JPH07187862A - Oxide ceramic substrate coated with hard carbon-containing film and its production - Google Patents

Oxide ceramic substrate coated with hard carbon-containing film and its production

Info

Publication number
JPH07187862A
JPH07187862A JP5327932A JP32793293A JPH07187862A JP H07187862 A JPH07187862 A JP H07187862A JP 5327932 A JP5327932 A JP 5327932A JP 32793293 A JP32793293 A JP 32793293A JP H07187862 A JPH07187862 A JP H07187862A
Authority
JP
Japan
Prior art keywords
film
substrate
hard carbon
oxide ceramic
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5327932A
Other languages
Japanese (ja)
Inventor
Osamu Imai
今井  修
Kiyoshi Ogata
潔 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP5327932A priority Critical patent/JPH07187862A/en
Publication of JPH07187862A publication Critical patent/JPH07187862A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0027Ion-implantation, ion-irradiation or ion-injection
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To improve adhesion by forming an N ion implanted layer in the surface part of an oxide ceramic substrate by irradiation with N ions and coating the outside of the N ion implanted layer with a hard carbon-contg. film. CONSTITUTION:An oxide ceramic substrate of Al2O3, SiO2 or ZrO2 is washed with a neutral surfactant and acetone and put in a vacuum vessel. This vessel is evacuated to a high vacuum of about <=2X10<-6>Torr and gaseous N. as an ion source is introduced and ionized. The surface of the substrate is irradiated with about 1X10<15>-1X10<17> N ions per 1cm<2> under 0.2-20keV ion acceleration energy to form an ion implanted layer in the surface. Hydrocarbon such as methane is then introduced, plasma is generated by supplying high-frequency power and the hydrocarbon is thermally decomposed in the plasma to form a hard carbon-contg. film excellent in adhesion. The outside of the ion implanted layer is coated with the film and the objective oxide ceramic substrate is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性や他の部材と
の摺動性等が要求される各種機械部品等において用いら
れる酸化物セラミックよりなる基体であって、前記諸特
性を向上させるために硬質炭素含有膜が被覆されたも
の、及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate made of an oxide ceramic used in various machine parts, etc., which are required to have wear resistance and slidability with other members. The present invention relates to a film coated with a hard carbon-containing film and a method for producing the same.

【0002】[0002]

【従来の技術】耐摩耗性や他の部材との摺動性等が要求
される部品基体等においては、このような性質に優れた
アルミナ(Al2 3 )、無水ケイ酸(SiO2 )、酸
化ジルコニウム(ZrO2 )等の酸化物セラミックを部
品基体の材質として採用することが提案されている。ま
た、前記の諸性質をさらに向上させるために、前記の酸
化物セラミックよりなる基体を硬質炭素含有膜で被覆す
ることも提案されている。
2. Description of the Related Art Alumina (Al 2 O 3 ) and silicic acid anhydride (SiO 2 ) which are excellent in such properties are used for component bases which are required to have abrasion resistance and slidability with other members. It has been proposed to employ an oxide ceramic such as zirconium oxide (ZrO 2 ) as a material for the component substrate. Further, in order to further improve the above-mentioned various properties, it has been proposed to coat the substrate made of the oxide ceramic with a hard carbon-containing film.

【0003】しかしながら、前記硬質炭素含有膜は高硬
度であり膜形成時に過大な内部応力を発生するため該膜
は基体への密着性が劣る。また、このように形成された
硬質炭素含有膜は、経時的に密着力が低下し剥離が生じ
る。そこで前記基体と前記硬質炭素含有膜との間に、該
酸化物セラミック基体に大きな接合強度を有し、かつ該
硬質炭素含有膜にも比較的密着性良好なシリコン(S
i)又はチタン(Ti)等の金属を含有する中間膜を形
成することが試みられている。
However, since the hard carbon-containing film has a high hardness and generates an excessive internal stress during the film formation, the film has a poor adhesion to the substrate. In addition, the hard carbon-containing film thus formed has a decrease in adhesiveness over time and peeling occurs. Therefore, silicon (S) which has a large bonding strength between the base and the hard carbon-containing film and has relatively good adhesion to the oxide ceramic base, and which has relatively good adhesion to the hard carbon-containing film.
It has been attempted to form an intermediate film containing i) or a metal such as titanium (Ti).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記中
間膜は常温常湿の環境下では化学的に安定であり、前記
基体及び前記硬質炭素含有膜との密着性が維持される
が、例えば高温高湿や水中等の環境下では該中間膜に含
有されるSi又はTi等の金属が酸化し易く、該中間膜
及び前記硬質炭素含有膜の剥離が生じ易いため、このよ
うな膜で被覆された酸化物セラミック基体は使用環境が
限定される。
However, the interlayer film is chemically stable in an environment of normal temperature and humidity, and the adhesion between the substrate and the hard carbon-containing film is maintained. In an environment such as wet or water, a metal such as Si or Ti contained in the intermediate film is easily oxidized, and the intermediate film and the hard carbon-containing film are easily peeled off. The use environment of the oxide ceramic substrate is limited.

【0005】そこで本発明は、硬質炭素含有膜で被覆さ
れた酸化物セラミック基体であって、該硬質炭素含有膜
が基体上に密着性良好に被覆され、常温常圧環境下は勿
論のこと高温高圧環境下や水中でも長期に亘り剥離し難
い硬質炭素含有膜で被覆された酸化物セラミック基体及
びその製造方法を提供することを課題とする。
Therefore, the present invention is an oxide ceramic substrate coated with a hard carbon-containing film, the hard carbon-containing film being coated on the substrate with good adhesion, and not only under a normal temperature and normal pressure environment but also at a high temperature. It is an object of the present invention to provide an oxide ceramic substrate coated with a hard carbon-containing film that is difficult to be peeled off for a long period of time even in a high-pressure environment or in water, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者は前記課題を解
決すべく研究を重ね、前記硬質炭素含有膜が窒化物セラ
ミック基体上には密着性良好に形成されることを見出し
た。前記知見に基づき本発明は、硬質炭素含有膜で被覆
された酸化物セラミック基体であって、該基体表面部分
に該部分材料の窒化物層を有し、その外側に硬質炭素含
有膜が被覆されていることを特徴とする基体、及びその
製造方法であって、酸化物セラミック基体に窒素イオン
を照射することにより、該基体表面部分に窒素イオンが
注入された層を形成し、その後、該イオン注入層の外側
に硬質炭素含有膜を形成することを特徴とする方法を提
供するものである。
Means for Solving the Problems The inventors of the present invention have conducted extensive research to solve the above problems and found that the hard carbon-containing film is formed on the nitride ceramic substrate with good adhesion. Based on the above findings, the present invention provides an oxide ceramic substrate coated with a hard carbon-containing film, which has a nitride layer of the partial material on the surface portion of the substrate, the outside of which is coated with the hard carbon-containing film. A substrate and a method for manufacturing the same, wherein a layer in which nitrogen ions are implanted is formed on a surface portion of the substrate by irradiating the oxide ceramic substrate with nitrogen ions, and thereafter, the ion A method of forming a hard carbon-containing film on the outside of an injection layer is provided.

【0007】前記酸化物セラミック基体の材質として
は、アルミナ(Al2 3 )、無水ケイ酸(Si
2 )、酸化ジルコニウム(ZrO2 )、酸化チタン
(TiO2 )、酸化亜鉛(ZnO)、チタン酸バリウム
(BaTiO3 )等及びこれらの組み合わせが挙げられ
る。前記窒素イオン照射において用いるイオン源の方式
は特に限定はなく、例えば高周波型、カウフマン型、バ
ケット型等のものが考えられる。
Materials for the oxide ceramic substrate include alumina (Al 2 O 3 ) and silicic anhydride (Si).
O 2 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), zinc oxide (ZnO), barium titanate (BaTiO 3 ), and the like, and combinations thereof. The method of the ion source used in the nitrogen ion irradiation is not particularly limited, and for example, a high frequency type, a Kauffman type, a bucket type and the like can be considered.

【0008】また、窒素イオンを生成させるための原料
ガスとしては窒素ガス(N2 )等が考えられる。前記窒
素イオン照射においてイオン加速エネルギは0.2ke
V〜20keV程度とするのが望ましく、0.2keV
より小さいと窒素イオンが基体内部に注入されず、20
keVより大きいと、基体に与えるダメージが大きくな
るので好ましくなく、また硬質炭素含有膜と基体との密
着力が逆に低下する。
Further, nitrogen gas (N 2 ) or the like can be considered as a source gas for generating nitrogen ions. In the nitrogen ion irradiation, the ion acceleration energy is 0.2 ke.
V to 20 keV is desirable, 0.2 keV
If it is smaller, nitrogen ions will not be implanted inside the substrate, and
If it is higher than keV, damage to the substrate increases, which is not preferable, and the adhesion between the hard carbon-containing film and the substrate decreases conversely.

【0009】また、窒素イオン照射量は1×1015io
ns/cm2 〜1×1017ions/cm2 程度とする
のが望ましく、照射量が1×1015ions/cm2
り小さいと窒素イオンを注入することによる効果が不十
分になり、1×1017ions/cm2 より大きいと基
体に与えるダメージが大きくなるので好ましくなく、ま
た硬質炭素含有膜と基体との密着力が逆に低下する。
The nitrogen ion irradiation dose is 1 × 10 15 io.
ns / cm 2 to 1 × 10 17 ions / cm 2 is preferable, and if the irradiation dose is smaller than 1 × 10 15 ions / cm 2, the effect of implanting nitrogen ions becomes insufficient and 1 × If it is higher than 10 17 ions / cm 2 , the damage to the substrate becomes large, which is not preferable, and the adhesive force between the hard carbon-containing film and the substrate is decreased.

【0010】前記窒素イオン照射において、基体に到達
する窒素イオンの数はイオン電流測定器、例えば2次電
子抑制電極を備えたファラデーカップでモニタできる。
なお、基体に対する窒素イオン入射角度は、目的とする
イオン注入層が得られる限り特に限定されない。前記硬
質炭素含有膜の形成方法としては、抵抗等により適当な
温度に加熱された基体表面で炭素元素を含む原料ガスを
熱分解し、該分解生成物により基体上に膜形成する熱C
VD法、電力印加により該原料ガスをプラズマ化し、該
プラズマの下で基体上に膜形成するプラズマCVD法等
が考えられる。
In the nitrogen ion irradiation, the number of nitrogen ions reaching the substrate can be monitored by an ion current measuring device, for example, a Faraday cup equipped with a secondary electron suppressing electrode.
The angle of incidence of nitrogen ions on the substrate is not particularly limited as long as the intended ion-implanted layer can be obtained. As the method for forming the hard carbon-containing film, the raw material gas containing carbon element is thermally decomposed on the surface of the substrate heated to an appropriate temperature due to resistance and the decomposition product is used to form a film on the substrate.
A VD method, a plasma CVD method in which the raw material gas is turned into plasma by applying electric power, and a film is formed on a substrate under the plasma can be considered.

【0011】前記硬質炭素含有膜を形成させるために熱
分解又はプラズマ化される原料ガスとしては、メタン
(CH4 )、アセチレン(C2 2 )、ベンゼン(C6
6 )等の炭化水素化合物を用いることができる。
As the raw material gas which is pyrolyzed or turned into plasma to form the hard carbon-containing film, methane (CH 4 ), acetylene (C 2 H 2 ), benzene (C 6
Hydrocarbon compounds such as H 6 ) can be used.

【0012】[0012]

【作用】本発明による硬質炭素含有膜被覆の基体はその
基体表面部分が窒化物層とされているので、該硬質炭素
含有膜は該窒化物層に密着性良く被覆されており、常温
常圧環境下は勿論のこと高温高圧環境下や水中でも従来
より長期に亘り剥離し難い。
The hard carbon-containing film-coated substrate according to the present invention has a nitride layer on the surface of the substrate. Therefore, the hard carbon-containing film is coated on the nitride layer with good adhesion, and at room temperature and normal pressure. Not only in the environment but also in a high-temperature and high-pressure environment or in water, it is difficult to peel for a longer period than before.

【0013】また、本発明方法によると、まず酸化物セ
ラミック基体に窒素イオンが照射されることで該基体表
面部分に窒素イオンが注入された層が形成され、その上
に硬質炭素含有膜が形成される。これにより形成される
本発明の基体によると、硬質炭素含有膜と酸化物セラミ
ック基体との密着性が良く、且つ、その良好な密着性が
その後も維持される。
According to the method of the present invention, first, the oxide ceramic substrate is irradiated with nitrogen ions to form a layer into which nitrogen ions have been implanted, and a hard carbon-containing film is formed thereon. To be done. According to the substrate of the present invention thus formed, the adhesion between the hard carbon-containing film and the oxide ceramic substrate is good, and the good adhesion is maintained thereafter.

【0014】本発明方法による基体において膜密着性が
良好でしかも経時的に変化、低下し難い理由は、酸化物
セラミック基体表面部分に注入された窒素イオンが加速
エネルギにより酸素原子と他の原子との結合を切断し、
該酸素原子が窒素原子に置換されて該基体表面部分が窒
化物セラミックに改質され、また、窒素イオン照射によ
り該基体表面に付着した汚染物が除去されて前記硬質炭
素含有膜形成面が清浄化されるからではないかと考えら
れる。
The reason why the film adherence is good in the substrate according to the method of the present invention and it is difficult to change and decrease with time is that the nitrogen ions injected into the surface portion of the oxide ceramic substrate have oxygen atoms and other atoms due to the acceleration energy. Break the bond of
The oxygen atoms are replaced by nitrogen atoms to modify the surface portion of the substrate into a nitride ceramic, and contaminants attached to the substrate surface are removed by nitrogen ion irradiation to clean the surface on which the hard carbon-containing film is formed. It is thought that it is because it will be converted.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明の1実施例の硬質炭素含有膜で被覆
された酸化物セラミック基体の断面図を示し、図2は図
1に示す基体の製造方法に用いる成膜装置の概略構成を
示したものである。図2に示す装置は真空容器1を備
え、その中に被成膜基体Sを設置する基体ホルダを兼ね
る電極2が設けられている。電極2は通常接地電極とさ
れているか或いは負電圧が印加されているが、ここでは
接地されている。またこの上に設置される基体Sを成膜
温度に加熱するヒータ21を付設してある。なお、輻射
熱で基体Sを加熱するときはヒータ21はホルダ2から
分離される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross-sectional view of an oxide ceramic substrate coated with a hard carbon-containing film according to one embodiment of the present invention, and FIG. 2 shows a schematic structure of a film forming apparatus used in the method for manufacturing the substrate shown in FIG. It is a thing. The apparatus shown in FIG. 2 is provided with a vacuum container 1 in which an electrode 2 which also serves as a substrate holder for mounting a film formation substrate S is provided. The electrode 2 is normally grounded or a negative voltage is applied, but it is grounded here. Further, a heater 21 for heating the substrate S placed thereon to a film forming temperature is additionally provided. The heater 21 is separated from the holder 2 when the substrate S is heated by radiant heat.

【0016】高周波アンテナ3は、電極2との間に導入
される成膜用ガスに高周波電力を印加してプラズマ化さ
せるための電力印加電極で、図示の例ではマッチングボ
ックス4を介して高周波電源5を接続してある。真空容
器1には、さらに排気装置6を配管接続してあるととも
に、成膜用原料ガスのガス供給部7を配管接続してあ
る。ガス供給部7には、1又は2以上のマスフローコン
トローラ711、712・・・・及び開閉弁721、7
22・・・・を介して接続された成膜用原料ガスのガス
源731、732・・・・が含まれる。
The high-frequency antenna 3 is a power-applying electrode for applying high-frequency power to the film-forming gas introduced between it and the electrode 2 to turn it into plasma. In the illustrated example, a high-frequency power source is supplied via a matching box 4. 5 are connected. To the vacuum container 1, an exhaust device 6 is further connected by piping, and a film supply source gas supply unit 7 for film formation is also connected by piping. The gas supply unit 7 includes one or more mass flow controllers 711, 712, ... And open / close valves 721, 7
.., which are connected via 22 ...

【0017】また、基体ホルダを兼ねる電極2に対向し
てイオン源8が設置され、電極2付近にはイオン電流測
定器9、ここではファラデーカップが配置されている。
このプラズマCVD装置によると、成膜対象基体Sが真
空容器1内の電極2上に設置され、該容器1内が排気装
置6の運転にて所定の真空度とされ、基体1に対してイ
オン源8から窒素イオン8aが照射される。窒素イオン
の照射エネルギは0.2keV〜20keV程度とする
のが望ましく、照射量は1×1015ions/cm2
1×1017ions/cm2 程度とするのが望ましい。
イオン照射量はイオン電流測定器9、ここではファラデ
ーカップによりモニタする。
An ion source 8 is installed so as to face the electrode 2 which also serves as a substrate holder, and an ion current measuring device 9, here a Faraday cup, is arranged near the electrode 2.
According to this plasma CVD apparatus, the substrate S to be film-formed is placed on the electrode 2 in the vacuum container 1, the inside of the container 1 is set to a predetermined vacuum degree by the operation of the exhaust device 6, and the substrate 1 is ionized. The source 8 emits nitrogen ions 8a. The irradiation energy of nitrogen ions is preferably about 0.2 keV to 20 keV, and the irradiation dose is 1 × 10 15 ions / cm 2 to
It is preferably about 1 × 10 17 ions / cm 2 .
The ion irradiation amount is monitored by an ion current measuring device 9, here, a Faraday cup.

【0018】次に真空容器1内にガス供給部7から炭素
元素を含有する成膜用ガスが導入される。また、高周波
アンテナ3にマッチングボックス4を介して電源5から
高周波電力が印加され、それによって導入されたガスが
プラズマ化され、このプラズマの下で基体Sの窒素イオ
ンが注入された表面上に硬質炭素含有膜が形成される。
Next, a film forming gas containing a carbon element is introduced into the vacuum container 1 from the gas supply unit 7. Further, high-frequency power is applied to the high-frequency antenna 3 from the power supply 5 through the matching box 4, the gas introduced thereby is turned into plasma, and under this plasma, the nitrogen ions of the substrate S are hardened on the surface of the substrate S. A carbon-containing film is formed.

【0019】以上述べた成膜操作により、図1に示すよ
うに、基体Sの表面部分に窒素イオンが注入された層S
1を有し、その外側が硬質炭素膜S2で被覆された基体
Sが形成される。本実施例で形成される硬質炭素含有膜
はダイヤモンドではないが、ダイヤモンド状の炭素含有
膜であり、高硬度、化学的安定性、電気絶縁性等を有す
る透明または半透明な膜である。
By the film-forming operation described above, as shown in FIG. 1, the layer S in which nitrogen ions are implanted into the surface portion of the substrate S.
1 is formed and the outside thereof is coated with the hard carbon film S2. The hard carbon-containing film formed in this example is not diamond, but is a diamond-like carbon-containing film, and is a transparent or semitransparent film having high hardness, chemical stability, electrical insulation and the like.

【0020】なお、ここでは窒素イオン照射及びプラズ
マによる成膜を同じ真空容器1内で行っているが、それ
ぞれ別の真空容器内で行ってもよい。次に図2に示す成
膜装置による本発明の基体の製造方法の具体例と、それ
によって得られる硬質炭素膜で被覆された酸化物セラミ
ック基体について説明する。
Although the nitrogen ion irradiation and the film formation by plasma are performed in the same vacuum container 1 here, they may be performed in different vacuum containers. Next, a specific example of the method for manufacturing a substrate of the present invention by the film forming apparatus shown in FIG. 2 and an oxide ceramic substrate coated with a hard carbon film obtained by the method will be described.

【0021】アルミナ(Al2 3 )からなる20mm
×20mm×厚さ2mmの基体Sを、中性の界面活性剤
及びアセトンでその表面を十分に洗浄した後、基体ホル
ダを兼ねる電極2上に設置した。
20 mm made of alumina (Al 2 O 3 )
A substrate S having a size of 20 mm and a thickness of 2 mm was thoroughly washed with a neutral surfactant and acetone, and then placed on the electrode 2 serving also as a substrate holder.

【0022】次いで容器1内を2×10-6Torrの真
空度とし、イオン源8に純度5N(99.999%)の
2 ガスを容器1内が5×10-5Torrになるまで導
入し、イオン化させ、該イオン8aを基体Sに向けて、
該基体Sに立てた法線に対し0°の角度で照射した。基
体Sは5個準備してこれを順次取り替え、イオン8aの
加速エネルギのみ0.2keV、1.0keV、5.0
keV、10.0keV、20.0keVと変化させ、
他の条件は同一としてイオン照射した。また、イオン照
射量は何れの場合も5×1015ions/cm2 とし
た。
Next, the inside of the container 1 is set to a vacuum degree of 2 × 10 -6 Torr, and N 2 gas having a purity of 5N (99.999%) is introduced into the ion source 8 until the inside of the container 1 becomes 5 × 10 -5 Torr. And ionize it, and direct the ions 8a toward the substrate S,
Irradiation was performed at an angle of 0 ° with respect to the normal line standing on the substrate S. Five substrates S were prepared and sequentially replaced, and only the acceleration energy of the ions 8a was 0.2 keV, 1.0 keV, 5.0.
keV, 10.0 keV, 20.0 keV,
Other conditions were the same, and ion irradiation was performed. The ion irradiation dose was 5 × 10 15 ions / cm 2 in all cases.

【0023】次いで、イオン照射した各基体Sにつき、
容器1内を5×10-6Torr以下のの真空度とし、ガ
ス供給部7よりCH4 を容器1内が1×10-3Torr
になるまで流量2sccmで導入し、それと同時に高周
波電源5により周波数13.56MHz、電力1kWの
高周波電力を印加し、生じたプラズマの下で窒素イオン
注入層S1を有する基体S上に硬質炭素膜S2を形成し
た。該膜S2の膜厚は500nmであった。また比較例
1として前記の窒素イオン照射を行わず、その他の条件
は前記実施例と同様にして基体S上に硬質炭素膜S2を
形成した。
Next, for each substrate S that has been subjected to ion irradiation,
The inside of the container 1 is set to a vacuum degree of 5 × 10 −6 Torr or less, and CH 4 is supplied from the gas supply unit 7 to the inside of the container 1 at 1 × 10 −3 Torr.
At a flow rate of 2 sccm, and at the same time, a high frequency power source 5 applies a high frequency power having a frequency of 13.56 MHz and a power of 1 kW to generate a hard carbon film S2 on the substrate S having the nitrogen ion implantation layer S1 under the generated plasma. Was formed. The film thickness of the film S2 was 500 nm. In Comparative Example 1, the nitrogen ion irradiation was not performed, and the hard carbon film S2 was formed on the substrate S under the same conditions as in Example 1 except for the above.

【0024】また比較例2として図4に示す成膜装置を
用いて、図3に示す基体sと硬質炭素膜s2との間にT
iからなる中間膜s1を有する基体sを形成した例につ
いて以下に説明する。図4に示す装置は、図2に示す装
置においてイオン源8に代えて蒸発源10を備え、イオ
ン電流電流測定器9に代えて膜厚モニタ11、ここでは
水晶振動子式膜厚モニタを備えたものであり、その他の
構成は図2に示す装置と同じである。
As Comparative Example 2, using the film-forming apparatus shown in FIG. 4, a T film was formed between the substrate s and the hard carbon film s2 shown in FIG.
An example of forming the substrate s having the intermediate film s1 made of i will be described below. The apparatus shown in FIG. 4 includes an evaporation source 10 in place of the ion source 8 in the apparatus shown in FIG. 2, a film thickness monitor 11 in place of the ion current / current measuring device 9, and a crystal oscillator type film thickness monitor here. The other configuration is the same as that of the device shown in FIG.

【0025】アルミナ(Al2 3 )からなる20mm
×20mm×厚さ2mmの基体sを、中性の界面活性剤
及びアセトンでその表面を十分に洗浄した後、電極2上
に設置した。次いで容器1内を5×10-6Torrの真
空度とし、純度4N(99.99%)のTiペレット1
0aを電子ビーム(EB)により蒸着物質を加熱して蒸
発させる蒸発源10を用いて基体s上に蒸着させ、基体
s上に膜厚50nmのTi中間膜s1を形成した。
20 mm made of alumina (Al 2 O 3 )
A substrate s having a size of 20 mm and a thickness of 2 mm was sufficiently washed on its surface with a neutral surfactant and acetone, and then placed on the electrode 2. Next, the inside of the container 1 was evacuated to a vacuum degree of 5 × 10 −6 Torr, and Ti pellets 1 having a purity of 4N (99.99%)
0a was vapor-deposited on the substrate s by using the evaporation source 10 which heats and vaporizes the vapor deposition material by the electron beam (EB), and the Ti intermediate film s1 having a film thickness of 50 nm was formed on the substrate s.

【0026】さらに、その上に前記実施例と同様の条件
で膜厚500nmの硬質炭素膜s2を形成した。次に、
前記実施例、比較例1及び比較例2による基体について
硬質炭素膜と基体との密着性を評価する実験を以下のよ
うに行った。成膜後の基体を80℃の温水中で24時間
保持し、硬質炭素膜表面の状態を肉眼で観察し、また、
該温水処理前後の膜密着力をスクラッチ試験法により硬
質炭素膜が剥離する荷重(スクラッチ荷重)を測定する
ことで評価した。
Further, a hard carbon film s2 having a film thickness of 500 nm was formed thereon under the same conditions as in the above embodiment. next,
An experiment for evaluating the adhesion between the hard carbon film and the substrate was conducted on the substrates according to the above-mentioned Examples, Comparative Examples 1 and 2, as follows. The substrate after film formation is kept in warm water at 80 ° C. for 24 hours, and the state of the surface of the hard carbon film is visually observed.
The film adhesion before and after the hot water treatment was evaluated by measuring the load (scratch load) at which the hard carbon film peels off by the scratch test method.

【0027】結果を表1及び表2に示す。The results are shown in Tables 1 and 2.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】表1に示すように、実施例による基体では
80℃の温水中で24時間保持した後も肉眼で観察され
る硬質炭素膜の剥離は生じなかったのに対し、比較例1
による基体及び比較例2による基体では剥離が生じた。
なお表1には示さないが、窒素イオン照射と硬質炭素膜
形成とを別の真空容器内で行い形成した基体では、実施
例による基体と同様に剥離は生じなかった。
As shown in Table 1, in the substrate according to the example, no peeling of the hard carbon film observed with the naked eye was observed even after the substrate was kept in warm water at 80 ° C. for 24 hours, whereas in Comparative example 1
Peeling occurred on the substrate according to Example 1 and the substrate according to Comparative Example 2.
Although not shown in Table 1, peeling did not occur in the substrate formed by performing the nitrogen ion irradiation and the hard carbon film formation in different vacuum containers, as in the case of the substrate according to the example.

【0031】また、表2に示すようにスクラッチ試験に
よると、実施例による基体Sでは何れのイオン加速エネ
ルギの場合も温水処理前には荷重120gでも膜S2の
剥離が生じず、温水処理後は加速エネルギ0.2keV
では荷重80gで膜S2の剥離が生じたものの、加速エ
ネルギ5.0keV以上では荷重120gでも剥離は生
じなかった。これに対し比較例1では温水処理前にも荷
重60gで剥離が生じ、温水処理後は荷重20gで剥離
が生じた。また比較例2では温水処理前には荷重120
gでも膜s2の剥離は生じなかったが、温水処理後には
荷重60gで剥離が生じた。
Further, as shown in Table 2, according to the scratch test, no peeling of the film S2 occurs even with a load of 120 g before the hot water treatment in any of the ion acceleration energies of the substrate S according to the example, and after the hot water treatment. Acceleration energy 0.2 keV
Although the film S2 peeled off at a load of 80 g, the peeling did not occur at a load of 120 g at an acceleration energy of 5.0 keV or more. On the other hand, in Comparative Example 1, peeling occurred with a load of 60 g even before the hot water treatment, and peeling occurred with a load of 20 g after the hot water treatment. Further, in Comparative Example 2, a load of 120 is applied before the hot water treatment.
Although the peeling of the film s2 did not occur even with g, the peeling occurred with a load of 60 g after the hot water treatment.

【0032】なお表2には示さないが、窒素イオン照射
と硬質炭素膜形成とをそれぞれ別の真空容器内で行い形
成した基体でも、前記実施例による基体と全く同様の結
果が得られた。以上の結果から、酸化物セラミック基体
Sの表面部分に窒素イオンが注入された層S1を形成し
ておくことにより、密着性良好な硬質炭素膜S2が形成
され、該膜S2は高温の水中の環境下に保持しても剥離
が生じず、その密着力が維持されることが分かる。これ
に対して、窒素イオン注入層S1を形成せずに基体S上
に硬質炭素膜S2を形成する場合には、膜密着力は弱
く、該密着力は温水処理によりさらに低下し、また基体
sと硬質炭素膜s2との間にTi中間膜s1を形成して
おくときには、膜形成後の密着力は良好であるが、温水
処理により該密着力が低下することが分かる。
Although not shown in Table 2, a substrate formed by performing nitrogen ion irradiation and forming a hard carbon film in different vacuum chambers also gave the same results as the substrate according to the above-mentioned embodiment. From the above results, by forming the layer S1 in which nitrogen ions are implanted on the surface portion of the oxide ceramic substrate S, the hard carbon film S2 having good adhesion is formed, and the film S2 is formed in high temperature water. It can be seen that peeling does not occur even when kept in the environment, and the adhesive force is maintained. On the other hand, when the hard carbon film S2 is formed on the substrate S without forming the nitrogen ion-implanted layer S1, the film adhesion is weak and the adhesion is further reduced by the hot water treatment. It is understood that when the Ti intermediate film s1 is formed between the hard carbon film s2 and the hard carbon film s2, the adhesive force after the film formation is good, but the adhesive force is reduced by the hot water treatment.

【0033】[0033]

【発明の効果】本発明によると、硬質炭素含有膜で被覆
された酸化物セラミック基体であって、該硬質炭素含有
膜が基体上に密着性良好に被覆され、常温常圧環境下は
勿論のこと高温高圧環境下や水中でも長期に亘り剥離し
難い硬質炭素含有膜で被覆された酸化物セラミック基体
及びその製造方法を提供することができる。
According to the present invention, there is provided an oxide ceramic substrate coated with a hard carbon-containing film, the hard carbon-containing film being coated on the substrate with good adhesion, not to mention under normal temperature and normal pressure environment. It is possible to provide an oxide ceramic substrate coated with a hard carbon-containing film that is unlikely to be peeled off in a high temperature and high pressure environment or in water for a long period of time, and a method for producing the same.

【0034】また、前記窒素イオン照射においてイオン
加速エネルギを0.2keV〜20keV程度に制御す
るときには、膜密着力がより適切なものとなる。
Further, when the ion acceleration energy is controlled to about 0.2 keV to 20 keV in the nitrogen ion irradiation, the film adhesion becomes more appropriate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例基体の一部の拡大断面図であ
る。
FIG. 1 is an enlarged cross-sectional view of a part of a substrate according to an embodiment of the present invention.

【図2】図1に示す基体の製造に用いる成膜装置の1例
の概略構成を示す図である。
FIG. 2 is a diagram showing a schematic configuration of an example of a film forming apparatus used for manufacturing the substrate shown in FIG.

【図3】従来の硬質炭素含有膜で被覆された酸化物セラ
ミック基体の1例の一部の拡大断面図である。
FIG. 3 is a partial enlarged cross-sectional view of an example of an oxide ceramic substrate coated with a conventional hard carbon-containing film.

【図4】図3に示す基体の製造に用いる成膜装置の1例
の概略構成を示す図である。
FIG. 4 is a diagram showing a schematic configuration of an example of a film forming apparatus used for manufacturing the base body shown in FIG.

【符号の説明】[Explanation of symbols]

1 真空容器 2 基体ホルダ兼接地電極 21 ヒータ 3 高周波アンテナ 4 マッチングボックス 5 高周波電源 6 排気装置 7 ガス供給部 8 イオン源 8a 窒素イオン 9 イオン電流測定器 10 蒸発源 10a 蒸着物質 11 膜厚モニタ S、s 基体 S1 窒素イオン注入層 S2、s2 硬質炭素含有膜 s1 中間膜 DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Substrate holder and ground electrode 21 Heater 3 High frequency antenna 4 Matching box 5 High frequency power supply 6 Exhaust device 7 Gas supply section 8 Ion source 8a Nitrogen ion 9 Ion current measuring instrument 10 Evaporation source 10a Evaporation substance 11 Film thickness monitor S, s Substrate S1 Nitrogen ion implantation layer S2, s2 Hard carbon-containing film s1 Intermediate film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 硬質炭素含有膜で被覆された酸化物セラ
ミック基体であって、該基体表面部分に該基体表面部分
材料の窒化物層を有し、その外側に硬質炭素含有膜が被
覆されていることを特徴とする硬質炭素含有膜で被覆さ
れた酸化物セラッミック基体。
1. An oxide ceramic substrate coated with a hard carbon-containing film, wherein the substrate surface portion has a nitride layer of the substrate surface portion material, the outside of which is coated with the hard carbon-containing film. An oxide ceramic substrate coated with a hard carbon-containing film.
【請求項2】 酸化物セラミック基体に窒素イオンを照
射することにより、該基体表面部分に窒素イオンが注入
された層を形成し、その後、該イオン注入層の外側に硬
質炭素含有膜を形成することを特徴とする硬質炭素含有
膜で被覆された酸化物セラッミック基体の製造方法。
2. An oxide ceramic substrate is irradiated with nitrogen ions to form a layer into which nitrogen ions have been implanted on the surface of the substrate, and then a hard carbon-containing film is formed outside the ion-implanted layer. A method for producing an oxide ceramic substrate coated with a hard carbon-containing film, comprising:
【請求項3】 前記窒素イオン照射において、イオン加
速エネルギを0.2keV〜20keVに制御する請求
項2記載の硬質炭素含有膜で被覆された酸化物セラッミ
ック基体の製造方法。
3. The method for producing an oxide ceramic substrate coated with a hard carbon-containing film according to claim 2, wherein the ion acceleration energy is controlled to 0.2 keV to 20 keV in the nitrogen ion irradiation.
JP5327932A 1993-12-24 1993-12-24 Oxide ceramic substrate coated with hard carbon-containing film and its production Withdrawn JPH07187862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5327932A JPH07187862A (en) 1993-12-24 1993-12-24 Oxide ceramic substrate coated with hard carbon-containing film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5327932A JPH07187862A (en) 1993-12-24 1993-12-24 Oxide ceramic substrate coated with hard carbon-containing film and its production

Publications (1)

Publication Number Publication Date
JPH07187862A true JPH07187862A (en) 1995-07-25

Family

ID=18204623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5327932A Withdrawn JPH07187862A (en) 1993-12-24 1993-12-24 Oxide ceramic substrate coated with hard carbon-containing film and its production

Country Status (1)

Country Link
JP (1) JPH07187862A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136386A (en) * 1996-06-27 2000-10-24 Nissin Electric Co., Ltd. Method of coating polymer or glass objects with carbon films
WO2000068167A1 (en) * 1999-05-11 2000-11-16 Greenleaf Corporation Ceramic substrate treatment method and improved thin film magnetic recording head
US6893720B1 (en) 1997-06-27 2005-05-17 Nissin Electric Co., Ltd. Object coated with carbon film and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136386A (en) * 1996-06-27 2000-10-24 Nissin Electric Co., Ltd. Method of coating polymer or glass objects with carbon films
US6893720B1 (en) 1997-06-27 2005-05-17 Nissin Electric Co., Ltd. Object coated with carbon film and method of manufacturing the same
WO2000068167A1 (en) * 1999-05-11 2000-11-16 Greenleaf Corporation Ceramic substrate treatment method and improved thin film magnetic recording head

Similar Documents

Publication Publication Date Title
Peng et al. Surface roughness of diamond-like carbon films prepared using various techniques
WO2018113053A1 (en) Structural member with diamond-like array, and preparation method therefor
US6503373B2 (en) Method of applying a coating by physical vapor deposition
JPH11512885A (en) Capacitive thin films using diamond-like nanocomposite materials
JPH09279331A (en) Surface treatment of medical and sanitary implement and device therefor
JPH07187862A (en) Oxide ceramic substrate coated with hard carbon-containing film and its production
Ueda et al. Experimental and theoretical determination of the role of ions in atomic layer annealing
WO2014103318A1 (en) Method for forming protective film using plasma cvd method
JPH01129958A (en) Formation of titanium nitride film having high adhesive strength
JPH02138469A (en) Material for vacuum having diamond surface, surface treatment of this material for vacuum production, of diamond film surface, vacuum vessel and its parts formed by using material for vacuum, in-vacuum driving mechanism, electron release source, in-vacuum heater and vessel of vapor deposition source
Cattaruzza et al. On the synthesis and thermal stability of RuN, an uncommon nitride
JPH10249986A (en) Transparent gas barrier film
JP2001192206A (en) Method for manufacturing amorphous carbon-coated member
JPH0119467B2 (en)
JP4590118B2 (en) Photocatalytic device
KR100719805B1 (en) Method of depositing capacitor electrode adding transition metal
WO2006116776A2 (en) Chemical vapor deposition system and method
JPH059725A (en) Method for coating hard carbon film
JP4421180B2 (en) Surface treatment method and vacuum containers
Zhabrev et al. The effect of thermal treatment on the structure of tantalum oxide films grown on titanium
JPH0874032A (en) Hard carbon film coated member and its production
JP3985041B2 (en) Method for producing transparent conductive film
JPS591791B2 (en) Metal carbide film coating method
Legg Surface engineering with ion-assisted coatings
JP2003123559A (en) Forming method and its device for transparent conductive film, transparent conductive film and electronic paper

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306