JPH06333583A - Solid polyelectrolyte fuel cell generating device - Google Patents

Solid polyelectrolyte fuel cell generating device

Info

Publication number
JPH06333583A
JPH06333583A JP5118852A JP11885293A JPH06333583A JP H06333583 A JPH06333583 A JP H06333583A JP 5118852 A JP5118852 A JP 5118852A JP 11885293 A JP11885293 A JP 11885293A JP H06333583 A JPH06333583 A JP H06333583A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
fuel
polymer electrolyte
oxidant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5118852A
Other languages
Japanese (ja)
Other versions
JP3141619B2 (en
Inventor
Toshihiro Sugiyama
智弘 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP05118852A priority Critical patent/JP3141619B2/en
Publication of JPH06333583A publication Critical patent/JPH06333583A/en
Application granted granted Critical
Publication of JP3141619B2 publication Critical patent/JP3141619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a solid polyelectrolyte fuel cell generating device improved in the humidifying state to a reaction gas. CONSTITUTION:A solid polyelectrolyte fuel cell generating device 1 is provided with an oxidizing gas supplying system 4 having an oxidizing gas source 41 such as atmosphere; an oxidizing gas pressurizing device 42 such as air compressor; a humidifying device 43; and a cooler 44, instead of the oxidizing gas supplying system in a conventional solid polyelectrolyte fuel cell generating device. The air 41A supplied from the oxidizing agent gas source 41 is first supplied to the humidifying device 43, humidified by the cooling water 51A heated by a cooling body 23 in the humidifying device 43, and then sent to the air compressor 42, wherein it is compressed. The pressurized air 41A thermally insulated and compressed by the air compressor 42 is cooled to a temperature never exceeding at least the operating temperature of a solid polyelectrolyte fuel cell 2 by the cooler 4. The pressurized air 41A humidified and also cooled by the cooler 44 is supplied to an oxidizing agent electrode 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、固体高分子電解質型
燃料電池発電装置に係わり、固体高分子電解質型燃料電
池に供給する酸化剤ガスの加湿方法を改良した酸化剤ガ
ス供給系統の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell power generator, and relates to a structure of an oxidant gas supply system in which a method for humidifying an oxidant gas supplied to a solid polymer electrolyte fuel cell is improved. .

【0002】[0002]

【従来の技術】燃料電池として、これに使用される電解
質の種類により、固体高分子電解質型,りん酸型,溶融
炭酸塩型,固体酸化物型などの各種の燃料電池が知られ
ている。このうち、固体高分子電解質型燃料電池は、分
子中にプロトン(水素イオン)交換基を有する高分子樹
脂膜を飽和に含水させると,低い抵抗率を示してプロト
ン導電性電解質として機能することを利用した燃料電池
である。
2. Description of the Related Art As fuel cells, various types of fuel cells such as solid polymer electrolyte type, phosphoric acid type, molten carbonate type, and solid oxide type are known, depending on the type of electrolyte used therein. Among them, the solid polymer electrolyte fuel cell shows a low resistivity when it is saturated with a polymer resin membrane having a proton (hydrogen ion) exchange group in the molecule, and functions as a proton conductive electrolyte. It is the fuel cell used.

【0003】図3は、固体高分子電解質型燃料電池の単
電池を展開した状態で模式的に示した側面断面図であ
り、図4は、図3に示した単電池を使用した燃料電池セ
ル集積体を模式的に示した構成図である。図5は、図4
に示した燃料電池セル集積体を使用した固体高分子電解
質型燃料電池発電装置の供給系統図である。まず、図3
において、7は、電解質層7Cと、燃料電極(アノード
極でもある。)7Aと、酸化剤電極(カソード極でもあ
る。)7Bとで構成されている燃料電池セルである。電
解質層7Cは、薄い矩形状をなした固体高分子電解質膜
(以降、PE膜と略称することがある。)からなってい
る。燃料電極7Bは、PE膜7Cの一方の主面に密接し
て積層されて、燃料ガス(例えば、水素あるいは水素を
高濃度に含んだガスである。)の供給を受ける電極であ
る。また,酸化剤電極7Bは、PE膜7Cの他方の主面
に密接して積層されて、酸化剤ガス(例えば、空気であ
る。)の供給を受ける電極である。燃料電極7Aの外側
面側が,燃料電池セル7の一方の側面7aであり、酸化
剤電極7Bの外側面側が,燃料電池セル7の他方の側面
7bである。燃料電極7Aおよび酸化剤電極7Bは、共
に触媒活物質を含むそれぞれの触媒層と、この触媒層を
支持するとともに反応ガス(以降、燃料ガスと酸化剤ガ
スを総称してこのように言うことが有る。)を供給およ
び排出するとともに集電体としての機能を有する多孔質
の電極基材とからなり、前記触媒層をPE膜7Cの両主
面にホットプレスにより密着させて配置される。
FIG. 3 is a side sectional view schematically showing a solid polymer electrolyte fuel cell unit cell in a developed state, and FIG. 4 is a fuel cell unit using the unit cell shown in FIG. It is a block diagram which showed the integrated body typically. FIG. 5 shows FIG.
FIG. 3 is a supply system diagram of a solid polymer electrolyte fuel cell power generator using the fuel cell cell assembly shown in FIG. First, FIG.
In the above, reference numeral 7 is a fuel battery cell including an electrolyte layer 7C, a fuel electrode (also serving as an anode electrode) 7A, and an oxidant electrode (also serving as a cathode electrode) 7B. The electrolyte layer 7C is made of a thin rectangular solid polymer electrolyte membrane (hereinafter, sometimes abbreviated as PE membrane). The fuel electrode 7B is an electrode that is closely stacked on one main surface of the PE film 7C and receives supply of a fuel gas (for example, hydrogen or a gas containing hydrogen at a high concentration). In addition, the oxidant electrode 7B is an electrode that is laminated in close contact with the other main surface of the PE film 7C and receives supply of an oxidant gas (for example, air). The outer surface side of the fuel electrode 7A is one side surface 7a of the fuel cell 7, and the outer surface side of the oxidant electrode 7B is the other side surface 7b of the fuel cell 7. The fuel electrode 7A and the oxidant electrode 7B both support the respective catalyst layers containing a catalyst active material, and support the catalyst layers, and the reaction gas (hereinafter, the fuel gas and the oxidant gas are collectively referred to as such. A porous electrode base material having a function as a current collector while supplying and discharging a). The catalyst layer is disposed on both main surfaces of the PE film 7C by hot pressing.

