JPH1173979A - Solid polymer electrolyte fuel cell - Google Patents

Solid polymer electrolyte fuel cell

Info

Publication number
JPH1173979A
JPH1173979A JP9231989A JP23198997A JPH1173979A JP H1173979 A JPH1173979 A JP H1173979A JP 9231989 A JP9231989 A JP 9231989A JP 23198997 A JP23198997 A JP 23198997A JP H1173979 A JPH1173979 A JP H1173979A
Authority
JP
Japan
Prior art keywords
flow path
fuel cell
cooling water
separator
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9231989A
Other languages
Japanese (ja)
Inventor
Yoshiaki Enami
義晶 榎並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9231989A priority Critical patent/JPH1173979A/en
Publication of JPH1173979A publication Critical patent/JPH1173979A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To appropriately humidify a reaction gas without leading to a reduction in generating efficiency or an increase in required space, and hold an electrolyte film in a prescribed wet state by injecting a part of a cooling water to be supplied to a cooling water passage for at least one of a fuel gas passage and an oxidizing agent gas passage. SOLUTION: A separator 2A for partitioning a cooling water passage from a fuel gas passage in a fuel battery layer product has a through-hole 5, and a porous member 3 supported by a spacer 4 is arranged adjacent to the through- hole 5. A part of the cooling water flowing in a cooling water passage between the separator 2A and a separator 2 is injected into the fuel gas passage between the separator 2A and an electrolyte film 1 through the porous member 3 adjacent to the through-hole 5. Since a fuel gas, when it enters an electrode surface, water is immediately injected, supplied, and then it is humidified so that a, electrolyte film 1 is held in wet state, and the reduction in characteristic performance due to lack of moisture is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、固体高分子膜を
電解質として用い電気化学反応により発電する固体高分
子電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell which generates electric power by an electrochemical reaction using a solid polymer membrane as an electrolyte.

【0002】[0002]

【従来の技術】図6は、一般に用いられている固体高分
子電解質型燃料電池の燃料電池積層体の基本構成を示す
要部の分解断面図である。固体高分子膜よりなる電解質
膜1の両面に貴金属、主として白金を含む図示しない触
媒層を接合し、さらにその両外面に多孔質のガス拡散層
7を配して膜電極接合体(MEA;Membrane Electrode
Assembly)が構成されている。膜電極接合体の両面に
は、触媒層に反応ガス、すなわち水素を含んだ燃料ガス
と酸素を含んだ酸化剤ガスを供給するための溝加工を施
したガス流路板8が配置され、これらをセパレータ2で
挟むことにより単セルが構成されている。燃料ガスと酸
化剤ガスを供給して電気化学反応により発電を行うと、
同時に発熱が生じるので、各セル毎、あるいは数セル毎
に介装された冷却水流路板9に冷却水を流して、この発
熱を除去し、燃料電池積層体を所定の温度に保持して用
いる。各セルの反応ガス流路および冷却水流路の周辺部
には、それぞれシールゴム6が配され、反応ガスおよび
冷却水を密封する役割を果たしている。セパレータ2
は、導電性を備え、かつガス不透過性であることが必要
であるので、通常、緻密なカーボン材や金属材料が用い
られている。また、ガス流路板8には多孔質カーボン材
が、冷却水流路板9には多孔質カーボン材、あるいは非
多孔質カーボン材が一般に用いられている。
2. Description of the Related Art FIG. 6 is an exploded sectional view of a main part showing a basic structure of a fuel cell stack of a generally used solid polymer electrolyte fuel cell. A catalyst layer (not shown) containing a noble metal, mainly platinum, is joined to both sides of an electrolyte membrane 1 made of a solid polymer membrane, and a porous gas diffusion layer 7 is arranged on both outer surfaces thereof to form a membrane electrode assembly (MEA; Membrane). Electrode
Assembly) is configured. On both surfaces of the membrane / electrode assembly, gas channel plates 8 having grooves formed therein for supplying a reaction gas to the catalyst layer, that is, a fuel gas containing hydrogen and an oxidizing gas containing oxygen, are arranged. Are sandwiched between the separators 2 to form a single cell. When fuel gas and oxidant gas are supplied to generate electricity by electrochemical reaction,
Since heat is generated at the same time, cooling water is supplied to the cooling water flow path plate 9 provided for each cell or every several cells to remove this heat generation and to use the fuel cell stack at a predetermined temperature. . Seal rubbers 6 are disposed around the reaction gas flow path and the cooling water flow path of each cell, respectively, and serve to seal the reaction gas and the cooling water. Separator 2
Since it is necessary to have conductivity and gas impermeability, a dense carbon material or a metal material is usually used. Further, a porous carbon material is generally used for the gas flow channel plate 8, and a porous carbon material or a non-porous carbon material is generally used for the cooling water flow channel plate 9.

【0003】図7は、図6に示した燃料電池積層体の積
層面の基本構成を示す平面図で、(a)はガス流路板8
の例を示す平面図、(b)はセパレータ2の平面図であ
る。図7(a),(b)に見られるように、燃料電池積
層体の4つの角部には、それぞれ積層方向に連通する燃
料ガス入口マニホールド10、酸化剤ガス入口マニホー
ルド11、冷却水入口マニホールド12、燃料ガス出口
マニホールド13、酸化剤ガス出口マニホールド14、
冷却水出口マニホールド15が配され、シールゴム6に
より互いに気密に分離されている。燃料ガスが供給され
るガス流路板8においては、図7(a)に見られるごと
く、ジグザグに形成されたガス流路を燃料ガス入口マニ
ホールド10から燃料ガス出口マニホールド13へと燃
料ガスが流れ、発電に寄与することとなる。なお、本図
では示されていないが、酸化剤ガスも、また冷却水も、
同様に、入口側のマニホールドから対角線方向に配され
た出口側のマニホールドへとジグザグに流れ、発電およ
び冷却に寄与するよう構成されている。
FIG. 7 is a plan view showing the basic structure of the stacking surface of the fuel cell stack shown in FIG.
FIG. 3B is a plan view of the separator 2. As shown in FIGS. 7A and 7B, fuel cell inlet manifold 10, oxidant gas inlet manifold 11, and cooling water inlet manifold communicating with each other in the stacking direction are provided at four corners of the fuel cell stack. 12, fuel gas outlet manifold 13, oxidant gas outlet manifold 14,
A cooling water outlet manifold 15 is provided and is air-tightly separated from each other by a seal rubber 6. In the gas flow path plate 8 to which the fuel gas is supplied, as shown in FIG. 7A, the fuel gas flows through the zigzag gas flow path from the fuel gas inlet manifold 10 to the fuel gas outlet manifold 13. And contribute to power generation. Although not shown in the figure, both the oxidizing gas and the cooling water
Similarly, it flows in a zigzag manner from the inlet side manifold to the diagonally arranged outlet side manifold to contribute to power generation and cooling.

【0004】[0004]

【発明が解決しようとする課題】ところで、固体高分子
膜よりなる電解質膜1は、乾燥すると抵抗が増大し、発
生するセル電圧が低下して所望の特性が得られないの
で、電解質膜1を湿潤に保持して運転する必要がある。
このため、反応ガスを加湿して供給することによって電
解質膜1を湿潤に保持する方法が一般に用いられてお
り、燃料電池積層体の外部に加湿タンクを設け、反応ガ
スを温水中を通過させて加湿した後、燃料電池積層体へ
と供給する方法、あるいは、燃料電池積層体の内部に加
湿部を設け、水分透過性の隔膜を介して冷却水と反応ガ
スを接触させることにより、反応ガスを加湿して供給す
る方法が採られている。
By the way, the electrolyte membrane 1 made of a solid polymer membrane increases in resistance when dried, and the generated cell voltage decreases, so that desired characteristics cannot be obtained. It is necessary to operate while keeping it moist.
Therefore, a method of keeping the electrolyte membrane 1 wet by humidifying and supplying the reaction gas is generally used. A humidification tank is provided outside the fuel cell stack, and the reaction gas is passed through warm water. After humidification, the reaction gas is supplied to the fuel cell stack, or a humidifying section is provided inside the fuel cell stack, and the reaction gas is brought into contact with the cooling water and the reaction gas through a moisture-permeable diaphragm. A method of humidifying and supplying is adopted.

【0005】上記のごとく反応ガスを加湿して供給すれ
ば、電解質膜1が湿潤に保持され、所定のセル電圧が得
られることとなるが、一方、上記の二つの方法のうち前
者の外部に加湿タンクを設けて加湿する方法において
は、加湿タンクのみならず、加湿タンクより燃料電池積
層体へと至る反応ガスの配管を所定の温度以上に加熱、
保温する必要があるので、多量の電力を必要とし、燃料
電池の発電効率が低下してしまうという問題点があり、
また加熱された温度が周囲温度の影響を受け易いので、
温度が変動し、加湿量が変動するという難点がある。
[0005] When the reaction gas is supplied by being humidified as described above, the electrolyte membrane 1 is kept wet and a predetermined cell voltage can be obtained. In the method of humidifying by providing a humidifying tank, not only the humidifying tank, but also heating the piping of the reaction gas from the humidifying tank to the fuel cell stack to a predetermined temperature or higher,
Since it is necessary to keep heat, there is a problem that a large amount of power is required and the power generation efficiency of the fuel cell is reduced.
Also, since the heated temperature is easily affected by the ambient temperature,
There is a drawback that the temperature fluctuates and the humidification amount fluctuates.

【0006】また、後者の燃料電池積層体の内部に加湿
部を設け、隔膜を介して冷却水と接触させて反応ガスを
加湿する方法を用いると、積層する単セルが増加すると
これに比例して加湿部を大きくする必要があるので、燃
料電池積層体の寸法、ひいては発電システムの寸法が大
きくなり、所要スペースが大きくなるという難点があ
る。
In the latter method, a humidifying section is provided inside the fuel cell stack, and the reaction gas is humidified by contacting with cooling water through a diaphragm. When the number of single cells to be stacked increases, the proportion increases. Since the humidifying section needs to be enlarged, the size of the fuel cell stack, and hence the size of the power generation system, increases, and the required space increases.

【0007】本発明は、これらの従来技術の難点を考慮
してなされたもので、その目的は、発電効率の低下や所
要スペースの増大をもたらすことなく反応ガスが適正に
加湿して供給され、電解質膜が所定の湿潤状態に保持さ
れて優れたセル特性が得られる固体高分子電解質型燃料
電池を提供することにある。
[0007] The present invention has been made in view of these difficulties of the prior art, and an object thereof is to provide a reaction gas that is appropriately humidified and supplied without lowering the power generation efficiency and increasing the required space. An object of the present invention is to provide a solid polymer electrolyte fuel cell in which an electrolyte membrane is maintained in a predetermined wet state and excellent cell characteristics are obtained.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、平板状の固体高分子電解質膜
の両主面に触媒層を接合した膜電極接合体の両側に燃料
ガス流路と酸化剤ガス流路を配し、ガス不透過性材料よ
りなるセパレータで挟持して形成される複数の単セルを
積層して燃料電池積層体を構成し、燃料ガス流路に水素
を含有する燃料ガスを、また酸化剤ガス流路に酸素を含
有する酸化剤ガスを供給して電気化学反応により発電
し、単セルとセパレータにより隔てられて形成された冷
却水流路を通流する冷却水により所定の温度に保持して
用いる固体高分子電解質型燃料電池において、 (1)燃料ガス流路と酸化剤ガス流路のうち少なくとも
一方のガス流路に、冷却水流路に供給される冷却水の一
部を注入する水注入部を備えることとし、 (2)例えば、冷却水流路とガス流路との間のセパレー
タに設けられた貫通孔、あるいは、同様の貫通孔とこの
貫通孔に隣接する多孔質部材との直列接続体をこの水注
入部とする。
In order to achieve the above-mentioned object, according to the present invention, a fuel gas is provided on both sides of a membrane electrode assembly in which a catalyst layer is joined to both main surfaces of a flat solid polymer electrolyte membrane. A fuel cell stack is formed by arranging a flow path and an oxidizing gas flow path, stacking a plurality of unit cells formed by being sandwiched by separators made of a gas impermeable material, and forming hydrogen into the fuel gas flow path. The fuel gas contained, and the oxidizing gas containing oxygen is supplied to the oxidizing gas flow path to generate power by an electrochemical reaction, and the cooling flows through a cooling water flow path formed by a single cell and a separator. In a solid polymer electrolyte fuel cell used while being maintained at a predetermined temperature with water, (1) cooling supplied to a cooling water flow path to at least one of a fuel gas flow path and an oxidizing gas flow path Equipped with a water injection part to inject a part of water (2) For example, a through hole provided in a separator between a cooling water flow path and a gas flow path, or a series connection body of a similar through hole and a porous member adjacent to the through hole is used. This is the water injection section.

【0009】(3)あるいはまた、燃料電池積層体の複
数の単セルとセパレータとを連通する冷却水入口マニホ
ールドとガス流路との間のシール部材に備えられた貫通
孔あるいは貫通溝、あるいは内部に多孔質部材を配した
これらの貫通孔あるいは貫通溝を上記の水注入部とす
る。 (4)あるいはまた、燃料電池積層体の複数の単セルと
セパレータとを連通する冷却水入口マニホールドの近傍
において、セパレータを冷却水流路よりガス流路へと突
出させてガス流路を狭隘に形成し、狭隘部に多孔質部材
を配設して上記の水注入部とする。
(3) Alternatively, a through-hole or a through-groove provided in a seal member between a gas inlet and a cooling water inlet manifold for communicating a plurality of unit cells of the fuel cell stack with the separator, or the inside thereof. These through holes or through grooves in which a porous member is disposed are referred to as the above-mentioned water injection portions. (4) Alternatively, in the vicinity of the cooling water inlet manifold that connects the plurality of single cells of the fuel cell stack and the separator, the gas passage is formed narrow by projecting the separator from the cooling water passage to the gas passage. Then, a porous member is disposed in the narrow portion to form the above-mentioned water injection portion.

【0010】上記(1)のごとく、燃料電池積層体の各
単セルのガス流路に、例えば上記の(2)、(3)ある
いは(4)のごとく形成した水注入部を備えることとす
れば、燃料電池積層体の寸法や重量の増大をもたらすこ
となく、ガス流路に水を注入することが可能となる。注
入量は、貫通孔の寸法や多孔質部材の選定により基本的
に定まり、冷却水供給系統の圧力を制御することにより
調整される。したがって、各単セルの内部へ適量の水分
が継続的に補給でき、電解質膜が常時湿潤に保持されて
所定のセル特性が得られることとなる。
As described in (1) above, the gas flow path of each single cell of the fuel cell stack may be provided with a water injection portion formed as described in (2), (3) or (4), for example. For example, water can be injected into the gas flow path without increasing the size and weight of the fuel cell stack. The injection amount is basically determined by the size of the through hole and the selection of the porous member, and is adjusted by controlling the pressure of the cooling water supply system. Accordingly, an appropriate amount of water can be continuously supplied to the inside of each unit cell, and the electrolyte membrane is kept moist at all times to obtain predetermined cell characteristics.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

<実施例1>図1は、本発明の実施例1の燃料電池積層
体の水注入部の基本構成を示す断面図である。図に見ら
れるように、本実施例では、冷却水流路と燃料ガス流路
とを隔てるセパレータ2Aに貫通孔5が設けられ、貫通
孔5に隣接してスペーサ4で支持された多孔質部材3が
配されている。したがって、セパレータ2Aとセパレー
タ2との間の冷却水流路を流れる冷却水の一部は、図中
に矢実線で示したごとく、貫通孔5と隣接する多孔質部
材3を透過して、セパレータ2Aと電解質膜1との間の
燃料ガス流路へと注入されることとなる。
<Embodiment 1> FIG. 1 is a sectional view showing a basic configuration of a water injection portion of a fuel cell stack according to Embodiment 1 of the present invention. As shown in the figure, in the present embodiment, a through hole 5 is provided in a separator 2A separating a cooling water flow path and a fuel gas flow path, and a porous member 3 supported by a spacer 4 adjacent to the through hole 5 is provided. Is arranged. Therefore, a part of the cooling water flowing through the cooling water flow path between the separator 2A and the separator 2 passes through the porous member 3 adjacent to the through hole 5 as shown by the solid line in the figure, and Is injected into the fuel gas flow path between the fuel gas and the electrolyte membrane 1.

【0012】図2は、図1に示した水注入部の配置を示
す燃料電池積層体の積層面の平面図で、(a)はガス流
路板を示す平面図、(b)はセパレータの平面図であ
る。本図において、図7に示した従来例の構成と同一機
能を有する構成要素には同一符号が付されており、重複
する説明は省略する。図1に示したセパレータ2Aの貫
通孔5は、図2(b)に見られるように、燃料ガス入口
マニホールド10に近接して配されており、スペーサ4
は、図2(a)に見られるごとく、貫通孔5に対応して
燃料ガス入口マニホールド10の近傍の燃料ガス流路に
配されている。
FIG. 2 is a plan view of the stacking surface of the fuel cell stack showing the arrangement of the water injection section shown in FIG. 1, (a) is a plan view showing a gas channel plate, and (b) is a separator. It is a top view. In this figure, components having the same functions as those of the configuration of the conventional example shown in FIG. 7 are denoted by the same reference numerals, and redundant description will be omitted. The through-hole 5 of the separator 2A shown in FIG. 1 is disposed close to the fuel gas inlet manifold 10 as shown in FIG.
As shown in FIG. 2 (a), are disposed in the fuel gas flow path near the fuel gas inlet manifold 10 corresponding to the through holes 5.

【0013】したがって本構成では、燃料ガス入口マニ
ホールド10より供給された燃料ガスは、電極面に入る
と直ちに貫通孔5と隣接する多孔質部材3を透過した水
を注入、供給され、加湿されて通流することとなるの
で、電解質膜1が湿潤に保持され、水分の欠乏による特
性低下が防止されることとなる。なお、本実施例では貫
通孔5と隣接する多孔質部材3を透過させて注水するこ
とにより注水量の調整を容易としているが、多孔質部材
3を用いず、貫通孔5のみによって冷却水を燃料ガスへ
注水することとしてもよい。また、本実施例では冷却水
を燃料ガスへ注水し、これにより電解質膜1を湿潤に保
持することとしているが、類似の構成により冷却水を酸
化剤ガスへ注水し、電解質膜1を湿潤に保持する構成と
してもよい。
Therefore, in this configuration, the fuel gas supplied from the fuel gas inlet manifold 10 is injected with the water permeated through the porous member 3 adjacent to the through hole 5 as soon as it enters the electrode surface, supplied and humidified. Since the flow is made to flow, the electrolyte membrane 1 is kept moist, and deterioration of the characteristics due to lack of water is prevented. In this embodiment, the amount of water injected is easily adjusted by permeating and pouring water through the porous member 3 adjacent to the through hole 5. However, the cooling water is supplied only through the through hole 5 without using the porous member 3. Water may be injected into the fuel gas. Further, in this embodiment, the cooling water is injected into the fuel gas to thereby keep the electrolyte membrane 1 wet. However, the cooling water is injected into the oxidizing gas by a similar configuration to wet the electrolyte membrane 1. It is good also as a structure which holds.

【0014】<実施例2>図3は、本発明の実施例2の
燃料電池積層体の水注入部の基本構成を示す断面図であ
る。本実施例は、図7(a)に示したごとく燃料電池積
層体の端部に積層方向に連通して配した冷却水入口マニ
ホールド12の部分に水注入部を備えた例である。図3
において紙面の上下方向に伸びるものとして示した冷却
水入口マニホールド12の冷却水の流れる空間と、セパ
レータ2と電解質膜1の間の酸化剤ガスの通流する空間
は、従来と同様にシールゴム6により気密に保持されて
るのに対して、冷却水入口マニホールド12の冷却水の
流れる空間と電解質膜1の反対面に位置する燃料ガスの
通流する空間は、前記両空間のシール部材であるスペー
サ4Aに形成された貫通孔中に支持された多孔質部材3
Aの空隙を通して連通している。したがって、冷却水
は、図中に矢実線で示したごとく、多孔質部材3Aを通
して燃料ガスの流路へと注入され、加湿された燃料ガス
が電極面に送られることにより、電解質膜は湿潤に保持
される。
<Embodiment 2> FIG. 3 is a sectional view showing a basic configuration of a water injection portion of a fuel cell stack according to Embodiment 2 of the present invention. In the present embodiment, as shown in FIG. 7A, a water injection section is provided at a portion of the cooling water inlet manifold 12, which is disposed in communication with the end of the fuel cell stack in the stacking direction. FIG.
The space through which the cooling water flows in the cooling water inlet manifold 12 and the space through which the oxidizing gas flows between the separator 2 and the electrolyte membrane 1 are shown as extending in the vertical direction of the drawing. While the space is kept airtight, the space through which the cooling water flows in the cooling water inlet manifold 12 and the space through which the fuel gas flows located on the opposite surface of the electrolyte membrane 1 are formed by the spacers 4A which are sealing members for the two spaces. Member 3 supported in a through hole formed in
It communicates through the space of A. Therefore, as shown by the solid line in the figure, the cooling water is injected into the fuel gas flow path through the porous member 3A, and the humidified fuel gas is sent to the electrode surface, so that the electrolyte membrane becomes wet. Will be retained.

【0015】<実施例3>図4は、本発明の実施例3の
燃料電池積層体の水注入部の基本構成を示す断面図であ
る。本実施例と図3に示した実施例2との差異は、実施
例2ではスペーサ4Aに形成された貫通孔中に多孔質部
材3Aが支持されていたのに対して、本実施例では多孔
質部材3Aが配されていない点にある。本構成では水注
入部の圧力損失が相対的に低く抑えられるので、注入水
量を大きくする必要がある場合に効果的である。
<Embodiment 3> FIG. 4 is a sectional view showing a basic configuration of a water injection portion of a fuel cell stack according to Embodiment 3 of the present invention. The difference between this embodiment and the second embodiment shown in FIG. 3 is that the porous member 3A is supported in the through hole formed in the spacer 4A in the second embodiment, That is, the quality member 3A is not provided. With this configuration, the pressure loss at the water injection section is relatively low, which is effective when the amount of injected water needs to be increased.

【0016】<実施例4>図5は、本発明の実施例4の
燃料電池積層体の水注入部の基本構成を示す断面図であ
る。本実施例の特徴は、セパレータ2Bをチタン材を用
いて形成し、冷却水入口マニホールド12に近接する部
分を燃料ガス、あるいは酸化剤ガスの通流する空間側へ
と突出させるよう形成し、燃料ガス通流空間の狭隘部に
多孔質部材3Bを配して水注入部を構成し、冷却水を燃
料ガスへと注入するよう構成した点にある。本構成で
は、実施例2や実施例3に用いられているスペーサが不
要となる。
<Embodiment 4> FIG. 5 is a sectional view showing a basic structure of a water injection portion of a fuel cell stack according to Embodiment 4 of the present invention. The feature of the present embodiment is that the separator 2B is formed using a titanium material, and a portion adjacent to the cooling water inlet manifold 12 is formed so as to protrude toward the space through which the fuel gas or the oxidizing gas flows, and the fuel 2 is formed. The point is that the porous member 3B is arranged in a narrow part of the gas flow space to form a water injection part, and the cooling water is injected into the fuel gas. In this configuration, the spacer used in the second and third embodiments is not required.

【0017】なお、上記の実施例2〜4においては、い
ずれも冷却水を燃料ガスの流路へと注水するよう水注入
部を構成しているが、本発明はこれに限るものではな
く、酸化剤のガス流路へと注水するよう水注入部を構成
してもよく、あるいは、燃料ガス、酸化剤ガスの双方に
注水するよう水注入部を構成しても電解質膜の乾燥が効
果的に防止され、セル特性の低下が回避されることとな
る。
In each of the above-described embodiments 2 to 4, the water injection section is configured to inject cooling water into the flow path of the fuel gas, but the present invention is not limited to this. The water injection section may be configured to inject water into the oxidant gas flow path, or the electrolyte membrane may be effectively dried even if the water injection section is configured to inject both fuel gas and oxidant gas. And the deterioration of the cell characteristics is avoided.

【0018】[0018]

【発明の効果】上述のように、本発明によれば、固体高
分子電解質型燃料電池を、 (1)請求項1に記載のごとく構成することとしたの
で、特別な装置を用いなくともガス流路に水が注入され
て各単セルの内部へ適量の水分が継続的に補給され、電
解質膜が所定の湿潤状態に保持されることとなるので、
コンパクトで優れたセル特性を有する固体高分子電解質
型燃料電池が得られることとなった。
As described above, according to the present invention, (1) the solid polymer electrolyte fuel cell is constructed as described in claim 1, so that the gas can be obtained without using any special device. Since an appropriate amount of water is continuously supplied to the inside of each single cell by injecting water into the flow channel, and the electrolyte membrane is maintained in a predetermined wet state,
A solid polymer electrolyte fuel cell having compact and excellent cell characteristics has been obtained.

【0019】(2)また、特に請求項2〜6に記載のご
とく構成することとすれば、ガス流路に的確に水が注入
されることとなり、特別な装置を付設しなくとも各単セ
ルの内部へ適量の水分が継続的に補給されて電解質膜が
所定の湿潤状態に保持されるので、優れたセル特性を備
え、燃料電池積層体の寸法や重量が軽減される固体高分
子電解質型燃料電池として好適である。
(2) In particular, if the configuration is made as described in claims 2 to 6, water can be accurately injected into the gas flow path, and each unit cell can be provided without any special device. The solid polymer electrolyte type that has excellent cell characteristics and reduces the size and weight of the fuel cell stack because the appropriate amount of water is continuously supplied to the inside of the fuel cell and the electrolyte membrane is maintained in a predetermined wet state. It is suitable as a fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の燃料電池積層体の水注入部
の基本構成を示す断面図
FIG. 1 is a sectional view showing a basic configuration of a water injection section of a fuel cell stack according to a first embodiment of the present invention.

【図2】図1に示した水注入部の配置を示す燃料電池積
層体の積層面の平面図で、(a)はガス流路板を示す平
面図、(b)はセパレータの平面図
FIGS. 2A and 2B are plan views of a stacking surface of a fuel cell stack showing an arrangement of a water injection section shown in FIG. 1, wherein FIG. 2A is a plan view showing a gas flow path plate, and FIG.

【図3】本発明の実施例2の燃料電池積層体の水注入部
の基本構成を示す断面図
FIG. 3 is a cross-sectional view illustrating a basic configuration of a water injection section of a fuel cell stack according to a second embodiment of the present invention.

【図4】本発明の実施例3の燃料電池積層体の水注入部
の基本構成を示す断面図
FIG. 4 is a cross-sectional view illustrating a basic configuration of a water injection section of a fuel cell stack according to a third embodiment of the present invention.

【図5】本発明の実施例4の燃料電池積層体の水注入部
の基本構成を示す断面図
FIG. 5 is a cross-sectional view illustrating a basic configuration of a water injection section of a fuel cell stack according to a fourth embodiment of the present invention.

【図6】一般に用いられている固体高分子電解質型燃料
電池の燃料電池積層体の基本構成を示す要部の分解断面
FIG. 6 is an exploded sectional view of a main part showing a basic configuration of a fuel cell stack of a generally used solid polymer electrolyte fuel cell;

【図7】図6に示した燃料電池積層体の積層面の基本構
成を示す平面図で、(a)はガス流路板の一例を示す平
面図、(b)はセパレータの平面図
7A and 7B are plan views showing a basic configuration of a stacking surface of the fuel cell stack shown in FIG. 6, wherein FIG. 7A is a plan view showing an example of a gas flow path plate, and FIG.

【符号の説明】[Explanation of symbols]

1 電解質膜 2,2A セパレータ 3,3A,3B 多孔質部材 4,4A スペーサ 5 貫通孔 6,6A シールゴム 8 ガス流路板 10 燃料ガス入口マニホールド 11 酸化剤ガス入口マニホールド 12 冷却水入口マニホールド 13 燃料ガス出口マニホールド 14 酸化剤ガス出口マニホールド 15 冷却水出口マニホールド DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 2, 2A Separator 3, 3A, 3B Porous member 4, 4A Spacer 5 Through-hole 6, 6A Seal rubber 8 Gas passage plate 10 Fuel gas inlet manifold 11 Oxidant gas inlet manifold 12 Cooling water inlet manifold 13 Fuel gas Outlet manifold 14 Oxidant gas outlet manifold 15 Cooling water outlet manifold

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】平板状の固体高分子電解質膜の両主面に触
媒層を接合した膜電極接合体の両側に燃料ガス流路と酸
化剤ガス流路を配し、ガス不透過性材料よりなるセパレ
ータで挟持して形成される複数の単セルを積層して燃料
電池積層体を構成し、燃料ガス流路に水素を含有する燃
料ガスを、また酸化剤ガス流路に酸素を含有する酸化剤
ガスを供給して電気化学反応により発電し、単セルとセ
パレータにより隔てられて形成された冷却水流路を通流
する冷却水により所定の温度に保持して用いる固体高分
子電解質型燃料電池において、 燃料ガス流路と酸化剤ガス流路のうち少なくとも一方の
ガス流路に、冷却水流路に供給される冷却水の一部を注
入する水注入部を備えたことを特徴とする固体高分子電
解質型燃料電池。
A fuel gas flow path and an oxidizing gas flow path are arranged on both sides of a membrane electrode assembly in which a catalyst layer is bonded to both main surfaces of a flat solid polymer electrolyte membrane. A fuel cell stack is formed by stacking a plurality of single cells sandwiched by separators, and a fuel gas flow path contains hydrogen-containing fuel gas and an oxidant gas flow path contains oxygen-containing oxidation gas. In a solid polymer electrolyte fuel cell used by supplying an agent gas to generate power by an electrochemical reaction and maintaining a predetermined temperature by cooling water flowing through a cooling water channel formed by a single cell and a separator. A solid polymer, characterized in that at least one of the fuel gas flow path and the oxidizing gas flow path is provided with a water injection section for injecting a part of the cooling water supplied to the cooling water flow path. Electrolyte fuel cell.
【請求項2】前記の水注入部が、冷却水流路とガス流路
との間のセパレータに設けられた貫通孔であることを特
徴とする請求項1に記載の固体高分子電解質型燃料電
池。
2. The solid polymer electrolyte fuel cell according to claim 1, wherein the water injection section is a through hole provided in a separator between the cooling water flow path and the gas flow path. .
【請求項3】前記の水注入部が、冷却水流路とガス流路
との間のセパレータに設けられた貫通孔と、貫通孔に隣
接する多孔質部材との直列接続体よりなることを特徴と
する請求項1に記載の固体高分子電解質型燃料電池。
3. The water injection part comprises a series connection of a through hole provided in a separator between a cooling water flow path and a gas flow path, and a porous member adjacent to the through hole. The solid polymer electrolyte fuel cell according to claim 1, wherein
【請求項4】前記の水注入部が、燃料電池積層体の複数
の単セルとセパレータとを連通する冷却水入口マニホー
ルドとガス流路との間に配されたシール部材に備えられ
た貫通孔あるいは貫通溝であることを特徴とする請求項
1に記載の固体高分子電解質型燃料電池。
4. A through-hole provided in a seal member disposed between a gas inlet and a cooling water inlet manifold communicating the plurality of single cells of the fuel cell stack with the separator. Alternatively, the solid polymer electrolyte fuel cell according to claim 1, wherein the fuel cell is a through groove.
【請求項5】前記のシール部材に備えられた貫通孔ある
いは貫通溝の内部に、多孔質部材が配されていることを
特徴とする請求項4に記載の固体高分子電解質型燃料電
池。
5. The solid polymer electrolyte fuel cell according to claim 4, wherein a porous member is disposed inside the through hole or the through groove provided in the seal member.
【請求項6】燃料電池積層体の複数の単セルとセパレー
タとを連通する冷却水入口マニホールドの近傍におい
て、セパレータが冷却水流路よりガス流路へと突出して
ガス流路が狭隘に形成されてなり、前記の水注入部が、
狭隘部に配設された多孔質部材よりなることを特徴とす
る請求項1に記載の固体高分子電解質型燃料電池。
6. In a vicinity of a cooling water inlet manifold connecting a plurality of unit cells of a fuel cell stack and a separator, the separator projects from the cooling water flow path to the gas flow path, and the gas flow path is formed narrow. And the water injection part is
The solid polymer electrolyte fuel cell according to claim 1, comprising a porous member disposed in a narrow portion.
JP9231989A 1997-08-28 1997-08-28 Solid polymer electrolyte fuel cell Pending JPH1173979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9231989A JPH1173979A (en) 1997-08-28 1997-08-28 Solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9231989A JPH1173979A (en) 1997-08-28 1997-08-28 Solid polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH1173979A true JPH1173979A (en) 1999-03-16

Family

ID=16932206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9231989A Pending JPH1173979A (en) 1997-08-28 1997-08-28 Solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH1173979A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103829A1 (en) * 2001-06-15 2002-12-27 Kabushiki Kaisha Toshiba Solid polymer type fuel cell, and solid polymer type fuel cell generation system
WO2003009411A1 (en) * 2001-07-18 2003-01-30 Kabushiki Kaisha Toshiba Solid-state polymer type fuel cell stack
JP2003059513A (en) * 2002-02-12 2003-02-28 Equos Research Co Ltd Separator for fuel cell
KR20030018078A (en) * 2001-08-27 2003-03-06 현대자동차주식회사 Structure for humidifying hydrogen in fuel cell stack
JP2010153157A (en) * 2008-12-25 2010-07-08 Hitachi Ltd Fuel cell separator
JP2010153279A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Fuel cell
WO2015005094A1 (en) * 2013-07-08 2015-01-15 トヨタ車体 株式会社 Gas channel forming member for fuel cells, and fuel cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103829A1 (en) * 2001-06-15 2002-12-27 Kabushiki Kaisha Toshiba Solid polymer type fuel cell, and solid polymer type fuel cell generation system
WO2003009411A1 (en) * 2001-07-18 2003-01-30 Kabushiki Kaisha Toshiba Solid-state polymer type fuel cell stack
US6893759B2 (en) 2001-07-18 2005-05-17 Kabushiki Kaisha Toshiba Polymer electrolyte fuel cell stack
CN100346514C (en) * 2001-07-18 2007-10-31 株式会社东芝 Solid high molecular fuel cell stack
DE10197259B4 (en) * 2001-07-18 2008-10-30 Kabushiki Kaisha Toshiba Polymer electrolyte fuel cell stack
KR20030018078A (en) * 2001-08-27 2003-03-06 현대자동차주식회사 Structure for humidifying hydrogen in fuel cell stack
JP2003059513A (en) * 2002-02-12 2003-02-28 Equos Research Co Ltd Separator for fuel cell
JP2010153157A (en) * 2008-12-25 2010-07-08 Hitachi Ltd Fuel cell separator
JP2010153279A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Fuel cell
WO2015005094A1 (en) * 2013-07-08 2015-01-15 トヨタ車体 株式会社 Gas channel forming member for fuel cells, and fuel cell
US9960433B2 (en) 2013-07-08 2018-05-01 Toyota Shatai Kabushiki Kaisha Gas channel forming member for fuel cells, and fuel cell

Similar Documents

Publication Publication Date Title
JP4037698B2 (en) Solid polymer cell assembly
JPH06132038A (en) Solid highpolymer electrolyte type fuel cell
JPH08273687A (en) Supply gas humidifier of fuel cell
JPH0425673B2 (en)
JPH08250130A (en) Solid polymer type fuel cell
JP2002025584A (en) Solid high polymer molecule electrolyte fuel cell and its humidifying method
JPH10284096A (en) Solid high polymer electrolyte fuel cell
JPH09283162A (en) Solid high molecular fuel cell
JP3734134B2 (en) Polymer electrolyte fuel cell
JP3147518B2 (en) Cell structure of solid polymer electrolyte fuel cell
JP5124900B2 (en) Fuel cell having a stack structure
JP2001325971A (en) Solid polymer fuel cell
JP3738956B2 (en) Fuel cell
JP2000277128A (en) Solid polymer type fuel cell
JPH1173979A (en) Solid polymer electrolyte fuel cell
JPH0950819A (en) Solid polymer electrolyte fuel cell
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JP4665353B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JP3493097B2 (en) Solid polymer electrolyte membrane fuel cell
JP2001135326A (en) Solid high molecular electrolyte fuel cell and stack of the same
JP4642975B2 (en) Polymer electrolyte fuel cell system
JPH0992308A (en) Solid polymer electrolyte fuel cell
JPH08306375A (en) Solid polymer type fuel sell
JPH11111311A (en) Solid polymer type fuel cell
JP2002042833A (en) Solid polymer electrolyte type fuel cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees