JPH0723072A - Detection system - Google Patents

Detection system

Info

Publication number
JPH0723072A
JPH0723072A JP5164410A JP16441093A JPH0723072A JP H0723072 A JPH0723072 A JP H0723072A JP 5164410 A JP5164410 A JP 5164410A JP 16441093 A JP16441093 A JP 16441093A JP H0723072 A JPH0723072 A JP H0723072A
Authority
JP
Japan
Prior art keywords
circuit
detection
signal
detection method
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5164410A
Other languages
Japanese (ja)
Inventor
Makoto Onishi
誠 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5164410A priority Critical patent/JPH0723072A/en
Publication of JPH0723072A publication Critical patent/JPH0723072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To provide a detection system which is optimal to the communication in a transmission line in which a receiving level is rapidly changed by providing the circuit of a synchronization detection system and the circuit of a delay detection system, and switching both the systems by observing the fluctuation of an input phase and an output phase. CONSTITUTION:A carrier reproduction control circuit 50 is constituted of a loop filter and a control circuit and monitors the input and output signal of the loop filter, and operates system switching control. When the system is switched to the synchronization detection system, the output of the loop filter is connected to a voltage control oscillator 4, orthogonal synchronization detection outputs obtained by low pass filters 5 and 6 are inputted to a clock reproducing circuit 51, a reproduction clock signal is obtained, and the data signal of a logical level is reproduced by a data discriminator 52, and decoded by a differential decoder. Also, when switched to the delay detection system, the loop filter is separated from the voltage control oscillator 4, the voltage control oscillator 4 is controlled by a constant voltage applied by the control circuit, and the oscillator 4 functions equally to the case of a semi-synchronization detection system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は検波方式に係り、特に、
ディジタル移動無線で用いられる同期検波と遅延検波の
両者を融合した検波方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detection method,
The present invention relates to a detection method that combines both synchronous detection and differential detection used in digital mobile radio.

【0002】[0002]

【従来の技術】無線方式では、送信機の変調回路で搬送
波を変調データ信号により変調して送出し、受信機の復
調器で受信した変調搬送波信号から元の変調データ信号
を再生する。復調の方法は大きく分けて、受信機内で搬
送波信号成分を再生して変調搬送波の位相成分情報を用
いる同期検波方式と、搬送波の位相情報を用いず周波数
あるいは振幅情報だけから変調データ信号を再生する非
同期検波方式がある。
2. Description of the Related Art In the radio system, a carrier circuit modulates a carrier wave with a modulated data signal and sends it out, and a demodulator of a receiver reproduces an original modulated data signal from a modulated carrier wave signal. The demodulation method is roughly divided into a synchronous detection method in which the carrier signal component is reproduced in the receiver and the phase component information of the modulated carrier is used, and the modulated data signal is reproduced only from the frequency or amplitude information without using the phase information of the carrier. There is an asynchronous detection method.

【0003】図1に同期検波方式の従来例を示す。図で
は、いわゆるコスタスループを用いて二相位相偏移変調
(BPSK)の搬送波再生を行う方式を示している。図
1で1,3は周波数混合器、2は90゜移相器、4は電
圧制御発振器、5,6は低域通過フィルタ、7はループ
フィルタ、8は掛算器である。
FIG. 1 shows a conventional example of a synchronous detection system. The figure shows a method of performing carrier recovery of two-phase phase shift keying (BPSK) using a so-called Costas loop. In FIG. 1, 1 and 3 are frequency mixers, 2 is a 90 ° phase shifter, 4 is a voltage controlled oscillator, 5 and 6 are low pass filters, 7 is a loop filter, and 8 is a multiplier.

【0004】受信入力信号は周波数混合器1,3によっ
て電圧制御発振器4の再生搬送波信号と、それを90゜
位相シフトした直交搬送波信号とを掛け合わせ、低域通
過フィルタ5,6に通して高調波成分を取り除き、低域
通過フィルタ6から復調データ信号を出力する。低域通
過フィルタ5,6の出力を掛算器8で掛け合わせると、
変調データ成分が取り除かれた搬送波位相差信号(受信
搬送波信号と再生搬送波信号の位相差)が得られ、この
低周波成分をループフィルタ7により取り出して、電圧
制御発振器4の制御信号とする。
The received input signal is multiplied by the regenerated carrier signal of the voltage controlled oscillator 4 by the frequency mixers 1 and 3 and the quadrature carrier signal whose phase is shifted by 90 °, and is passed through the low pass filters 5 and 6 to obtain the harmonic. The wave component is removed and the low-pass filter 6 outputs the demodulated data signal. When the outputs of the low pass filters 5 and 6 are multiplied by the multiplier 8,
A carrier wave phase difference signal (a phase difference between the received carrier wave signal and the reproduced carrier wave signal) from which the modulated data component is removed is obtained, and this low frequency component is taken out by the loop filter 7 and used as a control signal for the voltage controlled oscillator 4.

【0005】以上の構成により搬送波再生と変調波の復
調が同時に行える。同期検波方式は搬送波再生が必要な
ため回路が若干複雑となるが、復調可能な信号レベルが
低くて済む利点がある。
With the above structure, carrier reproduction and demodulation of a modulated wave can be performed simultaneously. The synchronous detection method requires a carrier recovery, which complicates the circuit a little, but has an advantage that the demodulatable signal level is low.

【0006】図2に代表的な非同期検波方式である遅延
検波回路の従来例を示す。図で21はデータのクロック
レートに等しい遅延時間を持つ遅延素子、22は掛算
器、23は低域通過フィルタである。
FIG. 2 shows a conventional example of a differential detection circuit which is a typical asynchronous detection system. In the figure, 21 is a delay element having a delay time equal to the data clock rate, 22 is a multiplier, and 23 is a low-pass filter.

【0007】受信信号は掛算器22に入力されて遅延素
子21によって1データレート遅延された受信信号と掛
け合わされ、さらに低域通過フィルタ23によって搬送
波の二次高調波が除去されて、基底帯域信号成分が取り
出される。この基底帯域信号はデータとそれを1データ
レート遅延した信号の排他論理和を取ったものに等し
い。従って、変調器側で予め差動符号化して置けば、図
2の回路で復調と差動復号化が同時に行える。
The received signal is input to the multiplier 22 and is multiplied by the received signal delayed by one data rate by the delay element 21. Further, the low-pass filter 23 removes the second harmonic of the carrier wave, and the baseband signal is obtained. The ingredients are removed. The baseband signal is equal to the exclusive OR of the data and the signal delayed by one data rate. Therefore, if the signal is differentially encoded in advance on the modulator side, demodulation and differential decoding can be performed simultaneously in the circuit of FIG.

【0008】差動符号化器,復号化器の一例を図3に示
す。図3aが差動符号器、図3bが差動復号器である。
図において31,34は排他論理和ゲート、32,33
は遅延素子である。データ入力xn を差動符号器に加え
ると、出力を1データ遅延したyn-1 と、ゲート31に
より排他論理和が取られ出力yn を得る。図3bの差動
復号器にyn を入力すると、遅延素子33により1デー
タ遅延したyn-1 とゲート34で排他論理和をとられ、
n′となる。xn′は数1に示すようにxn に等しくな
るので、差動符号器と差動復号器を組み合わせると、差
動復号器の出力に差動符号器の入力データと同じ信号が
得られる事が解る。
An example of the differential encoder and decoder is shown in FIG. 3a is a differential encoder, and FIG. 3b is a differential decoder.
In the figure, 31 and 34 are exclusive OR gates, and 32 and 33.
Is a delay element. When the data input x n is applied to the differential encoder, the output is delayed by one data y n-1 and the gate 31 performs an exclusive OR operation to obtain the output y n . When y n is input to the differential decoder shown in FIG. 3b, the delay element 33 delays one data by y n−1 and the gate 34 performs an exclusive OR operation,
x n ′. Since x n ′ becomes equal to x n as shown in Equation 1, when the differential encoder and the differential decoder are combined, the same signal as the input data of the differential encoder is obtained at the output of the differential decoder. I understand.

【0009】[0009]

【数1】 [Equation 1]

【0010】図2に示した遅延検波方式により、搬送波
成分除去と差動復号化が同時に行われている。遅延検波
方式の特徴は、図2から解るように、構成が簡単で、搬
送波再生が不要である事であるが、復調に必要な信号レ
ベルが大きく、同じ誤り率を得るためには同期検波方式
と比較して、2倍の信号振幅が必要となる。
By the differential detection method shown in FIG. 2, carrier component removal and differential decoding are performed simultaneously. As shown in FIG. 2, the characteristic of the differential detection system is that the configuration is simple and carrier recovery is not required. However, the signal level required for demodulation is large, and the synchronous detection system is required to obtain the same error rate. It requires twice the signal amplitude as compared to.

【0011】さらに近年、ディジタル信号処理の進歩と
共に、無線機の信号処理もディジタル化が行われ、図4
に示すような準同期検波方式が用いられている。図にお
いて41,43は周波数混合器、42は90゜移相器、
44は発振器、45,46は低域通過フィルタ、47,
48はAD変換器、49はクロック再生回路である。
Further, in recent years, along with the progress of digital signal processing, the signal processing of wireless devices has been digitized.
The quasi-synchronous detection method as shown in is used. In the figure, 41 and 43 are frequency mixers, 42 is a 90 ° phase shifter,
44 is an oscillator, 45 and 46 are low-pass filters, 47,
Reference numeral 48 is an AD converter, and 49 is a clock recovery circuit.

【0012】ディジタル信号処理では信号周波数が高い
と標本化周波数が高くなり、処理速度の点で不利となる
ため信号を基底帯域に周波数変換してから処理を行う。
そのため、図4に示すように、受信信号を周波数混合器
41,43で、発振器44の局部搬送波信号と、それを
90゜移相器42に通して得た直交搬送波信号と掛け合
わせ、低域通過フィルタ45,46で高調波信号成分を
除いてから、AD変換器47,48でディジタル化す
る。クロック再生回路49は同相,直交信号成分からデ
ータのクロック成分を抽出する回路である。AD変換器
の後段には図1の同期検波回路や、図2の遅延検波回路
を用いて、復調を行わせることが出来る。図1,図2の
回路では回路素子に搬送波周波数帯で動作可能な高速素
子を用いる必要があるが、準同期検波方式の場合は基底
帯域周波数で動作すれば良いので、ディジタル信号処理
でも構成可能となる。
In digital signal processing, if the signal frequency is high, the sampling frequency becomes high, which is disadvantageous in terms of processing speed. Therefore, the signal is frequency-converted into the base band before processing.
Therefore, as shown in FIG. 4, the received signal is multiplied by the frequency mixers 41 and 43 by the local carrier signal of the oscillator 44 and the quadrature carrier signal obtained by passing it through the 90 ° phase shifter 42 to obtain a low frequency band. After the harmonic signal components are removed by the pass filters 45 and 46, they are digitized by the AD converters 47 and 48. The clock recovery circuit 49 is a circuit for extracting a clock component of data from the in-phase and quadrature signal components. After the AD converter, demodulation can be performed by using the synchronous detection circuit shown in FIG. 1 or the delay detection circuit shown in FIG. In the circuits of FIGS. 1 and 2, it is necessary to use high-speed elements that can operate in the carrier frequency band as circuit elements, but in the case of the quasi-coherent detection method, it is sufficient to operate at the base band frequency, so digital signal processing is also possible. Becomes

【0013】以上説明した、同期検波方式の公知例に
は、特開平1−296745 号明細書がある。また遅延検波方
式の例には、特開平2−76348号明細書が、さらに準同期
検波方式に関する公知例には、特開平1−106188号明細
書がある。
As a known example of the synchronous detection method described above, there is JP-A-1-296745. Further, as an example of the differential detection method, there is JP-A-2-76348, and as a known example regarding the quasi-synchronous detection method, there is JP-A-1-106188.

【0014】[0014]

【発明が解決しようとする課題】従来技術の項で説明し
た同期検波方式には搬送波を復調器側で再生しなければ
ならないため、回路構成が複雑になり、また搬送波信号
電力と雑音電力の比(C/N)が小さくなると搬送波再
生回路が動作しなくなり、復調動作が不可能となる欠点
がある。一方、遅延検波方式では搬送波再生が不要であ
るため、C/Nが低くなっても、信頼度(符号誤り率)
は低下するものの何等かの検波出力が得られる。しか
し、遅延検波では回路が高速動作する必要があり、ま
た、C/Nの高い場合にも、同期検波方式と同等の符号
誤り率を確保するには、受信レベルが2倍必要となる。
In the synchronous detection method described in the section of the prior art, since the carrier wave must be reproduced on the demodulator side, the circuit configuration becomes complicated and the ratio of carrier signal power to noise power is increased. If (C / N) becomes smaller, the carrier recovery circuit will not operate and the demodulation operation will become impossible. On the other hand, in the differential detection method, since carrier wave reproduction is unnecessary, the reliability (code error rate) is maintained even if the C / N becomes low.
, But some detection output can be obtained. However, in the differential detection, the circuit needs to operate at high speed, and even when the C / N is high, the reception level is required to be doubled in order to secure the code error rate equivalent to that of the synchronous detection method.

【0015】本発明の目的は、同期検波方式と遅延検波
方式の欠点を補い合い、かつ長所を延ばすことの出来る
検波方式を提供する事にある。
An object of the present invention is to provide a detection method which can complement the drawbacks of the synchronous detection method and the differential detection method and extend the advantages.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明は同期検波方式と遅延検波方式の回路を設
け、搬送波同期回路において、入力位相及び出力位相の
変動を観測して、検波方式切り換え信号を生成し、上記
二つの検波方式を切り換える。
In order to achieve the above object, the present invention provides a circuit of a synchronous detection system and a differential detection system, and in a carrier synchronization circuit, observes the fluctuations of the input phase and the output phase for detection. A system switching signal is generated to switch between the above two detection systems.

【0017】図5を用いて本発明の原理を説明する。図
5において、50は搬送波再生制御回路、51はクロッ
ク再生回路、52はデータ識別器、54は遅延フリップ
フロップ、53は排他論理和ゲートであり、構成要素1
〜6、および8は図1の同期検波方式の対応する要素番
号と同一機能を有する。1〜6,8の構成要素は図1で
説明したコスタスループを構成していて、同期検波方式
における搬送波再生回路を成しているが、搬送波再生制
御回路50がループフィルタ7に置き変わっている。搬
送波再生制御回路はループフィルタと制御回路から成
り、ループフィルタの入出力信号を監視し、方式切り換
え制御を行う。
The principle of the present invention will be described with reference to FIG. In FIG. 5, reference numeral 50 is a carrier wave reproduction control circuit, 51 is a clock reproduction circuit, 52 is a data discriminator, 54 is a delay flip-flop, 53 is an exclusive OR gate, and the component 1
6 and 8 have the same functions as the corresponding element numbers of the synchronous detection method of FIG. The components 1 to 6 and 8 compose the Costas loop described with reference to FIG. 1, and form a carrier recovery circuit in the synchronous detection system, but the carrier recovery control circuit 50 is replaced with the loop filter 7. . The carrier wave reproduction control circuit is composed of a loop filter and a control circuit, and monitors the input / output signal of the loop filter and controls the system switching.

【0018】同期検波方式に切り換えた時はループフィ
ルタの出力を電圧制御発振器4に接続し、搬送波再生動
作を行う。低域通過フィルタ5,6に得られる直交同期
検波出力を、クロック再生回路51に入力して再生クロ
ック信号clkを得、これでデータ識別器52,遅延フ
リップフロップ54を動作させる。データ識別器52は
同相検波出力を識別して論理レベルのデータ信号を再生
する。識別したデータは排他論理和ゲート53と、遅延
フリップフロップ54から構成された差動復号器で復号
し出力する。
When switching to the synchronous detection system, the output of the loop filter is connected to the voltage controlled oscillator 4 to perform the carrier recovery operation. The quadrature synchronous detection outputs obtained by the low-pass filters 5 and 6 are input to the clock reproduction circuit 51 to obtain the reproduced clock signal clk, which operates the data discriminator 52 and the delay flip-flop 54. The data discriminator 52 discriminates the in-phase detection output and reproduces a logic level data signal. The identified data is decoded and output by the differential decoder composed of the exclusive OR gate 53 and the delay flip-flop 54.

【0019】搬送波再生制御回路50が遅延検波方式に
切り換えた時は、ループフィルタと電圧制御発振器4は
切り離され、制御回路が与える一定電圧で電圧制御発振
器4が制御される。従って、図5の検波回路部分は図4
の準同期検波方式と同等に機能する。搬送波帯の受信信
号は局部搬送波信号が混合され、基底帯域に周波数変換
されている。基底帯域で図2の遅延検波方式を考える
と、遅延素子21は1クロック遅延のフリップフロップ
54に、掛算器22は基底帯域信号をデータ識別器52
に通した後で考えれば、排他論理和ゲート53で構成で
きることが分かる。すなわち、図5に示した構成で、同
期検波方式と遅延検波方式を兼ね備えた検波方式が実現
できることが分かる。
When the carrier recovery control circuit 50 is switched to the delay detection system, the loop filter and the voltage controlled oscillator 4 are separated from each other, and the voltage controlled oscillator 4 is controlled by the constant voltage provided by the control circuit. Therefore, the detection circuit part of FIG.
It functions similarly to the quasi-synchronous detection method of. The received signal in the carrier band is mixed with the local carrier signal and frequency-converted to the base band. Considering the differential detection method of FIG. 2 in the baseband, the delay element 21 is a flip-flop 54 with a 1-clock delay, and the multiplier 22 is a baseband signal from the data discriminator 52.
It can be understood that it can be configured by the exclusive OR gate 53 if it is considered after passing through the above. That is, it can be seen that the configuration shown in FIG. 5 can realize a detection method having both a synchronous detection method and a differential detection method.

【0020】図5の構成で検波方式の切り換えを自動的
に行うため、搬送波再生制御回路50が重要な役割を果
たしている。この切り換え制御は、搬送波再生回路を構
成する位相同期回路(PLL)の、ループフィルタの入
力信号、あるいは出力信号の変動を観測する事によって
可能である。
Since the detection system is automatically switched in the configuration of FIG. 5, the carrier recovery control circuit 50 plays an important role. This switching control can be performed by observing the fluctuation of the input signal or the output signal of the loop filter of the phase locked loop (PLL) that constitutes the carrier recovery circuit.

【0021】図6に図5の搬送波再生制御回路50の制
御フローを示す。PLLには、同期引き込み動作と、同
期保持動作の二つの動作モードがあり、動作開始時や受
信搬送波レベルの小さくなった時には同期引き込み動
作,受信搬送波レベルの大きいときは同期保持動作を行
う。従って、同期引き込みモードでは遅延検波方式,同
期保持モードでは同期検波方式に切り換え制御する。動
作モードの切り換えは受信搬送波レベルを監視すること
で行える。PLLでは同期引き込みモードで引き込み完
了,同期保持モードで同期はずれを検出しモードを切り
換える。すなわち、引き込み完了は、出力位相変動を観
測し、変動が一方向でなく、変動幅がある値以下に成っ
たことで、検出することが出来る。また、同期はずれ
は、入力位相変動を観測し、位相変動が一方向にある変
動幅より大きく成ることで、検知する事が出来る。
FIG. 6 shows a control flow of the carrier wave reproduction control circuit 50 of FIG. The PLL has two operation modes, that is, a synchronous pull-in operation and a synchronous hold operation. The synchronous pull-in operation is performed at the start of the operation or when the received carrier wave level is low, and the synchronous hold operation is performed when the received carrier wave level is high. Therefore, the synchronous detection mode is switched to the differential detection system, and the synchronous holding mode is switched to the synchronous detection system. The operation mode can be switched by monitoring the received carrier wave level. In the PLL, the pull-in is completed in the sync pull-in mode, and the sync loss is detected in the sync hold mode to switch the mode. That is, the pull-in completion can be detected by observing the output phase fluctuation and not unidirectionally, but the fluctuation width being less than or equal to a certain value. Further, the loss of synchronization can be detected by observing the input phase fluctuation and making the phase fluctuation larger than the fluctuation width in one direction.

【0022】[0022]

【作用】本発明の検波方式では受信信号レベルによって
自動的に検波方式を切り換えることにより、受信レベル
が小さくなったときには遅延検波方式,受信レベルが大
きいときは性能の良い同期検波方式で検波することが出
来る。従って移動無線のフェーディングの様に受信レベ
ルが急激に変化する伝送路の通信に最適な検波方式を提
供することが出来る。また準同期検波を用いることで動
作周波数を低減し、回路の簡単化,低消費電力化が出来
る。
According to the detection method of the present invention, the detection method is automatically switched according to the received signal level, so that when the reception level becomes low, the delay detection method is used, and when the reception level is high, the synchronous detection method having good performance is used. Can be done. Therefore, it is possible to provide an optimum detection method for communication on a transmission line in which the reception level changes rapidly such as fading of mobile radio. Also, by using the quasi-synchronous detection, the operating frequency can be reduced, the circuit can be simplified and the power consumption can be reduced.

【0023】本発明の方式では遅延検波の場合、搬送波
同期回路は位相同期ループが開放となって電圧制御発振
器は無制御となるが、同期保持時の電圧制御発振器の制
御電圧を保持しておけば、局部搬送波周波数は同期保持
時の周波数と同じになり、遅延検波の時のAFC(自動
周波数制御)と同等の機能を果たすことが出来る。
In the system of the present invention, in the case of differential detection, the phase locked loop of the carrier wave synchronizing circuit is opened and the voltage controlled oscillator becomes uncontrolled, but the control voltage of the voltage controlled oscillator at the time of holding the synchronization should be held. For example, the local carrier frequency becomes the same as the frequency when the synchronization is maintained, and the function equivalent to AFC (automatic frequency control) at the time of differential detection can be achieved.

【0024】遅延検波方式を用いるために、送信側でデ
ータを差動符号化しておく必要があるが、ごく簡単な回
路で実現することが出来、ほとんど問題とならない。さ
らには、送信側で差動符号化を行わず、遅延検波方式に
切り換えた時も受信側で差動復号化を用いない事もでき
る。この場合には差動符号化器,復号化器が不要となり
回路を簡単化することが出来る。
Since the differential detection method is used, it is necessary to differentially encode the data on the transmitting side, but it can be realized by a very simple circuit, and there is almost no problem. Furthermore, it is possible not to perform differential encoding on the transmitting side and not use differential decoding on the receiving side even when switching to the differential detection method. In this case, a differential encoder and a decoder are unnecessary, and the circuit can be simplified.

【0025】[0025]

【実施例】図7は四相位相変調方式の復調器に本発明を
実施した構成図である。図において70,71は位相回
転回路、72はデータ識別器、73はROM、741
742,743は遅延素子、75は加算器、76は切換ス
イッチ、77はループフィルタ、78は位相比較器、7
9は制御回路である。また構成要素番号41〜49は図
4の準同期検波方式の構成図の対応する要素と同一の機
能を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 7 is a block diagram of the present invention applied to a demodulator of the four-phase phase modulation system. In the figure, 70 and 71 are phase rotation circuits, 72 is a data discriminator, 73 is a ROM, 74 1 ,
74 2 and 74 3 are delay elements, 75 is an adder, 76 is a changeover switch, 77 is a loop filter, 78 is a phase comparator, 7
Reference numeral 9 is a control circuit. The component element numbers 41 to 49 have the same functions as the corresponding elements in the configuration diagram of the quasi-coherent detection system of FIG.

【0026】受信信号は構成要素41〜48からなる準
同期検波回路により、基底帯域の同相,直交信号に変換
される。またこれらの信号をクロック再生回路49に入
力し、後段のディジタル回路に供給する。準同期検波回
路により基底帯域に周波数変換されディジタル化された
同相直交信号は、位相回転回路70で搬送波周波数残渣
が補正される。すなわち、受信信号の搬送波周波数と局
部発振器44の周波数との差周波数に相当する分の、搬
送波周波数ずれ及び搬送波位相ずれを回路要素70以降
の搬送波再生回路で同期する。
The received signal is converted into a baseband in-phase and quadrature signal by a quasi-coherent detection circuit composed of constituent elements 41 to 48. Further, these signals are input to the clock recovery circuit 49 and supplied to the digital circuit in the subsequent stage. The carrier wave frequency residue of the in-phase quadrature signal, which has been frequency-converted to the base band by the quasi-synchronous detection circuit and digitized, is corrected by the phase rotation circuit 70. That is, the carrier frequency shift and the carrier phase shift corresponding to the difference frequency between the carrier frequency of the received signal and the frequency of the local oscillator 44 are synchronized by the carrier recovery circuit after the circuit element 70.

【0027】位相回転された信号は位相回転回路71,
遅延素子741,742からなる四相位相変調の差動復号
器で復号される。差動復号された信号はデータ識別器7
2により、識別されて復調データdQ,dIが得られる。
識別器72の入力信号と出力識別値は位相比較器78に
入力され、識別位相と受信信号点位相との位相誤差Δφ
iが検出される。位相誤差Δφiはループフィルタ77で
雑音成分除去して、位相制御信号Δφとなり切換スイッ
チ76を経て、加算器75と遅延素子743からなる電
圧制御発振器に印加し、ROM73によって搬送波周波
数残渣信号のcos成分,sin成分を発生し、位相回転回路
70に入力する。
The phase-rotated signal is sent to the phase rotation circuit 71,
It is decoded by a four-phase phase modulation differential decoder composed of delay elements 74 1 and 74 2 . The differentially decoded signal is a data discriminator 7
The demodulated data d Q and d I are obtained by being identified by 2.
The input signal and the output discrimination value of the discriminator 72 are inputted to the phase comparator 78, and the phase error Δφ between the discrimination phase and the reception signal point phase is inputted.
i is detected. The phase error Δφ i is subjected to noise component removal by the loop filter 77, becomes the phase control signal Δφ, is applied to the voltage controlled oscillator composed of the adder 75 and the delay element 74 3 via the changeover switch 76, and the ROM 73 outputs the carrier frequency residual signal. A cos component and a sin component are generated and input to the phase rotation circuit 70.

【0028】制御回路79には位相誤差Δφi と位相制
御信号Δφが入力され、搬送波同期回路の動作状況を観
測し、検波方式切換制御を行う。すなわち、同期保持の
状態では切換スイッチ76をループフィルタ77側に接
続し、搬送波同期動作を行わせる。同時に位相誤差Δφ
i の変化を観測し、一方方向に変化すれば同期外れを生
じたと判断し、動作モードを同期引き込みに切換える。
同期引き込みの状態では、切換スイッチ76を接地側に
切換える。これにより電圧制御発振器は遅延素子743
に蓄積されたデータ値(すなわち同期引き込みに切り換
えられる直前の搬送波周波数残渣信号)で固定制御され
自走する。これにより遅延検波方式のAFC(自動周波
数制御)と同等の機能が実現出来る事になる。同期引き
込み状態では位相制御信号Δφの変化を観測し、変化の
絶対値がある一定範囲内に収束したら同期引き込みが完
了したと判断して、切換スイッチ76をループフィルタ
77側に切換える。こうして検波方式の切換えが搬送波
制御回路により自動的に行え、受信搬送波レベルの変動
により最適な検波方式が選択できる。
The phase error Δφ i and the phase control signal Δφ are input to the control circuit 79, and the operating condition of the carrier synchronization circuit is observed and the detection method switching control is performed. That is, in the synchronous holding state, the changeover switch 76 is connected to the loop filter 77 side to perform the carrier wave synchronizing operation. At the same time the phase error Δφ
The change in i is observed, and if it changes in one direction, it is determined that the synchronization loss has occurred, and the operation mode is switched to synchronization pull-in.
In the synchronous pull-in state, the changeover switch 76 is changed over to the ground side. As a result, the voltage controlled oscillator causes the delay element 74 3
The fixed value is controlled by the data value stored in (i.e., the carrier frequency residue signal immediately before the switching to the synchronous pull-in), and the device runs on its own. As a result, a function equivalent to that of the AFC (automatic frequency control) of the differential detection system can be realized. In the synchronous pull-in state, the change of the phase control signal Δφ is observed, and when the absolute value of the change converges within a certain fixed range, it is determined that the synchronous pull-in is completed, and the changeover switch 76 is switched to the loop filter 77 side. In this way, the detection method can be switched automatically by the carrier control circuit, and the optimum detection method can be selected according to the fluctuation of the received carrier level.

【0029】図7の実施例における位相回転回路70,
71の具体的構成例を図8に示す。図で81〜84は掛
算器、85,86は加算器である。図8は複素信号掛算
器を構成しており、入力信号xI+jxQに複素係数aI
+jaQを掛け、出力信号yI+jyQ を計算する。複素
係数aI+jaQ を複素正弦波信号exp(jωn)=cos(j
ωn)+jsin(jωn)とすると、位相回転回路として動作
し、入力信号の位相をωn だけ回転し出力するので、搬
送波再生回路の位相回転器71として機能する。また四
相位相変調信号の差動復号は位相回転で行われる。この
場合は複素係数aI+jaQを1クロック前の受信データ
とする。
The phase rotation circuit 70 in the embodiment of FIG.
FIG. 8 shows a specific configuration example of 71. In the figure, 81 to 84 are multipliers, and 85 and 86 are adders. FIG. 8 shows a complex signal multiplier, in which the input signal x I + jx Q has a complex coefficient a I
Multiply + ja Q and calculate the output signal y I + jy Q. Let the complex coefficient a I + ja Q be the complex sine wave signal exp (jω n ) = cos (j
When ω n ) + jsin (jω n ), it operates as a phase rotation circuit, rotates the phase of the input signal by ω n, and outputs it, so that it functions as the phase rotator 71 of the carrier recovery circuit. The differential decoding of the four-phase modulation signal is performed by phase rotation. In this case, the complex coefficient a I + ja Q is the received data one clock before.

【0030】本発明は四相位相変調方式の検波方式に適
用した実施例に付いて説明したが、本発明はこの他の変
調方式にも適用できる。また実施例では準同期検波方式
を用いた構成で説明したが、解決手段の項で述べたよう
な準同期検波を用いない方法にも適用できる。さらに、
同期検波に於いても差動復号器を用いているが、変調側
で差動符号化しなければ、これも省略することが出来
る。検波方式の切換制御方法も種々の変形が可能であ
る。
Although the present invention has been described with reference to the embodiment applied to the detection method of the four-phase phase modulation method, the present invention can also be applied to other modulation methods. Further, in the embodiments, the configuration using the quasi-coherent detection method has been described, but it is also applicable to the method not using the quasi-coherent detection as described in the section of the solving means. further,
A differential decoder is also used for synchronous detection, but this can be omitted if differential encoding is not performed on the modulation side. The detection method switching control method can be modified in various ways.

【0031】[0031]

【発明の効果】本発明によれば、受信信号レベルの変動
により最適な検波方式を自動的に選択する検波方式が実
現でき、受信レベルが大きいときは符号誤り率の小さい
同期検波方式を、受信レベルが小さいときは搬送波同期
が不要な遅延検波方式を用いて検波が行えるので、フェ
ーディング等により受信レベルが激しく変動する移動無
線通信方式に最適な検波方式を提供する事が出来る。
According to the present invention, it is possible to realize a detection method that automatically selects the optimum detection method according to the fluctuation of the received signal level. When the reception level is high, the synchronous detection method with a small code error rate is received. When the level is small, detection can be performed using a differential detection method that does not require carrier synchronization, so that it is possible to provide an optimum detection method for a mobile radio communication method in which the reception level fluctuates drastically due to fading or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】同期検波方式の従来構成例のブロック図。FIG. 1 is a block diagram of a conventional configuration example of a synchronous detection system.

【図2】非同期検波方式の一例である遅延検波方式のブ
ロック図。
FIG. 2 is a block diagram of a differential detection system which is an example of an asynchronous detection system.

【図3】遅延検波に用いる差動符号器,復号器のブロッ
ク図。
FIG. 3 is a block diagram of a differential encoder and a decoder used for differential detection.

【図4】準同期検波方式の従来構成例の説明図。FIG. 4 is an explanatory diagram of a conventional configuration example of a quasi-coherent detection system.

【図5】本発明による検波方式の原理の説明図。FIG. 5 is an explanatory diagram of the principle of the detection method according to the present invention.

【図6】本発明の検波方式の切換制御フローチャート。FIG. 6 is a detection method switching control flowchart of the present invention.

【図7】本発明の実施例のブロック図。FIG. 7 is a block diagram of an embodiment of the present invention.

【図8】本発明の実施例で用いる位相回転回路の説明
図。
FIG. 8 is an explanatory diagram of a phase rotation circuit used in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

41,43…周波数混合器、42…90゜移相器、44
…発振器、45,46…低域通過フィルタ、47,48
…AD変換器、70,71…位相回転回路、72…デー
タ識別器、73…ROM、742,743…遅延素子、7
6…切換スイッチ、77…ループフィルタ、78…位相
比較器、79…制御回路。
41, 43 ... Frequency mixer, 42 ... 90 ° phase shifter, 44
... Oscillator, 45, 46 ... Low-pass filter, 47, 48
AD converter, 70, 71 ... Phase rotation circuit, 72 ... Data discriminator, 73 ... ROM, 74 2 , 74 3 ... Delay element, 7
6 ... Changeover switch, 77 ... Loop filter, 78 ... Phase comparator, 79 ... Control circuit.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】同期検波回路と遅延検波回路と検波方式切
換制御回路を有し、受信信号を前記同期検波回路と前記
遅延検波回路に入力し、前記検波方式切換制御回路によ
って受信信号レベルを監視し、前記受信信号レベルが予
め定めた設定値より大きいときには、前記同期検波回路
出力を選択し、前記受信信号レベルが前記予め定めた設
定値より小さいときには、前記遅延検波回路の出力を選
択して、検波出力とすることを特徴とする検波方式。
1. A synchronous detection circuit, a differential detection circuit, and a detection system switching control circuit, wherein a received signal is input to the synchronous detection circuit and the differential detection circuit, and the received signal level is monitored by the detection system switching control circuit. However, when the received signal level is higher than a predetermined set value, the synchronous detection circuit output is selected, and when the received signal level is lower than the predetermined set value, the output of the delay detection circuit is selected. , Detection method characterized by the detection output.
【請求項2】請求項1に於いて、前記検波方式切換制御
回路を搬送波同期回路を用いて構成し、前記搬送波同期
回路のループフィルタと電圧制御発振器の間に切換スイ
ッチを設け、前記ループフィルタの入力信号と出力信号
の一定周期毎の変化を監視し、前記ループフィルタ入力
信号の変化が正負いずれかの一方向となり、かつ変化値
が予め設定した値より大きくなった場合には、同期外れ
と判断し、前記切換スイッチを開いて前記電圧制御発振
器を自走させると同時に前記遅延検波回路出力を検波出
力とし、前記ループフィルタ出力信号の変化の絶対値が
予め定めた設定値より小さくなった場合には、引込み完
了と判断し、前記切換スイッチを閉じて前記ループフィ
ルタ出力を前記電圧制御発振器へ導くと同時に前記同期
検波回路出力を検波出力として選択するように、前記検
波方式切換制御を行う検波方式。
2. The detection system switching control circuit according to claim 1, wherein the detection method switching control circuit is configured by using a carrier wave synchronizing circuit, and a changeover switch is provided between a loop filter of the carrier wave synchronizing circuit and a voltage controlled oscillator. If the change of the loop filter input signal is either positive or negative and the change value becomes larger than a preset value, the synchronization is lost. Then, the changeover switch is opened to allow the voltage-controlled oscillator to self-run, and at the same time the differential detection circuit output is used as a detection output, and the absolute value of the change in the loop filter output signal becomes smaller than a predetermined set value. In this case, it is determined that the pull-in is completed, the changeover switch is closed, the loop filter output is guided to the voltage controlled oscillator, and at the same time the synchronous detection circuit output is detected. So as to select as an output, a detection method of performing the detection method switching control.
【請求項3】請求項2に於いて、前記遅延検波方式に切
換制御する直前のループフィルタ出力信号を記憶保持し
て置き、前記記憶保持したループフィルタ出力信号を前
記遅延検波方式選択時の電圧制御発振器の自走時の制御
信号とする検波方式。
3. The loop filter output signal immediately before switching control to the differential detection method is stored and held, and the stored loop filter output signal is stored in the voltage when the differential detection method is selected. A detection method that uses the control signal when the controlled oscillator is free running.
【請求項4】請求項1,2または3において、準同期検
波方式を用いて受信信号を基底帯域の信号に変換し、前
記基底帯域信号を前記同期検波回路および前記検波回路
に入力する検波方式。
4. The detection method according to claim 1, wherein the received signal is converted into a baseband signal using a quasi-coherent detection method, and the baseband signal is input to the synchronous detection circuit and the detection circuit. .
【請求項5】請求項4において、送信機側の差動符号化
回路と、受信機側の差動復号化回路とを省略し、検波方
式の相違に依らず差動符号化を行わない検波方式。
5. The detection according to claim 4, wherein the differential encoding circuit on the transmitter side and the differential decoding circuit on the receiver side are omitted, and differential encoding is not performed regardless of the difference in the detection method. method.
JP5164410A 1993-07-02 1993-07-02 Detection system Pending JPH0723072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5164410A JPH0723072A (en) 1993-07-02 1993-07-02 Detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5164410A JPH0723072A (en) 1993-07-02 1993-07-02 Detection system

Publications (1)

Publication Number Publication Date
JPH0723072A true JPH0723072A (en) 1995-01-24

Family

ID=15792619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5164410A Pending JPH0723072A (en) 1993-07-02 1993-07-02 Detection system

Country Status (1)

Country Link
JP (1) JPH0723072A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001956A1 (en) * 1997-07-01 1999-01-14 Advanced Digital Television Broadcasting Laboratory Orthogonal frequency-division multiplex transmission system, and its transmitter and receiver
JP2006078490A (en) * 2004-09-13 2006-03-23 Pmd Technologies Gmbh Method and device for delay sensitive measurement of signal
JP2008022187A (en) * 2006-07-12 2008-01-31 Fujitsu Ten Ltd Receiving device
US7602836B2 (en) 2003-12-01 2009-10-13 Samsung Electronics Co., Ltd Receiver
US7738616B2 (en) 2001-04-16 2010-06-15 Thomson Licensing Phase tracking system
JP2010245836A (en) * 2009-04-06 2010-10-28 Mitsubishi Electric Corp Receiver
CN102623461A (en) * 2012-03-19 2012-08-01 深圳市华星光电技术有限公司 Thin film transistor array substrate and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001956A1 (en) * 1997-07-01 1999-01-14 Advanced Digital Television Broadcasting Laboratory Orthogonal frequency-division multiplex transmission system, and its transmitter and receiver
US7738616B2 (en) 2001-04-16 2010-06-15 Thomson Licensing Phase tracking system
US7602836B2 (en) 2003-12-01 2009-10-13 Samsung Electronics Co., Ltd Receiver
JP2006078490A (en) * 2004-09-13 2006-03-23 Pmd Technologies Gmbh Method and device for delay sensitive measurement of signal
JP2008022187A (en) * 2006-07-12 2008-01-31 Fujitsu Ten Ltd Receiving device
JP2010245836A (en) * 2009-04-06 2010-10-28 Mitsubishi Electric Corp Receiver
CN102623461A (en) * 2012-03-19 2012-08-01 深圳市华星光电技术有限公司 Thin film transistor array substrate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2643792B2 (en) Demodulator
US5440268A (en) AFC circuit for QPSK demodulator
JPH021675A (en) Carrier recovering circuit for offset qpsk system
JP4165413B2 (en) Radio data communication demodulator and demodulation method
JPS62222745A (en) Demodulator
JPH08265143A (en) Carrier recovery circuit
JPH0723072A (en) Detection system
JPH0542863B2 (en)
JPS6211347A (en) Four-phase psk demodulating device
JP3383318B2 (en) Digital modulation wave demodulator
JPH09130440A (en) Detection circuit device
JPH0541717A (en) Demodulator for digital modulated wave
JPH0897874A (en) Offset qpsk demodulator
JPH07143199A (en) Digital signal demodulator
JPH066397A (en) Delay detector
JP3265052B2 (en) Digital modulation wave demodulator
JP3382892B2 (en) Method and apparatus for detecting a frame synchronization pattern by digitally demodulating a phase modulated signal in hierarchical transmission
JP2650556B2 (en) Synchronous spread spectrum modulation demodulator
JP3128828B2 (en) MSK demodulation circuit
JP2689806B2 (en) Synchronous spread spectrum modulated wave demodulator
JPH06132996A (en) Pi/4 shit qpsk demodulating circuit
JPH06291791A (en) Demodulator for phase modulation wave signal
JPS60189354A (en) Communication system
JPH0697970A (en) Carrier wave recovery circuit
JPH02228849A (en) Quadruple phase shift keying detection circuit