JPH0719613B2 - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH0719613B2
JPH0719613B2 JP61078300A JP7830086A JPH0719613B2 JP H0719613 B2 JPH0719613 B2 JP H0719613B2 JP 61078300 A JP61078300 A JP 61078300A JP 7830086 A JP7830086 A JP 7830086A JP H0719613 B2 JPH0719613 B2 JP H0719613B2
Authority
JP
Japan
Prior art keywords
cooling
battery
cooling plate
electrode
unit cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61078300A
Other languages
Japanese (ja)
Other versions
JPS62237675A (en
Inventor
弘司 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61078300A priority Critical patent/JPH0719613B2/en
Publication of JPS62237675A publication Critical patent/JPS62237675A/en
Publication of JPH0719613B2 publication Critical patent/JPH0719613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は熱料電池の冷却に関し、特に冷却板に埋設され
る冷却管の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to cooling of a thermoelectric battery, and more particularly to the structure of a cooling pipe embedded in a cooling plate.

(従来の技術) 熱料電池は熱料がもっているエネルギーを直接、電気エ
ネルギーに変換する装置である。熱料電池は通常電解質
を挟んで一対の多孔質電極を配置するとともに、一方の
電極の背面に水素などの熱料ガスを接触させ、また他方
の電極の背面に酸素などの酸化剤ガスを接触させる。こ
のときに起る電気化学的反応を利用して両電極間から電
気エネルギーを取り出すように構成したものである。
(Prior Art) A thermoelectric battery is a device that directly converts energy contained in a thermoelectric material into electric energy. In a thermoelectric battery, a pair of porous electrodes are usually placed across an electrolyte, and a thermogenic gas such as hydrogen is brought into contact with the back surface of one electrode and an oxidant gas such as oxygen is brought into contact with the back surface of the other electrode. Let By utilizing the electrochemical reaction occurring at this time, electric energy is taken out from between both electrodes.

第3図に実際の単電池の構成を示す。単電池は、電解質
層1を挟んで、熱料極であるアノード極2および酸化剤
極であるカソード極2aの一対の電極からなり、隣の単電
池とはそれぞれセパレータ4で分離されている。
FIG. 3 shows the structure of an actual cell. The unit cell is composed of a pair of electrodes, which are an anode electrode 2 which is a heat electrode and a cathode electrode 2a which is an oxidant electrode, with the electrolyte layer 1 interposed therebetween, and each of the adjacent unit cells is separated by a separator 4.

熱料電池は単電池より発生する電圧が1V以下と低いた
め、通常第4図に示すように400〜500個の単電池を積層
し、所望の高電圧を得るようにしている。
Since the voltage generated by the thermoelectric battery is as low as 1 V or less than that of the unit cell, normally 400 to 500 unit cells are stacked as shown in FIG. 4 to obtain a desired high voltage.

積層に際しては、上記の反応が発熱反応であるため電池
の温度上昇を防止するため数個の単電池6間に冷却板7
を挿入すると共に積層された単電池に対する上端部冷却
板5、下端部冷却板8を設置し、熱料電池より発生する
熱を外部へ取り出すように構成されている。
When stacking, since the above reaction is an exothermic reaction, a cooling plate 7 is provided between several unit cells 6 in order to prevent temperature rise of the cells.
Is installed and an upper end cooling plate 5 and a lower end cooling plate 8 for the stacked unit cells are installed to take out heat generated from the thermoelectric battery to the outside.

従って第5図に示すように冷却板7は通常圧縮成形グラ
ファイト樹脂組成物で作られており、内部に絶縁処理を
施した約3〜6mmφ程度の冷却管9が等間隔で複数本埋
め込まれている。冷媒として水,有機溶液等が使われ、
冷媒入口管10より導入され冷媒出口管14より排出される
ようになっている。
Therefore, as shown in FIG. 5, the cooling plate 7 is usually made of a compression molded graphite resin composition, and a plurality of insulation-treated cooling tubes 9 of about 3 to 6 mmφ are embedded at equal intervals. There is. Water, organic solution, etc. are used as the refrigerant,
It is introduced through the refrigerant inlet pipe 10 and discharged through the refrigerant outlet pipe 14.

(発明が解決しようとする問題点) 冷却は単相流方式および2相流式の2通りが考えられる
が、冷媒流量が少なくて良いこと、発電プラントで蒸気
を必要とすることなどから2相流冷却方式が採用されて
いる。この場合第4図のように構成された積層電池にお
いて単電池間に挿入された冷却板7(第5図図式)は
上,下の電池より発生した熱の入熱があるが、上端部冷
却板5,下端部冷却板8は片側よりの入熱しかなく、入熱
量は1/2となる。
(Problems to be solved by the invention) There are two types of cooling, a single-phase flow system and a two-phase flow system, but two-phase cooling is possible because the refrigerant flow rate is small and steam is required in the power plant. Flow cooling method is adopted. In this case, in the laminated battery configured as shown in Fig. 4, the cooling plate 7 (Fig. 5) inserted between the cells has heat input from the upper and lower batteries, but the upper end is cooled. The plate 5 and the lower end cooling plate 8 only have heat input from one side, and the amount of heat input is halved.

したがって、この2枚の冷却板では冷却管の中での沸騰
が開始せず、2相流状態の他の(単電池間に設けられ
た)冷却板に比べ圧力損失の少ない単相流状態となって
しまう。このように冷却板間に流量の不均一が生じるこ
とは冷却性能上好ましくなく、電池温度分布を不均一に
し寿命低下をもたらす等の問題があった。
Therefore, with these two cooling plates, boiling does not start in the cooling pipe, and a single-phase flow state with less pressure loss than other cooling plates (provided between cells) in a two-phase flow state is obtained. turn into. Such non-uniformity of the flow rate between the cooling plates is not preferable in terms of cooling performance, and there is a problem that the temperature distribution of the battery becomes non-uniform and the life is shortened.

本発明は、上記のような問題を解決するために成された
ものであり、その目的は熱料電池積層体の上端下端およ
び前記単位電池間に設けられた冷却板の冷却管を流れる
冷却媒体が均一な2相流となるようにし、良好な電池冷
却を行うことが出来る熱料電池を提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to provide a cooling medium flowing through a cooling pipe of a cooling plate provided between the upper and lower ends of a thermoelectric battery stack and the unit cells. Is to provide a uniform two-phase flow, and to provide a thermoelectric battery capable of excellent battery cooling.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 上記目的を達成するために本発明では、電解質層を挟ん
で熱料極および酸化剤極の一対の電極を配置して成る単
電池を複数個積層して熱料電池積層体を構成しこの熱料
電池積層体の上端下端および上記単位電池間に冷却板を
有しその冷却板に流れる冷却媒体の蒸発潜熱で2相流冷
却を行う熱料電池において、熱料電池積層体の上端下端
における冷却板に埋設された冷却管の本数が熱料電池積
層体の単電池間に設けられた冷却板の本数の半分である
ように構成したことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, a plurality of unit cells each having a pair of electrodes of a heating agent electrode and an oxidizing agent electrode arranged with an electrolyte layer sandwiched therebetween are laminated. A thermoelectric battery that constitutes a thermoelectric battery laminate and has a cooling plate between the upper and lower ends of the thermoelectric battery laminate and the unit cells, and performs two-phase flow cooling by latent heat of vaporization of a cooling medium flowing through the cooling plate, It is characterized in that the number of cooling pipes embedded in the cooling plates at the upper and lower ends of the thermoelectric battery laminate is half the number of cooling plates provided between the cells of the thermoelectric battery laminate. .

(作 用) 単電池を積層し、その両端及びその単電池間に冷却板を
設けたものにおいて、各冷却板内で等しく2相流状態と
なるようにして冷却板を流れる冷媒体の不均一をなくし
た。
(Operation) When cells are stacked and cooling plates are provided between both ends of the cells and between the cells, the refrigerant bodies flowing through the cooling plates are non-uniform so that the two-phase flow state is equal in each cooling plate. Lost

(実施例) 以下本発明の一実施例を説明する前に熱料電池の原理に
ついて説明をする。
(Example) Before describing an example of the present invention, the principle of the thermoelectric battery will be described.

電解質としては、溶融炭酸塩,アルカリ溶液,酸溶液等
が使用されるが、代表的なリン酸を電解質とする熱料電
池の原理について説明する。
A molten carbonate, an alkaline solution, an acid solution or the like is used as the electrolyte, and the principle of a typical thermoelectric battery using phosphoric acid as the electrolyte will be described.

第2図において、電解質層1は繊維質シート、あるいは
鉱物質粉末にリン酸を含浸してある。この電解質層1の
両側にアノード電極2及びカソード電極2aを配設する。
これら両電極2,2aは炭素質部材からなる多孔性部材で形
成される。またこれら両電極2,2aのそれぞれの電解質層
1の側には、通常は白金触媒を塗布している。アノード
電極2及びカソード電極2aはそれぞれ電解質層1の反対
側に熱料ガスが流れる熱料ガス室3及び酸化剤ガスが流
れる酸化剤ガス室3aが設けられる。一般にリン酸型熱料
電池においては熱料ガスは水素であり、酸化剤はガスは
空気中の酸素である。
In FIG. 2, the electrolyte layer 1 is a fibrous sheet or a mineral powder impregnated with phosphoric acid. An anode electrode 2 and a cathode electrode 2a are arranged on both sides of the electrolyte layer 1.
Both electrodes 2 and 2a are formed of a porous member made of a carbonaceous member. A platinum catalyst is usually applied to the side of the electrolyte layer 1 of each of the electrodes 2 and 2a. The anode electrode 2 and the cathode electrode 2a are respectively provided with a heat source gas chamber 3 in which a heat source gas flows and an oxidant gas chamber 3a in which an oxidant gas flows, on opposite sides of the electrolyte layer 1. Generally, in a phosphoric acid type thermal battery, the thermal gas is hydrogen and the oxidizing gas is oxygen in the air.

上記構成のリン酸型熱料電池に於て、熱料ガス室3に流
入したガス中の水素ガスは、多孔質なアノード電極2の
空所に拡散して触媒に達する。そして触媒の作用によっ
て水素ガスは水素イオンと電子に解離する。即ち反応式
は以下の様である。
In the phosphoric acid type thermal battery having the above structure, the hydrogen gas in the gas flowing into the thermal gas chamber 3 diffuses into the void of the porous anode electrode 2 and reaches the catalyst. The hydrogen gas is dissociated into hydrogen ions and electrons by the action of the catalyst. That is, the reaction formula is as follows.

H2→H++2e 次に水素イオンH+は電解質層1に入り、濃度拡散によっ
てカソード電極2aに向って泳動してゆく。一方電子eは
アノード電極2に流れ込む。またカソード電極2aではア
ノード電極2から泳動してきた水素イオンH+と、酸化剤
ガス室3aに流入した空気中の酸素O2が多孔質なカソード
電極2aの空所に拡散する。この拡散した酸素O2とアノー
ド電極2から外部の電気負荷Rを通って電池にもどって
きた電子eと水素イオンH+との3者が触媒表面で次のよ
うな反応を起こす。
H 2 → H + + 2e Next, hydrogen ions H + enter the electrolyte layer 1 and migrate toward the cathode electrode 2a due to concentration diffusion. On the other hand, the electrons e flow into the anode electrode 2. At the cathode electrode 2a, hydrogen ions H + that have migrated from the anode electrode 2 and oxygen O 2 in the air that has flowed into the oxidant gas chamber 3a diffuse into the voids of the porous cathode electrode 2a. The diffused oxygen O 2 and the electron e and hydrogen ion H + returning from the anode electrode 2 to the battery through the external electric load R cause the following reaction on the catalyst surface.

4H++4e+O2→2H+ 2O このように化学エネルギーを外部の電気負荷を流れる電
子の形で電気エネルギーとして取り出すことが出来る。
4H + + 4e + O 2 → 2H + 2 O In this way, chemical energy can be extracted as electric energy in the form of electrons flowing through an external electric load.

第1図に本発明による積層電池上端部,下端部に使用す
る冷却板の構成例を示す。
FIG. 1 shows an example of the structure of a cooling plate used for the upper and lower ends of the laminated battery according to the present invention.

つまり、本発明の一実施例の冷却板5,8は単電池間に挿
入された冷却板7の冷却管の本数を1/2とし、冷媒の出
入口の連結は同じように構成されている。
That is, in the cooling plates 5 and 8 of the embodiment of the present invention, the number of cooling pipes of the cooling plate 7 inserted between the unit cells is halved, and the connection of the inlet and outlet of the refrigerant is configured in the same manner.

かかる如く構成された積層電池において、上端および下
端の冷却板への流量は略1/2となり熱流入量も1/2である
から冷却管1本当りの流量,流れの状況,出口蒸気量等
単電池積層間に挿入されたものとほぼ等しくなる。この
結果均一な単電池冷却効果が得られる。
In the laminated battery configured as above, the flow rate to the cooling plates at the upper and lower ends is approximately 1/2 and the heat inflow amount is also 1/2. Therefore, the flow rate per cooling pipe, flow condition, outlet steam amount, etc. It is almost the same as that inserted between the cell stacks. As a result, a uniform cell cooling effect can be obtained.

かくして、本発明の一実施例によれば積層電池の上端,
下端の冷却板の冷却管の本数を、積層間の冷却板のそれ
の約半分とすることにより、冷却管内の冷媒流量の不均
一をなくし、良好な電池冷却効果を得ることができる。
Thus, according to one embodiment of the present invention, the upper end of the laminated battery,
By making the number of the cooling tubes of the lower end cooling plate about half of that of the cooling plates between the stacked layers, it is possible to eliminate the unevenness of the refrigerant flow rate in the cooling tubes and obtain a good battery cooling effect.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、熱料電池積層体の上
端下端における冷却板に埋設された冷却管の本数が燃料
電池積層体の単電池間に設けられた冷却板の本数の半分
であるように構成したので、燃料電池積層体を均一に冷
却できることのみならず、各々の冷却媒体が等しく2相
流状態となることから、発電プラントに必要な蒸気も安
定して得ることができる。すなわち、その温度分布も均
一とすることができ長寿命で信頼性の高い燃料電池を提
供することができる。
As described above, according to the present invention, the number of cooling pipes embedded in the cooling plates at the upper and lower ends of the thermal battery stack is half the number of cooling plates provided between the unit cells of the fuel cell stack. Since the fuel cell stack is configured as described above, not only can the fuel cell stack be uniformly cooled, but each cooling medium is in the two-phase flow state equally, so that the steam required for the power plant can be stably obtained. That is, the temperature distribution can be made uniform, and a long-life and highly reliable fuel cell can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による上端部,下端部冷却板の構造を示
す図、第2図および第3図は熱料電池の原理および単電
池の構成を説明するための図、第4図は熱料電池積層構
造例を示す図、第5図は単電池の積層間に設けられる冷
却板を示す図である。 1……電解質層、2……アノード電極 2a……カソード電極、3……熱料ガス室 3a……酸化剤ガス室、4……セパレータ 5……上端部冷却板、6……単電池 7……積層電池内挿入冷却板、8……下端部冷却板 9……冷却管、10……冷媒入口管 11……冷媒出口管
FIG. 1 is a diagram showing the structure of the upper and lower cooling plates according to the present invention, FIGS. 2 and 3 are diagrams for explaining the principle of a heat-charged battery and the structure of a single battery, and FIG. FIG. 5 is a diagram showing an example of a laminated structure of a fuel cell, and FIG. 5 is a diagram showing a cooling plate provided between the laminated cells. 1 ... Electrolyte layer, 2 ... Anode electrode 2a ... Cathode electrode, 3 ... Heat agent gas chamber 3a ... Oxidant gas chamber, 4 ... Separator 5 ... Upper end cooling plate, 6 ... Single cell 7 ...... Cooling plate inserted into laminated battery, 8 ...... Cooling plate at lower end 9 ...... Cooling pipe, 10 ...... Refrigerant inlet pipe 11 ...... Refrigerant outlet pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電解質層を挟んで燃料極および酸化剤極の
一体の電極を配置して成る単電池を複数個積層して燃料
電池積層体を構成しこの燃料電池積層体の上端下端およ
び前記単位電池間に冷却板を有し前記冷却板に流れる冷
却媒体の蒸発潜熱で2相流冷却を行う熱料電池におい
て、前記熱料電池積層体の上端下端における前記冷却板
に埋設された冷却管の本数が前記熱料電池積層体の前記
単電池間に設けられた前記冷却板の本数の半分であるこ
とを特徴とする熱料電池。
1. A fuel cell stack is constructed by stacking a plurality of unit cells each having an integrated electrode of a fuel electrode and an oxidizer electrode with an electrolyte layer sandwiched between them. In a thermochemical battery having a cooling plate between unit cells and performing two-phase flow cooling by the latent heat of vaporization of a cooling medium flowing through the cooling plate, a cooling pipe embedded in the cooling plate at the upper and lower ends of the thermoelectric battery stack. Is half the number of the cooling plates provided between the unit cells of the thermoelectric battery laminate, the thermoelectric battery.
JP61078300A 1986-04-07 1986-04-07 Fuel cell Expired - Fee Related JPH0719613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61078300A JPH0719613B2 (en) 1986-04-07 1986-04-07 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61078300A JPH0719613B2 (en) 1986-04-07 1986-04-07 Fuel cell

Publications (2)

Publication Number Publication Date
JPS62237675A JPS62237675A (en) 1987-10-17
JPH0719613B2 true JPH0719613B2 (en) 1995-03-06

Family

ID=13658072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61078300A Expired - Fee Related JPH0719613B2 (en) 1986-04-07 1986-04-07 Fuel cell

Country Status (1)

Country Link
JP (1) JPH0719613B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142769A (en) * 1982-02-19 1983-08-24 Hitachi Ltd Fuel battery

Also Published As

Publication number Publication date
JPS62237675A (en) 1987-10-17

Similar Documents

Publication Publication Date Title
US5922485A (en) Solid polymer electrolyte fuel cell
TWI225718B (en) Solid polymer cell assembly
EP1293588A1 (en) Plasma cvd apparatus and method
JPH08167424A (en) Solid high polymer electrolyte fuel cell
JPH10308229A (en) Solid high polymer electrolyte type fuel cell
JPH06333583A (en) Solid polyelectrolyte fuel cell generating device
JP3111682B2 (en) Solid polymer electrolyte fuel cell system
JP2001118587A (en) Solid polymer type fuel cell and method for operating the same
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JP2000277128A (en) Solid polymer type fuel cell
JPS63119166A (en) Fuel battery
JP4544055B2 (en) Fuel cell
JPH0935737A (en) Solid polymer electrolyte fuel cell
JP3350260B2 (en) Solid polymer electrolyte fuel cell
JPH1173979A (en) Solid polymer electrolyte fuel cell
JPH0719613B2 (en) Fuel cell
JPH06333581A (en) Solid poly electrolyte fuel cell
JPS6398965A (en) Fuel cell
JPH09120833A (en) Solid high polymer electrolyte fuel cell
JPH06333582A (en) Solid polyelectrolyte fuel cell
JPS63128562A (en) Fuel cell
JPS5927466A (en) Fuel cell
JPS59149658A (en) Fuel cell
JPS63155561A (en) Fuel cell
JPH09161821A (en) Solid polymer electrolytic fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees