased. It has a folded waveform. Therefore, by accurately detecting the turning point, the reverse flow section (time T
2)

【0026】これを利用し、例えば図に示すように順流
時にはHIGH、逆流時にはLOWとなるような検出手
段を持てば、エンジンの1周期時間(T1)と逆流時間
(T2)を知ることができる。
By utilizing this, for example, as shown in the figure, if there is a detection means which becomes HIGH at the time of forward flow and LOW at the time of reverse flow, one cycle time (T1) of the engine and the reverse flow time
(T2) can be known.

【0027】これを利用し、例えば、T1の時間に対し
てT2の時間の比率を取り、この比率が極めて小さい場
合には逆流量が極小であると判断し、逆に大きい場合に
は逆流量も大きいと判断することが可能となる。図4に
示したようなエンジン回転数と1周期時間(T1)と逆
流時間(T2)の比率のマス目を持つマップを使い、そ
れぞれの運転状態での補正値をマップに入力しておけ
ば、逆流による誤差の補正が可能となるのである。
Using this, for example, the ratio of the time of T2 to the time of T1 is taken. If this ratio is extremely small, it is determined that the reverse flow is extremely small. Can also be determined to be large. If a map having squares of the engine speed, the ratio of one cycle time (T1) and the backflow time (T2) as shown in FIG. 4 is used, and the correction value in each operation state is input to the map. Therefore, it is possible to correct the error due to the backflow.

【0028】エンジンの吸気脈動による計測誤差は逆流
によるものばかりではなく、脈動振幅と発熱抵抗体の持
つ非線形性及び応答遅れによっても誤差を示す。
The measurement error caused by the pulsation of the intake air of the engine is caused not only by the backflow but also by the pulsation amplitude and the nonlinearity and response delay of the heating resistor.

【0029】これは逆流による誤差がプラス側の誤差で
あるのに対して、マイナスの誤差を示すものである。
This indicates that the error caused by the backflow is a plus-side error, while the minus error is a minus side error.

【0030】図5に示すマップはこのマイナス側の誤差
を対策するためのものである。横軸にエンジン回転数,
縦軸に逆変換前後の発熱抵抗体からの信号値を流量変換
した後の差を示している。縦軸の差は瞬時瞬時の値の差
でも良いがエンジンの吸気1工程以上の時間の平均値で
あるのが望ましい。
The map shown in FIG. 5 is for taking measures against this negative error. The horizontal axis shows the engine speed,
The vertical axis shows the difference between the signal values from the heating resistor before and after the inverse conversion after the flow rate conversion. The difference on the vertical axis may be a difference between instantaneous and instantaneous values, but is preferably an average value of time during one or more intake strokes of the engine.

【0031】前記したマイナス誤差は、応答性を補償し
て更に流量変換しておけばこの誤差を防ぐことは可能で
ある。これは従来技術の特開平8−62012号公報に記載し
てある通りである。従って逆変換前後の流量値の差をみ
れば、逆変換前の発熱抵抗体からの信号がどれだけのマ
イナス誤差を持っているかが判る。この差分を補正すれ
ばこのマイナス側の誤差を対策することが可能となるの
である。
The above-mentioned minus error can be prevented by compensating the response and further converting the flow rate. This is as described in the prior art JP-A-8-62012. Therefore, by looking at the difference between the flow values before and after the inverse conversion, it can be seen how much the signal from the heating resistor before the inverse conversion has a negative error. If this difference is corrected, it is possible to take measures against the error on the minus side.

【0032】また、この場合前記したマップの様なもの
を使用せずに、例えば、次式で示すような式により補正
を行っても良い。
In this case, the correction may be performed by using, for example, the following equation without using the above-mentioned map.

【0033】[0033]

【数1】Qnew =Q1−k×(Q1−Q2) Qnew :補正後の空気流量 Q1:逆変換前の空気流量変換値 Q2:逆変換後の空気流量変換値 k:係数 最後に、図11を使い電子燃料噴射方式の内燃機関に本
発明を適用した一実施例を示す。
Qnew = Q1−k × (Q1−Q2) Qnew: Air flow rate after correction Q1: Air flow rate conversion value before inverse conversion Q2: Air flow rate conversion value after inverse conversion k: Coefficient Finally, FIG. An embodiment in which the present invention is applied to an internal combustion engine of an electronic fuel injection system using the present invention will be described.

【0034】エアクリーナ54から吸入された吸入空気
67は、発熱抵抗式空気流量測定装置のボディ53,吸
入ダクト55,スロットルボディ58及び燃料が供給さ
れるインジェクタ60を備えたインテークマニホールド
59を経て、エンジンシリンダ62に吸入される。一
方、エンジンシリンダで発生したガス63は排気マニホ
ールド64を経て排出される。
The intake air 67 sucked from the air cleaner 54 passes through the body 53 of the heating resistance type air flow measuring device, the suction duct 55, the throttle body 58, and the intake manifold 59 having the injector 60 to which fuel is supplied. It is sucked into the cylinder 62. On the other hand, gas 63 generated in the engine cylinder is discharged through an exhaust manifold 64.

【0035】発熱抵抗式空気流量測定装置の回路モジュ
ール52から出力される空気流量信号,温度センサから
の吸入空気温度信号,スロットル角度センサ57から出
力されるスロットルバルブ角度信号,排気マニホールド
64に設けられた酸素濃度計65から出力される酸素濃
度信号、及び、エンジン回転速度計61から出力される
エンジン回転速度信号等、これらを入力するコントロー
ルユニット66はこれらの信号を逐次演算して、最適な
燃料噴射量とアイドルエアコントロールバルブ開度を求
め、その値を使って前記インジェクタ60及びアイドル
コントロールバルブ66を制御する。
The air flow signal output from the circuit module 52 of the heating resistance type air flow measuring device, the intake air temperature signal from the temperature sensor, the throttle valve angle signal output from the throttle angle sensor 57, and the exhaust manifold 64 are provided. The control unit 66 that inputs these signals, such as the oxygen concentration signal output from the oximeter 65 and the engine speed signal output from the engine speed meter 61, sequentially calculates these signals to obtain the optimum fuel The injection amount and the idle air control valve opening are obtained, and the injector 60 and the idle control valve 66 are controlled using the values.

【0036】[0036]

【発明の効果】本発明によれば、自動車エンジン等に吸
入され逆流を伴うような脈動流下においても、高精度に
空気流量を測定する発熱抵抗体式空気流量測定装置の測
定誤差補正方法を提供できる。また、これを用いること
によりエンジンの燃料制御を高精度に行うことが可能と
なる。
According to the present invention, it is possible to provide a method for correcting a measurement error of a heating resistor type air flow measuring device which measures an air flow with high accuracy even under a pulsating flow which is sucked into an automobile engine or the like and involves a backflow. . Also, by using this, it becomes possible to perform the fuel control of the engine with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の概要を示すブロック図。FIG. 1 is a block diagram showing an outline of the present invention.

【図2】エンジンコントロールユニットを用いて本発明
の概要を示すブロック図。
FIG. 2 is a block diagram showing an outline of the present invention using an engine control unit.

【図3】本発明の逆流時の補正内容を示す脈動波形。FIG. 3 is a pulsation waveform showing correction contents at the time of backflow according to the present invention.

【図4】本発明の補正マップの一例を示す図。FIG. 4 is a diagram showing an example of a correction map according to the present invention.

【図5】本発明の補正マップの一例を示す図。FIG. 5 is a diagram showing an example of a correction map according to the present invention.

【図6】発熱抵抗体式空気流量測定装置の駆動回路図。FIG. 6 is a drive circuit diagram of a heating resistor type air flow measuring device.

【図7】発熱抵抗体式空気流量測定装置の横断面図。FIG. 7 is a cross-sectional view of a heating resistor type air flow measuring device.

【図8】図7を上流側から見た図。FIG. 8 is a view of FIG. 7 as viewed from the upstream side.

【図9】発熱抵抗体式空気流量測定装置の脈動誤差を示
す図。
FIG. 9 is a diagram showing a pulsation error of the heating resistor type air flow measuring device.

【図10】発熱抵抗体の非線形性と応答遅れ及び脈動振
幅から生じるマイナスの測定誤差を示す図。
FIG. 10 is a diagram showing a non-linearity of a heating resistor, a response delay, and a negative measurement error caused by a pulsation amplitude.

【図11】内燃機関のシステム構成を示す図。FIG. 11 is a diagram showing a system configuration of an internal combustion engine.

【符号の説明】[Explanation of symbols]

1…ハウジング構成部材、2…回路基板、3…発熱抵抗
体、4…感温抵抗体、5…導電性支持体、6…シール
材、10…副空気通路構成部材、11…副空気通路入
口、12…副空気通路出口、13…縦通路、14…横通
路、20…主空気通路構成部材、22…主空気通路、2
3…順方向空気流れ、24…逆方向空気流れ、25…
穴、51…吸気温度センサ、52…モジュール、53…
ボディ、54…エアクリーナ、55…ダクト、56…ア
イドルエアコントロールバルブ、57…スロットル角度
センサ、58…スロットルボディ、59…吸気マニホー
ルド、60…インジェクタ、61…回転速度計、62…
エンジンシリンダ、63…ガス、64…排気マニホール
ド、65…酸素濃度計、66…コントロールユニット、
67…吸入空気。
DESCRIPTION OF SYMBOLS 1 ... Housing constituent member, 2 ... Circuit board, 3 ... Heating resistor, 4 ... Temperature sensitive resistor, 5 ... Conductive support, 6 ... Sealing material, 10 ... Sub air passage constituent member, 11 ... Sub air passage entrance , 12: Sub air passage outlet, 13: Vertical passage, 14: Horizontal passage, 20: Main air passage constituent member, 22: Main air passage, 2
3 ... forward air flow, 24 ... reverse air flow, 25 ...
Holes, 51: intake air temperature sensor, 52: module, 53 ...
Body, 54 ... Air cleaner, 55 ... Duct, 56 ... Idle air control valve, 57 ... Throttle angle sensor, 58 ... Throttle body, 59 ... Intake manifold, 60 ... Injector, 61 ... Tachometer, 62 ...
Engine cylinder, 63 gas, 64 exhaust manifold, 65 oxygen meter, 66 control unit,
67 ... intake air.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】内燃機関に用いられる加熱電流を流して発
熱し、吸入空気への放熱量を基に空気流量を測定する発
熱抵抗体式空気流量測定装置の脈動流により生じる測定
誤差補正方法において、発熱抵抗体から得られた出力信
号の応答遅れを補償(位相を進め、振幅を大きくする)
する手段を備え、更に前記応答遅れを補償する手段を介
して脈動流により生じる測定誤差の補正値を求め、応答
遅れを補償する前の流量信号に補正して検出誤差の低減
を行うことを特徴とする発熱抵抗体式空気流量測定装置
の測定誤差補正方法。
1. A method for correcting a measurement error caused by a pulsating flow of a heating resistor type air flow measuring device which generates heat by flowing a heating current used in an internal combustion engine and measures an air flow rate based on a heat release amount to intake air, Compensates for the response delay of the output signal obtained from the heating resistor (advance phase and increase amplitude)
Means for determining a correction value of a measurement error caused by the pulsating flow via the means for compensating for the response delay, and correcting the flow rate signal before compensating for the response delay to reduce the detection error. A method for correcting a measurement error of the heating resistor type air flow measuring device.
【請求項2】内燃機関に用いられる加熱電流を流して発
熱し、吸入空気への放熱量を基に空気流量を測定する発
熱抵抗体式空気流量測定装置の脈動流により生じる測定
誤差補正方法において、発熱抵抗体の持つ非線形な出力
特性と脈動振幅により生じる出力のマイナス誤差を通路
的に対策する手段と、発熱抵抗体から得られた出力信号
の応答遅れを補償(位相を進め、振幅を大きくする)す
る手段とを備えたことを特徴とする発熱抵抗体式空気流
量測定装置の測定誤差補正方法。
2. A method for correcting a measurement error caused by a pulsating flow of a heating resistor type air flow measuring device which generates heat by flowing a heating current used in an internal combustion engine and measures an air flow rate based on a heat release amount to intake air, Means for countermeasure the output negative error caused by the non-linear output characteristics and pulsation amplitude of the heating resistor, and compensation for the response delay of the output signal obtained from the heating resistor (advance phase to increase amplitude ) Means for correcting a measurement error of the heating resistor type air flow measuring device.
【請求項3】内燃機関に用いられる加熱電流を流して発
熱し、吸入空気への放熱量を基に空気流量を測定する発
熱抵抗体式空気流量測定装置の脈動流により生じる測定
誤差補正方法において、発熱抵抗体の持つ非線形な出力
特性と脈動振幅により生じる出力のマイナス誤差を通路
的に対策する手段と、発熱抵抗体から得られた出力信号
の応答遅れを補償(位相を進め、振幅を大きくする)す
る手段とを備え、更に前記応答遅れを補償する手段を介
して吸気管内に生じる逆流の有無を判断すると共に、逆
流が生じた場合にはその逆流量に応じた値を、応答遅れ
を補償する前の流量信号に補正して逆流による検出誤差
の低減を行うことを特徴とする発熱抵抗体式空気流量測
定装置の測定誤差補正方法。
3. A method for correcting a measurement error caused by a pulsating flow of a heating resistor type air flow measuring device which generates heat by flowing a heating current used in an internal combustion engine and measures an air flow rate based on a heat release amount to intake air, Means for countermeasure the output negative error caused by the non-linear output characteristics and pulsation amplitude of the heating resistor, and compensation for the response delay of the output signal obtained from the heating resistor (advance phase to increase amplitude And means for judging the presence or absence of a backflow in the intake pipe through the means for compensating for the response delay, and, if a backflow occurs, a value corresponding to the backflow and compensating for the response delay. A method for correcting a measurement error of a heating resistor type air flow measuring device, wherein the detection error is reduced by correcting the flow signal before the flow.
【請求項4】内燃機関に用いられる加熱電流を流して発
熱し、吸入空気への放熱量を基に空気流量を測定する発
熱抵抗体式空気流量測定装置の脈動流により生じる測定
誤差補正方法において、発熱抵抗体から得られた出力信
号の応答遅れを補償(位相を進め、振幅を大きくする)
する手段を備え、応答遅れを補償した後の出力信号を流
量換算する手段と、前記発熱抵抗体から得られた応答遅
れを補償する前の出力信号を流量換算する手段と、応答
遅れ補償前後の流量換算値とを比較する手段を備え、応
答遅れ補償前後の流量換算値の差に応じて前記応答遅れ
補償前後のいずれか一方の出力に対して補正を行い、脈
動による検出誤差の低減を行うことを特徴とする発熱抵
抗体式空気流量測定装置の測定誤差補正方法。
4. A method for correcting a measurement error caused by a pulsating flow of a heating resistor type air flow measuring device which generates heat by flowing a heating current used in an internal combustion engine and measures an air flow rate based on a heat release amount to intake air, Compensates for the response delay of the output signal obtained from the heating resistor (advance phase and increase amplitude)
Means for converting the output signal after compensating for the response delay to flow rate; means for converting the output signal before compensating the response delay obtained from the heating resistor to flow rate; Means for comparing with the flow rate conversion value, and corrects one of the outputs before and after the response delay compensation in accordance with the difference between the flow rate conversion values before and after the response delay compensation to reduce a detection error due to pulsation. A method for correcting a measurement error of a heating resistor type air flow measuring device, characterized in that:
【請求項5】請求項1〜4のいずれかに記載の発熱抵抗
体式空気流量測定装置の検出誤差の低減方法において、
応答遅れを補償した検出波形から得られた情報を数値化
した値と、エンジン回転数信号とからマップを作り、そ
のマップ内に補正値を入れて発熱抵抗体式空気流量測定
装置の検出誤差の低減を行う発熱抵抗体式空気流量測定
装置の測定誤差低減方法。
5. A method for reducing a detection error of a heating resistor type air flow measuring device according to claim 1,
A map is created from the value obtained by digitizing the information obtained from the detection waveform that compensated for the response delay and the engine speed signal, and a correction value is entered in the map to reduce the detection error of the heating resistor type air flow measurement device. Method for reducing the measurement error of the heating resistor type air flow measurement device that performs the measurement.
【請求項6】請求項1〜6のいずれかに記載の発熱抵抗
体式空気流量測定装置が脈動流により生じる測定誤差を
補正する手段を備えている発熱抵抗体式空気流量測定装
置。
6. A heating resistor type air flow measuring device according to claim 1, further comprising means for correcting a measurement error caused by a pulsating flow.
【請求項7】請求項1〜5のいずれかに記載の発熱抵抗
体式空気流量測定装置が脈動流により生じる測定誤差を
補正する手段を備えたことを特徴とする内燃機関のエン
ジンコントロールユニット。
7. An engine control unit for an internal combustion engine, wherein the heating resistor type air flow measuring device according to claim 1 further comprises means for correcting a measurement error caused by a pulsating flow.
JP9165587A 1997-06-23 1997-06-23 Correction method for measurement error of heating resistor-type air-flow-rate measuring instrument Pending JPH1114418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9165587A JPH1114418A (en) 1997-06-23 1997-06-23 Correction method for measurement error of heating resistor-type air-flow-rate measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9165587A JPH1114418A (en) 1997-06-23 1997-06-23 Correction method for measurement error of heating resistor-type air-flow-rate measuring instrument

Publications (1)

Publication Number Publication Date
JPH1114418A true JPH1114418A (en) 1999-01-22

Family

ID=15815196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9165587A Pending JPH1114418A (en) 1997-06-23 1997-06-23 Correction method for measurement error of heating resistor-type air-flow-rate measuring instrument

Country Status (1)

Country Link
JP (1) JPH1114418A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241301A (en) * 2007-03-26 2008-10-09 Osaka Univ Non-destructive three-dimensional nano-meter analyzing apparatus by time of flight analysis type back scattering, and non-destructive three-dimensional nano-meter analysis method by time of flight analysis type back scattering
US7565255B2 (en) 2003-10-01 2009-07-21 Hitachi, Ltd. Thermal flow meter and control system
US7613582B2 (en) 2004-11-11 2009-11-03 Hitachi, Ltd. Thermal type flow rate measurement apparatus
CN113039412A (en) * 2018-11-30 2021-06-25 日立安斯泰莫株式会社 Physical quantity measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7565255B2 (en) 2003-10-01 2009-07-21 Hitachi, Ltd. Thermal flow meter and control system
US7613582B2 (en) 2004-11-11 2009-11-03 Hitachi, Ltd. Thermal type flow rate measurement apparatus
JP2008241301A (en) * 2007-03-26 2008-10-09 Osaka Univ Non-destructive three-dimensional nano-meter analyzing apparatus by time of flight analysis type back scattering, and non-destructive three-dimensional nano-meter analysis method by time of flight analysis type back scattering
CN113039412A (en) * 2018-11-30 2021-06-25 日立安斯泰莫株式会社 Physical quantity measuring device
CN113039412B (en) * 2018-11-30 2023-09-22 日立安斯泰莫株式会社 Physical quantity measuring device

Similar Documents

Publication Publication Date Title
JP3283800B2 (en) Heating resistor type air flow measurement device
JP2006242748A (en) Heating resistor type air flow measurement apparatus and its measurement error correction method
JP3421245B2 (en) Heating resistor type air flow measurement device
JP2908924B2 (en) Method for detecting the amount of air flowing into an engine, a device for performing the method, and a fuel injection amount control device having the device
JPH1114418A (en) Correction method for measurement error of heating resistor-type air-flow-rate measuring instrument
JP4279130B2 (en) Heating resistor type fluid flow measuring device
JPH01280645A (en) Fuel injection control device for engine
JP2006138688A (en) Fluid flow meter, and engine control system using the same
US6672146B1 (en) Thermal resistor type air flow measuring apparatus
JPH0915013A (en) Heating type measuring method and device for air flow rate
JP4460985B2 (en) Heating resistor type flow measuring device and control system using the same
JP3200005B2 (en) Heating resistance type air flow measurement device
JPH10153465A (en) Method for correcting measurement error of air flow rate measuring device, and measurement error correcting device
JP2001153702A (en) Method for correcting measuring error of heat generating resistor type air flow measuring apparatus
JP2004170357A (en) Exhaust gas flow rate measuring device and exhaust gas flow rate measuring method
JPH10232153A (en) Heating-resistor type air flow-rate measuring device and correcting device for internal combustion engine
JPH1123334A (en) Heating resistor type apparatus for measuring air flow rate and method and apparatus for correcting measurement error thereof
JP2003004496A (en) Flow rate measuring instrument
JP2000097101A (en) Control device for engine with heating resistor type air flow rate measuring device, and measuring error correcting method for heating resistor type air flow rate measuring device
JP2875948B2 (en) Intake air flow rate detection device
JPH0634591Y2 (en) Fuel control device for electronic fuel injection engine
JPH0634590Y2 (en) Fuel control device for electronic fuel injection engine
JPS595842A (en) Fuel controlling apparatus for internal combustion engine
JPH07234143A (en) Intake air flow rate detector of internal combustion engine
JPH1114420A (en) Heating resistor-type air-flow-rate measuring instrument