【0004】また、8Aは、ガスを透過しない材料を用
いて製作され、この燃料電池セル7の一方の側面7a側
に配設されて,その片面に燃料ガス31Aを通流させる
とともに,未消費の水素を含む燃料ガスを排出するガス
流通溝81Aを多数有するセパレータである。8Bは、
燃料電池セル7の他方の側面7b側に配設されて,その
片面に酸化剤ガス41Aを通流させるとともに,未消費
の酸素を含む酸化剤ガス41Aを排出するガス流通溝8
1Bを多数有し、セパレータ8Aと同様に、ガスを透過
しない材料で製作されたセパレータである。セパレータ
8Aは、ガス流通溝81Aが形成された側面8Aaを燃
料電池セル7の側面7aに密接させて、また、セパレー
タ8Bは、ガス流通溝81Bが形成された側面8Baを
燃料電池セル7の側面7bに密接させて、それぞれ燃料
電池セル7を挟むようにして配設される。
Further, 8A is made of a gas impermeable material and is arranged on one side surface 7a side of the fuel cell 7 to allow the fuel gas 31A to flow to one side thereof and to be consumed. Is a separator having a large number of gas circulation grooves 81A for discharging the fuel gas containing hydrogen. 8B is
A gas flow groove 8 which is arranged on the other side surface 7b of the fuel cell 7 and allows the oxidant gas 41A to flow therethrough and discharges the oxidant gas 41A containing unconsumed oxygen.
Like the separator 8A, it has a large number of 1B and is made of a material that does not allow gas to permeate. In the separator 8A, the side surface 8Aa in which the gas flow groove 81A is formed is in close contact with the side surface 7a of the fuel cell 7, and in the separator 8B, the side surface 8Ba in which the gas flow groove 81B is formed is the side surface of the fuel cell unit 7. The fuel cells 7 are arranged so as to be in close contact with the fuel cells 7b.

【0005】さらに、61は、セパレータ8A,8Bの
ガス流通溝81A,81B中を通流する反応ガス31
A,41Aが、通流路外に漏れ出るのを防止する役目を
負うガスシール体であり、それぞれのセパレータ8A,
8Bの周縁部と、燃料電池セル7の周縁部との間の空所
に配置されるものである。1個の燃料電池セル7が発生
する電圧は、1〔V〕程度以下と低い値であるので、前
記した構成を持つ単電池6の多数個を、各燃料電池セル
7とこれに介挿されるセパレータ8A,8Bを介して、
互いに直列接続した燃料電池セル集積体(以降、スタッ
クと略称することがある。)として構成し、電圧を高め
て実用に供されるのが一般的である。
Further, 61 is a reaction gas 31 flowing through the gas flow grooves 81A and 81B of the separators 8A and 8B.
A and 41A are gas seal bodies that have a role of preventing leakage to the outside of the flow path, and separators 8A and
It is arranged in a space between the peripheral portion of 8B and the peripheral portion of the fuel cell unit 7. Since the voltage generated by one fuel battery cell 7 is as low as about 1 [V] or less, a large number of unit cells 6 having the above-mentioned configuration are inserted in each fuel battery cell 7 and this. Via the separators 8A and 8B,
It is generally configured as a fuel cell integrated body (hereinafter, may be abbreviated as a stack) connected in series with each other, and is generally put to practical use by increasing the voltage.

【0006】図4において、9は、複数の単電池6を積
層し、さらにその両端部に複数の単電池6の持つ燃料電
池セル7で発生した直流電気を取り出すための集電板9
1a,91bと、単電池6および集電板91a,91b
を構造体から電気的に絶縁するための電気絶縁板92
a,92bと、単電池6,集電板91a,91b、およ
び電気絶縁板92a,92bを積層した積層体の両外端
部に配設される締付板93a,93bと、締付板93
a,93bに適度の加圧力を与える締め付けボルト94
を備え、これらに加えて、複数の単電池6を積層する毎
に介挿される冷却体95とで構成されている固体高分子
電解質型燃料電池のスタックである。
In FIG. 4, reference numeral 9 denotes a current collector plate 9 for stacking a plurality of unit cells 6 and for extracting DC electricity generated in the fuel cells 7 of the plurality of unit cells 6 at both ends thereof.
1a and 91b, the unit cell 6 and the current collectors 91a and 91b
Insulating plate 92 for electrically insulating the structure from the structure
a, 92b, single cells 6, current collectors 91a, 91b, and electrical insulation plates 92a, 92b.
Tightening bolt 94 that gives moderate pressure to a and 93b
In addition to these, in addition to these, it is a stack of the solid polymer electrolyte fuel cell which is constituted by a cooling body 95 inserted every time a plurality of unit cells 6 are stacked.

【0007】燃料電池セル7においては、後記する直流
電気の発電を行う際に、発電する電力とほぼ同等量の損
失が発生する。この損失による熱を除去するのが前記の
冷却体95の役目である。冷却体95には、熱を除去す
るための図示しない水を通流させて、燃料電池セル7を
後記する適温に保持する。したがって、図4に示した構
成のスタック9においては、セパレータ8A,8Bは、
燃料電池セル7に供給する反応ガスの通流路を確保する
とともに、燃料電池セル7で発電された直流電気を、集
電板91a,91bに伝達する役目、さらには、燃料電
池セル7で生じた熱を冷却体95に伝達する役目も果た
している。
In the fuel cell unit 7, when generating direct current electricity, which will be described later, a loss equivalent to the amount of electric power generated is generated. The role of the cooling body 95 is to remove the heat due to this loss. Water (not shown) for removing heat is passed through the cooling body 95 to maintain the fuel cells 7 at an appropriate temperature described later. Therefore, in the stack 9 having the configuration shown in FIG. 4, the separators 8A and 8B are
The passage for the reaction gas to be supplied to the fuel cell 7 is ensured, and the direct current electricity generated by the fuel cell 7 is transmitted to the current collector plates 91a and 91b. It also plays the role of transferring the generated heat to the cooling body 95.

【0008】このスタック9においては、複数の燃料電
池セル7が備える燃料電極7Aおよび酸化剤電極7Bの
それぞれに、燃料電極7Aには燃料ガスを、また、酸化
剤電極7Bに酸化剤ガスを供給することで、それぞれの
電極7A,7Bの触媒層とPE膜でなる電解質層7Cと
の界面に三相界面(前記触媒層中の触媒と、PE膜、い
ずれかの反応ガスとが、互い接する界面のことを言
う。)を形成させ、電気化学反応を生じさせることで直
流電気を発生させる。なお前記触媒層は、微小な粒子状
の白金触媒とはっ水性を有するフッ素樹脂から形成され
ており、しかも多数の細孔を形成することで、反応ガス
の三層界面までの効率的な拡散を維持するするととも
に、十分広い面積の三層界面が形成される構成としてい
る。
In this stack 9, a fuel gas is supplied to the fuel electrode 7A and an oxidant gas is supplied to the oxidant electrode 7B to each of the fuel electrode 7A and the oxidant electrode 7B included in the plurality of fuel cells 7. By doing so, the three-phase interface (the catalyst in the catalyst layer, the PE film, and one of the reaction gases are in contact with each other at the interface between the catalyst layer of each of the electrodes 7A and 7B and the electrolyte layer 7C made of the PE film. Interface), and direct current is generated by causing an electrochemical reaction. The catalyst layer is formed of a fine particle platinum catalyst and a fluororesin having water repellency, and by forming a large number of pores, the reaction gas is efficiently diffused up to the three-layer interface. Is maintained and a three-layer interface having a sufficiently large area is formed.

【0009】ところで、電解質層7Cを形成しているP
E膜は、前述したとおり、分子中にプロトン(水素イオ
ン)交換基を有する高分子膜であり、飽和に含水させる
と常温で20〔Ω・cm〕以下の抵抗率を示してプロト
ン導電性電解質として機能する膜である。このPE膜と
しては、現時点においては、パ−フルオロスルホン酸樹
脂膜(例えば、米国、デュポン社製、商品名ナフィオン
膜)等が知られている。このようなPE膜を用いた電解
質層7Cと、触媒層と、反応ガスとが形成する三相界面
で生じる電気化学反応は、次のとおりである。
By the way, P forming the electrolyte layer 7C
As described above, the E membrane is a polymer membrane having a proton (hydrogen ion) exchange group in the molecule, and shows a resistivity of 20 [Ω · cm] or less at room temperature when it is saturated with water and exhibits a proton conductive electrolyte. It is a film that functions as. As this PE film, at present, a perfluorosulfonic acid resin film (for example, Nafion film manufactured by DuPont, USA) is known. The electrochemical reaction that occurs at the three-phase interface formed by the electrolyte layer 7C using such a PE film, the catalyst layer, and the reaction gas is as follows.

【0010】アノード電極7Aでは(1)式の反応が起
こる。
At the anode electrode 7A, the reaction of the formula (1) occurs.

【0011】[0011]

【数1】 [Equation 1]

【0012】カソード電極7Bでは(2)式の反応が起
こる。
At the cathode electrode 7B, the reaction of the formula (2) occurs.

【0013】[0013]

【数2】 [Equation 2]

【0014】つまりアノード電極7Aにおいては、外部
より供給された水素がプロトンと電子を生成する。この
生成されたプロトンは、PE膜7C中をカソード電極7
Bに向かって移動し、電子は、図示しない外部電気回路
を通ってカソード電極7Bに移動する。一方、カソード
電極7Bにおいては、外部より供給された酸素とPE膜
7C中をアノード電極7Aより移動してきたプロトンと
外部電気回路より移動してきた電子が反応し、水分を生
成する。かくして、燃料電池セル7は、水素と酸素を得
て直流電気を発電するのである。このような固体高分子
電解質型燃料電池においては、PE膜7Cの抵抗率を小
さくして高い発電効率が得られるようにするために、通
常、50〔℃〕から100〔℃〕程度の温度条件で運転
される。なお、このPE膜7Cは、反応ガスである燃料
ガスや酸化剤ガスが透過しない膜でもあるので、反応ガ
スが相互に混合するいわゆるクロスリークを防止する役
目も果たしている。
That is, at the anode electrode 7A, hydrogen supplied from the outside produces protons and electrons. The generated protons pass through the PE film 7C into the cathode electrode 7
The electrons move toward B and move to the cathode electrode 7B through an external electric circuit (not shown). On the other hand, in the cathode electrode 7B, oxygen supplied from the outside reacts with the protons moving from the anode electrode 7A in the PE film 7C and the electrons moving from the external electric circuit to generate water. Thus, the fuel cell 7 obtains hydrogen and oxygen to generate direct current electricity. In such a solid polymer electrolyte fuel cell, in order to reduce the resistivity of the PE film 7C and obtain high power generation efficiency, a temperature condition of about 50 [° C.] to 100 [° C.] is usually used. Be driven in. Since the PE film 7C is also a film that does not allow the reaction gas such as the fuel gas and the oxidant gas to pass through, it also plays the role of preventing so-called cross leak in which the reaction gases are mixed with each other.

【0015】前記したところにより、固体高分子電解質
型燃料電池の発電効率を高く維持するためには、前記運
転温度でPE膜7Cの含水状態を飽和状態に維持するこ
とが必要であり、このために、燃料ガス31Aおよび酸
化剤ガス41Aは加湿をし、それぞれの反応ガスを飽和
に近い蒸気圧状態に調整して燃料電池に供給している。
図5において、1Aは、固体高分子電解質型燃料電池2
と、燃料ガス供給系統3と、酸化剤ガス供給系統4A
と、冷却水系統5とを備えた固体高分子電解質型燃料電
池発電装置である。固体高分子電解質型燃料電池2は、
1台ないし複数台のスタック9を備えており、図5中に
おいては、燃料電極21と,酸化剤電極22と,冷却体
23とを備えたものとして、模式的に示している。
As described above, in order to keep the power generation efficiency of the solid polymer electrolyte fuel cell high, it is necessary to keep the water content of the PE membrane 7C saturated at the operating temperature. Further, the fuel gas 31A and the oxidant gas 41A are humidified, and the respective reaction gases are adjusted to a vapor pressure state close to saturation and supplied to the fuel cell.
In FIG. 5, 1A is a solid polymer electrolyte fuel cell 2
, Fuel gas supply system 3, and oxidant gas supply system 4A
And a cooling water system 5 is a solid polymer electrolyte fuel cell power generator. The solid polymer electrolyte fuel cell 2 is
It is provided with one or a plurality of stacks 9, and is schematically shown in FIG. 5 as including a fuel electrode 21, an oxidant electrode 22, and a cooling body 23.

【0016】燃料ガス供給系統3は、燃料電極21に燃
料ガス31Aを供給するものであり、燃料ガス源31
と、加湿装置32と、配管33,34,35,36を備
えている。燃料ガス31Aは燃料ガス源31から配管3
3により加湿装置32に供給され、加湿装置32におい
て加湿されたうえで、配管34により燃料電極21に供
給される。燃料電極21において消費されなかった水素
を含む排出燃料ガスは、その一部は配管35から固体高
分子電解質型燃料電池発電装置1Aの外部に排出される
が、その大部分は配管36を経て配管34に循環され
る。
The fuel gas supply system 3 supplies the fuel gas 31A to the fuel electrode 21, and the fuel gas source 31
And a humidifying device 32 and pipes 33, 34, 35, 36. The fuel gas 31A is from the fuel gas source 31 to the pipe 3
3 is supplied to the humidifying device 32, is humidified in the humidifying device 32, and then is supplied to the fuel electrode 21 through the pipe 34. The exhausted fuel gas containing hydrogen that has not been consumed in the fuel electrode 21 is partially exhausted from the pipe 35 to the outside of the solid polymer electrolyte fuel cell power generator 1A, but most of it is exhausted through the pipe 36. 34.

【0017】酸化剤ガス供給系統4Aは、酸化剤電極2
2に酸化剤ガス41Aを供給するものであり、大気等の
低圧の酸化剤ガス源41と、空気圧縮機等の酸化剤ガス
加圧装置42と、加湿装置43と、配管48a,48
b,46を備えている。酸化剤ガス源41から供給され
た酸化剤ガス41Aは、加圧装置42で加圧されたうえ
で配管48aにより加湿装置43に供給され、加湿装置
43において加湿されたうえで、配管48bにより酸化
剤電極22に供給される。酸化剤電極22において酸素
が消費された排出酸化剤ガスは、配管46から固体高分
子電解質型燃料電池発電装置1Aの外部に排出される。
The oxidant gas supply system 4A includes an oxidant electrode 2
2, which supplies the oxidant gas 41A to the air source 2. The low-pressure oxidant gas source 41 such as the atmosphere, the oxidant gas pressurizing device 42 such as an air compressor, the humidifier 43, and the pipes 48a, 48.
b and 46 are provided. The oxidant gas 41A supplied from the oxidant gas source 41 is pressurized by the pressurizing device 42, supplied to the humidifying device 43 by the pipe 48a, humidified by the humidifying device 43, and then oxidized by the pipe 48b. It is supplied to the agent electrode 22. The exhausted oxidant gas in which oxygen is consumed in the oxidant electrode 22 is exhausted from the pipe 46 to the outside of the solid polymer electrolyte fuel cell power generator 1A.

【0018】冷却水系統5は、固体高分子電解質型燃料
電池2の発電反応に際して発生する損失による熱を除去
するための冷却水51Aを冷却体23に供給するととも
に、冷却体23で加熱された冷却水51Aを加湿装置3
2,43に供給するものであり、冷却水ポンプ51と、
配管52を備えている。冷却水51Aは、まず、冷却水
ポンプ51により加圧されたうえで配管52を介して冷
却体23に供給され、冷却体23を所定温度に冷却す
る。冷却体23から除熱することで加熱された冷却水5
1Aは、配管52を介して順次加湿装置32および加湿
装置43に供給されて、前記したところによる燃料ガス
31Aおよび酸化剤ガス41Aの加湿に使用される。こ
れにより、反応ガス31A,41Aに、ほぼ冷却水51
Aの温度に相当する温度に従う飽和水蒸気圧に相当する
水蒸気を含ませることができることとなる。
The cooling water system 5 supplies cooling water 51A for removing heat due to loss generated during power generation reaction of the solid polymer electrolyte fuel cell 2 to the cooling body 23 and is heated by the cooling body 23. Humidification device 3 for cooling water 51A
2, 43, and a cooling water pump 51,
The pipe 52 is provided. The cooling water 51A is first pressurized by the cooling water pump 51 and then supplied to the cooling body 23 via the pipe 52 to cool the cooling body 23 to a predetermined temperature. Cooling water 5 heated by removing heat from the cooling body 23
1A is sequentially supplied to the humidifying device 32 and the humidifying device 43 through the pipe 52, and is used for humidifying the fuel gas 31A and the oxidant gas 41A as described above. As a result, the reaction gas 31A, 41A is substantially cooled by the cooling water 51.
Thus, it is possible to include the steam corresponding to the saturated steam pressure according to the temperature corresponding to the temperature A.

【0019】なおまた、セパレータとしては、前述した
溝81Aあるいは溝81Bを一方の側面のみに配設した
構成のセパレータ8A,8B以外に、スタック構成の際
に互いに隣接するセパレータの溝も一体に形成すること
で,スタック構成の合理化を図るために、溝81A,8
1Bをその両側面に配設するようにしたセパレータも知
られている。
As the separator, in addition to the separators 8A and 8B having the above-mentioned groove 81A or groove 81B arranged on only one side surface, the grooves of the separators adjacent to each other in the stack structure are also integrally formed. By doing so, in order to rationalize the stack configuration, the grooves 81A, 8
There is also known a separator in which 1B is arranged on both side surfaces thereof.

【0020】[0020]

【発明が解決しようとする課題】前述した従来技術によ
る固体高分子電解質型燃料電池発電装置においては、ス
タック9の備える燃料電池セル7を構成するPE膜から
なる電解質層7Cは、ほぼ冷却水51Aの温度に相当す
る温度に従う飽和水蒸気圧に相当する水蒸気を含んだ燃
料ガス31Aと酸化剤ガス41Aとにより、加湿をされ
るのであるが、なお、次記する問題が残存している。す
なわち、前述したとおり、冷却水51Aは冷却体23か
ら受熱するのであり、また冷却体23から冷却水51A
に与えられる熱は、セパレータ8A,8B等を介して伝
達された燃料電池セル7において発生した損失熱である
から、冷却水51Aの温度は、固体高分子電解質型燃料
電池2の運転温度よりも5〜10〔℃〕程度、常に低温
となる。このため,この冷却水51Aで加湿したとして
も、反応ガスは燃料電池2の運転温度に相当する飽和蒸
気圧まで加湿されることはない。特に,高い運転温度の
場合には、温度差が僅かであっても飽和蒸気圧が大きく
変わることとなるので、前記の冷却水温度と燃料電池2
の運転温度との温度差により、反応ガスの加湿度合いは
大きく影響を受ける。この結果、PE膜7Cの抵抗率を
十分に低下させることができず、固体高分子電解質型燃
料電池2の発電特性に悪影響を与えることとなる。
In the solid polymer electrolyte fuel cell power generator according to the prior art described above, the electrolyte layer 7C made of the PE film which constitutes the fuel cell 7 of the stack 9 is substantially the cooling water 51A. Although the fuel gas 31A and the oxidant gas 41A containing the steam corresponding to the saturated steam pressure corresponding to the temperature of 1 are humidified, the following problem still remains. That is, as described above, the cooling water 51A receives heat from the cooling body 23, and the cooling water 51A from the cooling body 23 also receives heat.
The heat given to the cooling water 51A is the heat loss generated in the fuel cell 7 transferred through the separators 8A, 8B, etc., so that the temperature of the cooling water 51A is higher than the operating temperature of the solid polymer electrolyte fuel cell 2. The temperature is always 5 to 10 [° C.], which is low. Therefore, even if the cooling water 51A is humidified, the reaction gas is not humidified to the saturated vapor pressure corresponding to the operating temperature of the fuel cell 2. In particular, when the operating temperature is high, the saturated vapor pressure changes greatly even if the temperature difference is small.
Due to the temperature difference from the operating temperature of, the degree of humidification of the reaction gas is greatly affected. As a result, the resistivity of the PE film 7C cannot be reduced sufficiently, which adversely affects the power generation characteristics of the solid polymer electrolyte fuel cell 2.

【0021】この発明は、前述の従来技術の問題点に鑑
みなされたものであり、その目的は、反応ガスに対する
加湿状態を改善した固体高分子電解質型燃料電池発電装
置を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a solid polymer electrolyte fuel cell power generator in which the humidification state to a reaction gas is improved.

【0022】[0022]

【課題を解決するための手段】この発明では前述の目的
は、 1)固体高分子電解質型燃料電池と、この固体高分子電
解質型燃料電池に燃料ガスを供給する燃料ガス供給系統
と、固体高分子電解質型燃料電池に酸化剤ガスを供給す
る燃料ガス供給系統とを備えた装置であって、固体高分
子電解質型燃料電池は、PE膜を電解質層として用い、
燃料ガスおよび酸化剤ガスの供給を受けて直流電力を発
生する燃料電池セルを備え、燃料ガス供給系統は、前記
の燃料ガスを供給する燃料ガス供給装置と、燃料ガスを
加湿する加湿装置とを備え、また酸化剤ガス供給系統
は、前記の酸化剤ガスを加圧して供給する酸化剤ガス加
圧装置と、酸化剤ガスを加湿する加湿装置とを備えたも
のである、固体高分子電解質型燃料電池発電装置におい
て、酸化剤ガス供給系統は、酸化剤ガス加圧装置の酸化
剤ガスの通流に関する上流側に加湿装置を配設した構成
としたこと、により達成される。
The above-mentioned objects of the present invention are as follows: 1) a solid polymer electrolyte fuel cell, a fuel gas supply system for supplying a fuel gas to the solid polymer electrolyte fuel cell, and a solid fuel cell. A device comprising a fuel gas supply system for supplying an oxidant gas to a molecular electrolyte fuel cell, wherein the solid polymer electrolyte fuel cell uses a PE membrane as an electrolyte layer,
The fuel gas supply system includes a fuel battery cell that receives the supply of the fuel gas and the oxidant gas and generates DC power, and the fuel gas supply system includes a fuel gas supply device that supplies the fuel gas and a humidification device that humidifies the fuel gas. Further, the oxidant gas supply system is provided with an oxidant gas pressurizing device for pressurizing and supplying the oxidant gas, and a humidifying device for humidifying the oxidant gas, a solid polymer electrolyte type In the fuel cell power generation device, the oxidant gas supply system is achieved by arranging the humidifying device on the upstream side of the flow of the oxidant gas of the oxidant gas pressurizing device.

【0023】[0023]

【作用】この発明においては、固体高分子電解質型燃料
電池発電装置の備える酸化剤ガス供給系統を、酸化剤ガ
ス加圧装置の酸化剤ガスの通流に関する上流側に加湿装
置を配設した構成としたことにより、酸化剤ガスに対す
る加湿は、酸化剤ガスが加圧されていない状態で行われ
る。ところで、気体の飽和蒸気圧は、よく知られている
とおり,その温度にのみ関係して,その雰囲気圧力には
関係しないものである。また、水蒸気の分圧は飽和圧力
を越えることができないものである。これから、気体中
の水蒸気分圧は次の性質を持つこととなる。
According to the present invention, the oxidant gas supply system provided in the solid polymer electrolyte fuel cell power generator is provided with the humidifier on the upstream side of the flow of the oxidant gas of the oxidant gas pressurizer. Therefore, the humidification of the oxidizing gas is performed in a state where the oxidizing gas is not pressurized. By the way, as is well known, the saturated vapor pressure of a gas is related only to its temperature and not to its atmospheric pressure. Also, the partial pressure of water vapor cannot exceed the saturation pressure. From this, the water vapor partial pressure in the gas has the following properties.

【0024】一定の雰囲気圧力において気体温度が高
くなると、水蒸気分圧は高くなり、 一定の気体温度において雰囲気圧力が高くなると、水
蒸気分圧は低くなる。 したがって、加圧されておらず圧力の低い状態での酸化
剤ガスの水蒸気分圧が不飽和の状態であっても、この状
態の酸化剤ガスを加圧して一定の圧力以上とすること
で、酸化剤ガスの水蒸気圧力を飽和圧力にすることが可
能となる。
When the gas temperature rises at a constant atmospheric pressure, the water vapor partial pressure increases, and when the gas temperature rises at a constant gas temperature, the water vapor partial pressure decreases. Therefore, even if the water vapor partial pressure of the oxidant gas in a low pressure state that is not pressurized is unsaturated, by pressurizing the oxidant gas in this state to a certain pressure or more, The water vapor pressure of the oxidant gas can be saturated.

【0025】このような飽和蒸気圧状態の酸化剤ガスを
燃料電池セルに供給することで、PE膜からの水分の蒸
発を防止することが可能になる。
By supplying the oxidant gas in such a saturated vapor pressure state to the fuel cell, it becomes possible to prevent the evaporation of water from the PE film.

【0026】[0026]

【実施例】以下この発明の実施例を図面を参照して詳細
に説明する。図1は、この発明の一実施例による固体高
分子電解質型燃料電池発電装置の供給系統図である。図
1において図5に示した従来例による固体高分子電解質
型燃料電池発電装置と同一部分には同じ符号を付し、そ
の説明を省略する。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a supply system diagram of a solid polymer electrolyte fuel cell power generator according to an embodiment of the present invention. In FIG. 1, the same parts as those of the conventional solid polymer electrolyte fuel cell power generator shown in FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted.

【0027】図1において、1は、図5に示した従来例
による固体高分子電解質型燃料電池発電装置1Aに対し
て、酸化剤ガス供給系統4Aに替えて酸化剤ガス供給系
統4を用いるようにした固体高分子電解質型燃料電池発
電装置である。酸化剤ガス供給系統4は、酸化剤電極2
2に酸化剤ガス41Aを供給するものであり、大気等の
酸化剤ガス源41と、空気圧縮機等の酸化剤ガス加圧装
置42と、加湿装置43と、配管45a,45b,45
c,45dおよび46と、必要に応じて設置される冷却
器44とを備えている。酸化剤ガス源41から供給され
た酸化剤ガス41Aは、まず配管45aにより加湿装置
43に供給され、加湿装置43において冷却体23にお
いて加熱された冷却水51Aにより加湿されたうえで、
配管45bにより酸化剤ガス加圧装置42に送られて加
圧される。酸化剤ガス加圧装置42で断熱圧縮されるこ
とで、酸化剤ガス41Aが過度に温度上昇する場合に
は、冷却器44が備えられ、加圧された酸化剤ガス41
Aは、配管45cにより冷却器44に送られて固体高分
子電解質型燃料電池2の運転温度を少なくとも越えない
温度にまで冷却される。加湿されしかも冷却器44で冷
却された酸化剤ガス41Aは、配管45cにより酸化剤
電極22に供給される。
In FIG. 1, reference numeral 1 indicates that an oxidant gas supply system 4 is used in place of the oxidant gas supply system 4A in the conventional solid polymer electrolyte fuel cell power generator 1A shown in FIG. Is a solid polymer electrolyte fuel cell power generator. The oxidant gas supply system 4 includes an oxidant electrode 2
2, which supplies an oxidant gas 41A to the air 2, an oxidant gas source 41 such as the atmosphere, an oxidant gas pressurizing device 42 such as an air compressor, a humidifier 43, and pipes 45a, 45b, 45.
c, 45d and 46, and a cooler 44 installed as necessary. The oxidant gas 41A supplied from the oxidant gas source 41 is first supplied to the humidifier 43 through the pipe 45a, and after being humidified by the cooling water 51A heated in the cooling body 23 in the humidifier 43,
It is sent to the oxidant gas pressurizing device 42 through the pipe 45b and is pressurized. When the oxidant gas 41A is adiabatically compressed by the oxidant gas pressurizing device 42 and the temperature of the oxidant gas 41A excessively rises, the cooler 44 is provided and the pressurized oxidant gas 41A is provided.
A is sent to the cooler 44 through the pipe 45c and cooled to a temperature that does not exceed the operating temperature of the solid polymer electrolyte fuel cell 2 at least. The oxidant gas 41A that has been humidified and cooled by the cooler 44 is supplied to the oxidant electrode 22 through the pipe 45c.

【0028】この発明では前述の構成としたので、酸化
剤ガス41Aは、まず冷却水51Aにより加湿される。
続いて酸化剤ガス加圧装置42で加圧されることによ
り、その水蒸気分圧を低くされることで、その水蒸気圧
力を飽和圧力にすることが可能となるのである。これに
より、加湿源として温度の低い冷却水51Aを用いたと
しても、固体高分子電解質型燃料電池2の備えるPE膜
7Cの含水状態を飽和状態に維持することが可能になる
ものである。
Since the present invention has the above-mentioned structure, the oxidizing gas 41A is first humidified by the cooling water 51A.
Then, by being pressurized by the oxidant gas pressurizing device 42, the steam partial pressure can be lowered, so that the steam pressure can be saturated. As a result, even if the cooling water 51A having a low temperature is used as the humidification source, the water content of the PE membrane 7C included in the solid polymer electrolyte fuel cell 2 can be maintained in a saturated state.

【0029】実施例における今までの説明では、酸化剤
ガス供給系統4は冷却器44を備えるとしてきたが、こ
れに限定されるものではなく、例えば、酸化剤ガス加圧
装置42で断熱圧縮されること生じる温度上昇度が小さ
い場合には、冷却器44の設置は不要である。
In the above description of the embodiment, the oxidant gas supply system 4 is provided with the cooler 44. However, the present invention is not limited to this. For example, the oxidant gas pressurizing device 42 is adiabatically compressed. If the temperature rise that occurs is small, the cooling device 44 need not be installed.

【0030】[0030]

【発明の効果】この発明においては、前述の構成とする
ことにより、酸化剤ガスが飽和状態に加湿されること
で、PE膜の含水状態を飽和状態に維持することが可能
になるものである。これにより、この発明を適用した固
体高分子電解質型燃料電池発電装置における燃料電池セ
ルの発電特性は、図2の単電池の発電特性のグラフ中に
示すように、従来例の場合の燃料電池セルの発電特性に
対して、高い特性を得ることが可能となるとの効果が有
る。
According to the present invention, with the above-mentioned structure, the oxidant gas is humidified to the saturated state, so that the water content of the PE membrane can be maintained in the saturated state. . As a result, the power generation characteristics of the fuel cell in the solid polymer electrolyte fuel cell power generator to which the present invention is applied are as shown in the graph of the power generation characteristics of the unit cell of FIG. There is an effect that it is possible to obtain high characteristics with respect to the power generation characteristics of.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による固体高分子電解質型
燃料電池発電装置の供給系統図
FIG. 1 is a supply system diagram of a solid polymer electrolyte fuel cell power generator according to an embodiment of the present invention.

【図2】この発明を適用した固体高分子電解質型燃料電
池発電装置における単電池の発電特性を、従来例の場合
と比較して示したグラフ
FIG. 2 is a graph showing the power generation characteristics of a single cell in a solid polymer electrolyte fuel cell power generator to which the present invention is applied, in comparison with the case of a conventional example.

【図3】固体高分子電解質型燃料電池の単電池を展開し
た状態で模式的に示した側面断面図
FIG. 3 is a side sectional view schematically showing a cell of a solid polymer electrolyte fuel cell in a developed state.

【図4】図3に示した単電池を使用した燃料電池セル集
積体を模式的に示した構成図
FIG. 4 is a configuration diagram schematically showing a fuel cell integrated body using the unit cell shown in FIG.

【図5】図4に示した燃料電池セル集積体を使用した固
体高分子電解質型燃料電池発電装置の供給系統図
FIG. 5 is a supply system diagram of a solid polymer electrolyte fuel cell power generator using the fuel cell cell assembly shown in FIG.

【符号の説明】[Explanation of symbols]

1 固体高分子電解質型燃料電池発電装置 2 固体高分子電解質型燃料電池 22 酸化剤電極 23 冷却体 3 燃料ガス供給系統 4 酸化剤ガス(空気)供給系統 41 酸化剤ガス(空気)源 42 酸化剤ガス加圧装置(空気圧縮機) 43 加湿装置 44 冷却器 51A 冷却水 1 Solid Polymer Electrolyte Fuel Cell Power Generation Device 2 Solid Polymer Electrolyte Fuel Cell 22 Oxidizer Electrode 23 Coolant 3 Fuel Gas Supply System 4 Oxidant Gas (Air) Supply System 41 Oxidant Gas (Air) Source 42 Oxidant Gas pressurizing device (air compressor) 43 Humidifying device 44 Cooler 51A Cooling water

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】固体高分子電解質型燃料電池と、この固体
高分子電解質型燃料電池に燃料ガスを供給する燃料ガス
供給系統と、固体高分子電解質型燃料電池に酸化剤ガス
を供給する燃料ガス供給系統とを備えた装置であって、 固体高分子電解質型燃料電池は、固体高分子電解質膜を
電解質層として用い、燃料ガスおよび酸化剤ガスの供給
を受けて直流電力を発生する燃料電池セルを備え、 燃料ガス供給系統は、前記の燃料ガスを供給する燃料ガ
ス供給装置と、燃料ガスを加湿する加湿装置とを備え、
また酸化剤ガス供給系統は、前記の酸化剤ガスを加圧し
て供給する酸化剤ガス加圧装置と、酸化剤ガスを加湿す
る加湿装置とを備えたものである、固体高分子電解質型
燃料電池発電装置において、 酸化剤ガス供給系統は、酸化剤ガス加圧装置の酸化剤ガ
スの通流に関する上流側に加湿装置を配設したことを特
徴とする固体高分子電解質型燃料電池発電装置。
1. A solid polymer electrolyte fuel cell, a fuel gas supply system for supplying a fuel gas to the solid polymer electrolyte fuel cell, and a fuel gas for supplying an oxidant gas to the solid polymer electrolyte fuel cell. A solid polyelectrolyte fuel cell is a device including a supply system, wherein a solid polymer electrolyte membrane is used as an electrolyte layer, and a fuel cell that receives supply of a fuel gas and an oxidant gas and generates direct current power. The fuel gas supply system includes a fuel gas supply device for supplying the fuel gas, and a humidifying device for humidifying the fuel gas,
Further, the oxidant gas supply system includes an oxidant gas pressurizing device for pressurizing and supplying the oxidant gas, and a humidifying device for humidifying the oxidant gas, a solid polymer electrolyte fuel cell In the power generator, the oxidizing gas supply system has a humidifier installed upstream of the oxidizing gas pressurizing device in relation to the flow of the oxidizing gas.
JP05118852A 1993-05-21 1993-05-21 Solid polymer electrolyte fuel cell power generator Expired - Fee Related JP3141619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05118852A JP3141619B2 (en) 1993-05-21 1993-05-21 Solid polymer electrolyte fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05118852A JP3141619B2 (en) 1993-05-21 1993-05-21 Solid polymer electrolyte fuel cell power generator

Publications (2)

Publication Number Publication Date
JPH06333583A true JPH06333583A (en) 1994-12-02
JP3141619B2 JP3141619B2 (en) 2001-03-05

Family

ID=14746739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05118852A Expired - Fee Related JP3141619B2 (en) 1993-05-21 1993-05-21 Solid polymer electrolyte fuel cell power generator

Country Status (1)

Country Link
JP (1) JP3141619B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011617A1 (en) * 1996-09-11 1998-03-19 Siemens Aktiengesellschaft Process for operating a fuel cell system and fuel cell system
JP2000208160A (en) * 1999-01-18 2000-07-28 Nissan Motor Co Ltd Fuel cell system and water collection method
WO2000054354A1 (en) * 1999-03-10 2000-09-14 Siemens Aktiengesellschaft Method for operating a fuel cell facility and corresponding fuel cell facility
JP2000315509A (en) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd Water supplying device of fuel cell
WO2001003217A1 (en) * 1999-07-01 2001-01-11 Atecs Mannesmann Ag Assembly for heating/cooling a fuel cell and a fuel cell system
WO2001039308A2 (en) * 1999-11-25 2001-05-31 Fev Motorentechnik Gmbh Method for improving the output of a fuel cell, especially a fuel cell for mobile use
WO2001071837A1 (en) * 2000-03-23 2001-09-27 Sanyo Electric Co., Ltd. Solid polymer fuel cell
WO2002015315A1 (en) * 2000-08-10 2002-02-21 Sanyo Electric Co., Ltd. Fuel cell system
JP2002216814A (en) * 2001-01-22 2002-08-02 Honda Motor Co Ltd Fuel cell system equipped with humidifying part and humidifying method using same
JP2002216816A (en) * 2001-01-23 2002-08-02 Honda Motor Co Ltd Fuel cell system
JP2002319417A (en) * 2001-04-20 2002-10-31 Fuji Electric Co Ltd Solid polymer fuel cell generating device
WO2003009412A1 (en) * 2001-07-20 2003-01-30 General Motors Corporation Water vapor transfer device for a fuel cell power plant
KR20040003659A (en) * 2002-07-03 2004-01-13 엘지전자 주식회사 Cooling/humidifying device of fuel cell
KR20180067255A (en) * 2016-12-12 2018-06-20 현대자동차주식회사 Fuel cell system
CN111350652A (en) * 2020-01-10 2020-06-30 擎能动力科技(苏州)有限公司 Fuel cell compressor test equipment, test method, cooling liquid flow rate determination method and application

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011617A1 (en) * 1996-09-11 1998-03-19 Siemens Aktiengesellschaft Process for operating a fuel cell system and fuel cell system
JP2000208160A (en) * 1999-01-18 2000-07-28 Nissan Motor Co Ltd Fuel cell system and water collection method
JP4517414B2 (en) * 1999-01-18 2010-08-04 日産自動車株式会社 Fuel cell system and water recovery method
US6841277B2 (en) 1999-03-10 2005-01-11 Siemens Aktiengesellschaft Method for operating a fuel cell plant and fuel cell plant
WO2000054354A1 (en) * 1999-03-10 2000-09-14 Siemens Aktiengesellschaft Method for operating a fuel cell facility and corresponding fuel cell facility
JP2000315509A (en) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd Water supplying device of fuel cell
JP4505874B2 (en) * 1999-05-06 2010-07-21 日産自動車株式会社 Water supply device for fuel cell
WO2001003217A1 (en) * 1999-07-01 2001-01-11 Atecs Mannesmann Ag Assembly for heating/cooling a fuel cell and a fuel cell system
WO2001039308A2 (en) * 1999-11-25 2001-05-31 Fev Motorentechnik Gmbh Method for improving the output of a fuel cell, especially a fuel cell for mobile use
WO2001039308A3 (en) * 1999-11-25 2002-03-07 Fev Motorentech Gmbh Method for improving the output of a fuel cell, especially a fuel cell for mobile use
CN1311581C (en) * 2000-03-23 2007-04-18 三洋电机株式会社 Solid polymer fuel cell
WO2001071837A1 (en) * 2000-03-23 2001-09-27 Sanyo Electric Co., Ltd. Solid polymer fuel cell
US7507487B2 (en) 2000-03-23 2009-03-24 Sanyo Electric Co., Ltd. Solid polymer fuel cell with reactant air humidified by a processed water tank
WO2002015315A1 (en) * 2000-08-10 2002-02-21 Sanyo Electric Co., Ltd. Fuel cell system
US7101636B2 (en) 2000-08-10 2006-09-05 Sanyo Electric Co., Ltd. Fuel cell system
JP2002216814A (en) * 2001-01-22 2002-08-02 Honda Motor Co Ltd Fuel cell system equipped with humidifying part and humidifying method using same
JP2002216816A (en) * 2001-01-23 2002-08-02 Honda Motor Co Ltd Fuel cell system
JP2002319417A (en) * 2001-04-20 2002-10-31 Fuji Electric Co Ltd Solid polymer fuel cell generating device
US7138197B2 (en) * 2001-07-20 2006-11-21 General Motors Corporation Method of operating a fuel cell power plant
US6630260B2 (en) * 2001-07-20 2003-10-07 General Motors Corporation Water vapor transfer device for a fuel cell power plant
WO2003009412A1 (en) * 2001-07-20 2003-01-30 General Motors Corporation Water vapor transfer device for a fuel cell power plant
KR20040003659A (en) * 2002-07-03 2004-01-13 엘지전자 주식회사 Cooling/humidifying device of fuel cell
KR20180067255A (en) * 2016-12-12 2018-06-20 현대자동차주식회사 Fuel cell system
CN111350652A (en) * 2020-01-10 2020-06-30 擎能动力科技(苏州)有限公司 Fuel cell compressor test equipment, test method, cooling liquid flow rate determination method and application

Also Published As

Publication number Publication date
JP3141619B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
US7566511B2 (en) Solid polymer cell assembly
JP3530793B2 (en) Fuel cell and operating method thereof
JP3141619B2 (en) Solid polymer electrolyte fuel cell power generator
CA2400452C (en) A fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JP3510285B2 (en) Solid polymer electrolyte fuel cell system
JP2002025584A (en) Solid high polymer molecule electrolyte fuel cell and its humidifying method
JP2002015759A (en) Operating method of phosphoric acid fuel cell
JPH11135132A (en) Solid polymer electrolyte fuel cell
JPH06196187A (en) Activation of solid high polymer type fuel cell
JPH08167416A (en) Cell for solid high polymer electrolyte fuel cell
JP2001357869A (en) Solid high-polymer type fuel cell stack
JP3111682B2 (en) Solid polymer electrolyte fuel cell system
JP2001118587A (en) Solid polymer type fuel cell and method for operating the same
JP3146758B2 (en) Solid polymer electrolyte fuel cell
JP5341624B2 (en) Fuel cell system
JPH05144451A (en) Reaction gas/cooling medium flowing structure of fuel cell with solid highpolymer electrolyte
EP1294037A2 (en) A fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JP2010061981A (en) Starting method for fuel cell system
JPH11214022A (en) Fuel cell power generating device
JP4665353B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
US6815109B2 (en) Fuel cell system
JP2005353561A (en) Fuel cell
JPH05190193A (en) Solid high polymeric electrolyte type fuel cell
JPH06333581A (en) Solid poly electrolyte fuel cell
JP2002141090A (en) Operation method of solid polymer fuel cell system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees