JPS591791B2 - Metal carbide film coating method - Google Patents

Metal carbide film coating method

Info

Publication number
JPS591791B2
JPS591791B2 JP17899180A JP17899180A JPS591791B2 JP S591791 B2 JPS591791 B2 JP S591791B2 JP 17899180 A JP17899180 A JP 17899180A JP 17899180 A JP17899180 A JP 17899180A JP S591791 B2 JPS591791 B2 JP S591791B2
Authority
JP
Japan
Prior art keywords
substrate
coating
temperature
metal
limit temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17899180A
Other languages
Japanese (ja)
Other versions
JPS57104661A (en
Inventor
勝夫 福富
正和 藤塚
雅年 岡田
平太郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP17899180A priority Critical patent/JPS591791B2/en
Publication of JPS57104661A publication Critical patent/JPS57104661A/en
Publication of JPS591791B2 publication Critical patent/JPS591791B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は金属炭化物膜を高融点金属基板上に被覆する方
法に関し、更に詳しくは高周波グロー放電を用いる物理
蒸着法により金属炭化物膜を高融点金属基板上に被覆す
る方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for coating a metal carbide film on a high melting point metal substrate, and more specifically, a method for coating a metal carbide film on a high melting point metal substrate by a physical vapor deposition method using high frequency glow discharge. Regarding improvements.

従来、溶融金属に接する金属材料の耐食性、および工具
などの耐摩耗性を付与するために、バナジウムカーバイ
ド、チタンカーバイドなどのセラミック膜を化学蒸着法
、物理蒸着法によつて被覆することが行われている。し
かしながら、従来法で得られた被膜は高融点金属基板(
以下単に基板と略記する)との密着性が悪く、特に膜が
10μm以上の厚膜になると、膜が剥れ易くなる欠点が
あつた。
Conventionally, in order to provide corrosion resistance to metal materials in contact with molten metal and wear resistance to tools, etc., ceramic films such as vanadium carbide and titanium carbide have been coated using chemical vapor deposition or physical vapor deposition. ing. However, coatings obtained by conventional methods cannot be applied to high melting point metal substrates (
The adhesion to the substrate (hereinafter simply referred to as the substrate) is poor, and the film tends to peel off, especially when the film is thicker than 10 μm.

近年トカマク型核融合炉の不純物対策として、プラズマ
に面する第一壁コンポーネントに、チタンカーバイドな
どの軽元素化合物膜の被覆が注目されている。この場合
にも核融合炉の周期運転に伴う熱サイクル下で十分に密
着保持された強固な比較的厚い被膜が要求される。本発
明は従来法における欠点を解消し、厚膜の被膜において
も、強固な密着性を有し、剥離し難い金属炭化物膜を基
板に被覆する方法を提供するにある。
In recent years, coating the first wall component facing the plasma with a light element compound film such as titanium carbide has attracted attention as a countermeasure against impurities in tokamak-type fusion reactors. In this case as well, a strong and relatively thick coating is required that can maintain sufficient adhesion under the thermal cycles associated with the periodic operation of the fusion reactor. The present invention overcomes the drawbacks of conventional methods and provides a method for coating a substrate with a metal carbide film that has strong adhesion and is difficult to peel off even in thick films.

本発明は従来法における被覆開始時から、基板の温度を
一定の蒸着温度に保持していたのに代え、被覆開始時に
基板の温度を40〜200℃/分の一定昇温速度で常温
から熱分解反応の上限温度まで上昇させるか、あるいは
被覆開始時に熱分解反応の上限温度とその下限温度とで
熱サイクルさせながら被覆させ、その後基板の温度を熱
分解反応の上限温度に保持して被覆を完了させることに
よつてその目的を達成し得た。
Instead of maintaining the substrate temperature at a constant evaporation temperature from the start of coating in the conventional method, the present invention increases the temperature of the substrate from room temperature at a constant heating rate of 40 to 200°C/minute at the start of coating. Either the temperature of the substrate is raised to the upper limit temperature of the decomposition reaction, or the coating is performed while thermally cycling between the upper limit temperature of the pyrolysis reaction and its lower limit temperature at the start of coating, and then the temperature of the substrate is maintained at the upper limit temperature of the pyrolysis reaction and the coating is applied. By completing the project, the objective was achieved.

本発明の方法をイオンブレーティング法に基づいて説明
する。
The method of the present invention will be explained based on the ion blating method.

イオンブレーティング装置に基板金属を直接通電あるい
は外部加熱方法により、予め設定した昇温プログラムに
従つて温度制御が可能なプログラム温度制御装置を設け
る。Ti、V等の金属を電子ビーム衝撃により溶融蒸発
させる。他方アセチレンなどの炭化水素ガスを全圧力が
10−1〜10−2Torrで安定なグロー放電が起る
圧力までリークバルブより装置内に導入する。高周波′
々ワーを投入して金属蒸気と炭化水素ガスとの混合気体
のグロー放電を開始させる。ついで、基板直下に設けた
シヤツタ一を開けると同時に、予め設定したプログラム
による基板の温度制御を開始する。基板の温度制御は、
次のいずれかの方法で行う。
The ion blating device is provided with a program temperature control device that can control the temperature according to a preset temperature increase program by directly applying electricity to the substrate metal or by using an external heating method. Metals such as Ti and V are melted and vaporized by electron beam bombardment. On the other hand, a hydrocarbon gas such as acetylene is introduced into the apparatus through a leak valve until the total pressure is 10 -1 to 10 -2 Torr and a stable glow discharge occurs. high frequency'
A glow discharge of a gas mixture of metal vapor and hydrocarbon gas is started. Then, at the same time as opening the shutter provided directly below the board, temperature control of the board is started according to a preset program. The temperature control of the board is
Do it in one of the following ways:

1)炭化水素ガスのグロー放電中での熱分解反応が顕著
に進行する温度、例えばアセチレンガスでは800〜1
000℃を上限温度として室温から40〜20『C/分
の一定昇温速度で上限温度まで加熱した後、被覆を完了
するまで、上限温度に保持する。
1) Temperature at which the thermal decomposition reaction of hydrocarbon gas significantly progresses during glow discharge, for example, 800-1 for acetylene gas.
After heating from room temperature to the upper limit temperature at a constant heating rate of 40 to 20[deg.]C/min, the upper limit temperature is maintained at 000[deg.] C. until the coating is completed.

昇温速度を40〜200゜C/分と限定したのは以下の
事由による。即ち20〜30μmの金属炭化物被覆を行
なう場合、本発明による界面制御層厚みは、膜厚の1A
0〜%であることを要する。%o以下の薄層では密着性
改善の効果が減少し、%以上の厚みをもたせると炭化物
層本来の硬度、耐食性などの特性が劣る。一方、通常の
蒸着条件では、20〜30μmの化学量論組成比を有す
る炭化物膜を作製するのに60〜100分程度の処理時
間を要する。従つて前述の界面層を確保するためには被
覆初期5〜20分界面制御操作を行なう必要がある。従
つて、アセチレンガスのグロー放電下での熱分解が80
0〜1000℃で顕著に進行するので、昇温速度は40
〜200゜C/分であることが適当である。
The reason why the temperature increase rate was limited to 40 to 200°C/min is as follows. That is, when coating a metal carbide with a thickness of 20 to 30 μm, the thickness of the interface control layer according to the present invention is 1A of the film thickness.
It needs to be 0% to %. If the layer is thinner than %o, the effect of improving adhesion will be reduced, and if it is thicker than %o, the inherent properties of the carbide layer, such as hardness and corrosion resistance, will be inferior. On the other hand, under normal vapor deposition conditions, it takes about 60 to 100 minutes to produce a carbide film having a stoichiometric composition of 20 to 30 μm. Therefore, in order to secure the above-mentioned interface layer, it is necessary to carry out an interface control operation for 5 to 20 minutes at the initial stage of coating. Therefore, the thermal decomposition of acetylene gas under glow discharge is 80%
It progresses significantly between 0 and 1000℃, so the temperature increase rate is 40℃.
~200°C/min is suitable.

2)炭化水素ガスの分解が未だ顕著に進行しない低い温
度を下限温度とし、上限温度と下限温度との熱サイタル
を基板に付加した後、被覆が完了するまで、上限温度に
保持する。
2) The lower limit temperature is set to a low temperature at which hydrocarbon gas decomposition does not significantly proceed, and after applying a thermal cycle between the upper limit temperature and the lower limit temperature to the substrate, the upper limit temperature is maintained until the coating is completed.

前記の昇温速度における同様の理由から、被覆初期の5
〜20分間基板加熱サ4クルを施す。
For the same reason in the heating rate mentioned above, the initial 5
Apply a substrate heating cycle for ~20 minutes.

アセチレンガスを使用する場合で説明すると、下限温度
500℃と熱分解の顕著に進行する上限温度800℃で
温度差300℃である。これを40〜200℃/分の加
熱、冷却速度で昇温、冷却を繰返す。従つて、1〜7回
の加熱サイクルを行つた後、例えば800℃に保持する
。前記のようにして、炭化水素ガスの低圧グロー放電中
での解離、基板上での熱分解反応が基板温度に顕著に依
存することを利用して、被膜一基板の界面近傍の被膜の
組成を制御し、密着性の優れた金属炭化物膜が得られる
。この被覆中、基板に200V以上の負のバイアス電位
を付与すると、更に密着性を向上し得られる。基板金属
と金属炭化物の金属との組合せ関係は、金属炭化物の金
属が基板金属と全率固溶体を形成するか、数%以上の固
溶限を有する金属または基板金属と相互拡散により密着
を阻害する金属間化合物を形成しない金属であれば良好
に被覆することができる。
In the case of using acetylene gas, there is a temperature difference of 300°C between the lower limit temperature of 500°C and the upper limit temperature of 800°C at which thermal decomposition significantly proceeds. This is repeatedly heated and cooled at a heating and cooling rate of 40 to 200°C/min. Therefore, after 1 to 7 heating cycles, the temperature is maintained at, for example, 800°C. As mentioned above, the composition of the film near the interface between the film and the substrate can be determined by taking advantage of the fact that the dissociation of hydrocarbon gas during low-pressure glow discharge and the thermal decomposition reaction on the substrate depend significantly on the substrate temperature. A metal carbide film with excellent adhesion can be obtained. During this coating, if a negative bias potential of 200 V or more is applied to the substrate, the adhesion can be further improved. The combination relationship between the substrate metal and the metal carbide is such that the metal of the metal carbide forms a total solid solution with the substrate metal, or the metal having a solid solubility limit of several percent or more or the substrate metal inhibits adhesion due to interdiffusion. Any metal that does not form an intermetallic compound can be coated well.

具体的には、Ti,V,Nb,MO,Ta,Wのいずれ
かの金属の炭化物を被覆として、それ以外のいずれかの
金属を基板にした組合せに於て、本発明の効果が認めら
れる。
Specifically, the effects of the present invention are recognized in combinations in which a carbide of any of the metals Ti, V, Nb, MO, Ta, and W is used as a coating and any other metal is used as a substrate. .

前記方法はイオンプレーテイング法で説明したが、スパ
ツタリング法などの高周波グロー放電を用いる物理蒸着
法においても同様に被覆し得られる。
Although the above method has been explained using an ion plating method, the coating can be similarly obtained by a physical vapor deposition method using high frequency glow discharge such as a sputtering method.

また炭化水素としてはアセチレンの外、蒸着温度で分解
する他の炭化水素も同様に使用し得られる。本発明の方
法によると、高温下に曝された後の被覆材料の被膜断面
を組織学的に検査したところ、基板界面に沿つて金属炭
化物が喫状に析出し、且つまたは炭化物の金属元素が基
板金属中に拡散しており、これにより優れた密着性を持
つていることが判つた。
In addition to acetylene, other hydrocarbons that decompose at the deposition temperature can also be used as the hydrocarbon. According to the method of the present invention, a histological examination of a cross section of the coating material after exposure to high temperatures reveals that metal carbides are precipitated in a shape along the substrate interface, and/or metallic elements of the carbides are present. It was found that it was diffused into the substrate metal, resulting in excellent adhesion.

これに対し、従来法によるときは、被膜と基板との間に
前述の現象は認められず剥離し易いものであつた。
On the other hand, when using the conventional method, the above-mentioned phenomenon was not observed between the coating and the substrate, and the coating was likely to peel off.

実施例 1 モリブデン基板上へのTiC被覆 モリブデン基板表面をエメリ一研磨し、アセトンで洗浄
した後、イオンプレーテイング装置内の基板加熱装置に
とりつけた。
Example 1 TiC Coating on Molybdenum Substrate The surface of the molybdenum substrate was polished with emery and washed with acetone, and then attached to a substrate heating device in an ion plating device.

イオンプレーテイング装置内を充分排気し、超高純度ア
ルゴンガスを約10−2T0rrまで入へ基板下方に設
けた高周波コイルを介して電力約200W投入してグロ
ー放電を誘起さた。一方基板に約−0.6KVのバイア
ス電圧を印加し、イオン化したアルゴンを基板表面に衝
撃じ、スパツタ一により表面を清浄にした。その後、T
iを電子銃により溶融し、約0.15r/分の蒸発速度
でTi蒸気を発生させた。アセチレンガスを2×10−
3T0rrのガス分圧まで装置内に導入し、高周波電力
100Wを投入してTi蒸気とアセチレンガスとの混合
気体中にグロー放電を生ぜしめた。そして、基板の加熱
を次の方法で行い被覆した。1)シヤツタ一を開けると
同時に、温度制御装置により基板を4『C/分で昇温を
開始し、800゜Cに達した時この温度に全被覆時間が
70分になるまで保持し、被覆を完了させた。
The inside of the ion plating apparatus was sufficiently evacuated, ultra-high purity argon gas was introduced to about 10@-2 T0rr, and about 200 W of power was applied via a high frequency coil provided below the substrate to induce glow discharge. On the other hand, a bias voltage of about -0.6 KV was applied to the substrate, ionized argon was bombarded onto the substrate surface, and the surface was cleaned by sputtering. After that, T
Ti was melted using an electron gun to generate Ti vapor at an evaporation rate of about 0.15 r/min. Acetylene gas 2×10−
A gas partial pressure of 3T0rr was introduced into the apparatus, and a high frequency power of 100W was applied to generate a glow discharge in the mixed gas of Ti vapor and acetylene gas. Then, the substrate was heated and coated using the following method. 1) At the same time as opening the shutter, the temperature control device starts heating up the substrate at a rate of 4°C/min, and when it reaches 800°C, maintain this temperature until the total coating time is 70 minutes, and then completed.

被膜の厚さは20〜30μmであつた。2)比較のため
に初めから基板を800′Cに保持して被覆を同様に完
了させた。
The thickness of the coating was 20-30 μm. 2) For comparison, the coating was similarly completed with the substrate held at 800'C from the beginning.

この両者について試験を行つた結果は次の通りであつた
The results of testing on both of these were as follows.

1)従来法により得られたものは、顕微鏡観察のための
通常の樹脂埋込み、研磨作業中に膜が著しく損傷し、剥
離が生じた。
1) In the case of the film obtained by the conventional method, the film was significantly damaged and peeled off during the usual resin embedding and polishing operations for microscopic observation.

これに対し、本発明の方法により得られたものは、前記
の場合、剥離などの損傷は全く認められなかつた。2)
10『C/秒の赤外線急速加熱で、60『Cと115
0℃の繰返し加熱を100回行つたところ、従来法によ
り得られたものは被膜にクラツクが生じたが、本発明の
方法により得られたものは何等の損傷も受けなかつた。
On the other hand, in the case described above, no damage such as peeling was observed in the product obtained by the method of the present invention. 2)
10'C/sec infrared rapid heating, 60'C and 115
When repeated heating at 0° C. was performed 100 times, cracks occurred in the film obtained by the conventional method, but those obtained by the method of the present invention did not suffer any damage.

3)被覆材を1800℃まで高真空中で加熱した後の被
覆層断面の金属組織学的検査の結果、本発明の方法によ
り得られたものは、基材との界面に沿つてやや基板側に
TiCが楔状に析出し、かつTiがMO基板側に拡散す
る傾向が認められ、高密着性被膜の様相を呈しているこ
とが分つた。
3) As a result of metallographic examination of the cross section of the coating layer after heating the coating material to 1800°C in a high vacuum, it was found that the coating layer obtained by the method of the present invention has a layer slightly closer to the substrate side along the interface with the base material. It was found that TiC precipitated in a wedge shape and that Ti tended to diffuse toward the MO substrate, giving the appearance of a highly adhesive film.

実施例 2 モリブデン基板上へのVC被覆 実施例1と同様にしてモリブデン基板を清浄にした後、
パナジウムを電子銃により約0.15t/分の割合で蒸
発させた。
Example 2 VC coating on molybdenum substrate After cleaning the molybdenum substrate in the same manner as in Example 1,
Panadium was evaporated by an electron gun at a rate of about 0.15 t/min.

アセチレンガスを5×10−3T0rrまで装置内に導
入し、高周波パワーを130W投入してグロー放電を開
始させた。シヤツタ一を開けると同時に基板温度制御装
置を働かせ、7『C/分の昇温速度で昇温を開始し、9
00℃または1000℃まで昇温後、その温度に一定保
持した。被覆時間70分で20μmのVC被膜が得られ
た。得られた被覆材を100′C/秒の赤外線急速加熱
で600℃と115『Cの繰返し加熱を100回行つた
ところ、被膜にはわずかにクラツクは生ずるが基板から
剥落することはなかつた。
Acetylene gas was introduced into the apparatus up to 5×10 −3 T0rr, and a high frequency power of 130 W was applied to start glow discharge. At the same time as the shutter is opened, the substrate temperature control device is activated and the temperature is started to rise at a rate of 7 C/min.
After raising the temperature to 00°C or 1000°C, the temperature was kept constant. A 20 μm VC coating was obtained with a coating time of 70 minutes. When the resulting coating material was repeatedly heated 100 times at 600 DEG C. and 115 DEG C. using rapid infrared heating at 100 DEG C/sec, the coating did not peel off from the substrate, although slight cracks occurred.

従来法で同様に被覆したものは前記試験において、著し
くクラツクが生じ、クラツクに沿つて被膜の剥落した箇
所が多く認められた。
In the test described above, when the coating was similarly coated using the conventional method, significant cracks were observed, and there were many places along the cracks where the coating had peeled off.

実施例 3 モリブデン基板上へのTiCの被覆 基板温度制御の方法以外は実施例1と同様にして行つた
Example 3 A coating of TiC on a molybdenum substrate was carried out in the same manner as in Example 1 except for the method of controlling the temperature of the substrate.

基板温度制御は500℃と800℃との間を80℃/分
でサイクル加熱を30分行つた後、基板温度を800℃
に保持し、被覆時間80分で膜厚約20μMOTiC膜
を得た。被覆材の試験を行つたところ、実施例1におけ
る場合とほぼ同一の良好な被膜であることが確認された
。実施例 4タングステン基板上へのTiC被覆 実施例1と同様にタングステン基板を清浄にした後、電
子銃によりTi蒸気を約0.15t/分の蒸発速度で発
生させた。
The substrate temperature was controlled by cycle heating between 500°C and 800°C at 80°C/min for 30 minutes, and then increasing the substrate temperature to 800°C.
With a coating time of 80 minutes, a MOTiC film with a thickness of about 20 μm was obtained. When the coating material was tested, it was confirmed that it was a good coating almost the same as in Example 1. Example 4 TiC coating on tungsten substrate After cleaning the tungsten substrate in the same manner as in Example 1, Ti vapor was generated with an electron gun at an evaporation rate of about 0.15 t/min.

Claims (1)

【特許請求の範囲】[Claims] 1 イオンプレーティング法、スパッタリング法等の高
周波グロー放電を用いる物理蒸着法で、金属蒸気と炭化
水素ガスの熱分解反応により金属炭化物膜を高融点金属
基板上に被覆する方法において、被覆開始時に、基板温
度を40〜200℃/分の一定昇温速度で常温から熱分
解反応の上限温度まで上昇させるか、あるいは被覆開始
時に熱分解反応の上限温度とその下限温度とで熱サイク
ルさせながら被覆させ、その後基板の温度を熱分解反応
の上限温度に保持して被覆を終了させることを特徴とす
る金属炭化物膜の被覆法。
1 In a method of coating a metal carbide film on a high-melting point metal substrate by a thermal decomposition reaction of metal vapor and hydrocarbon gas using a physical vapor deposition method using high-frequency glow discharge such as an ion plating method or a sputtering method, at the start of coating, The substrate temperature is raised from room temperature to the upper limit temperature of the thermal decomposition reaction at a constant heating rate of 40 to 200 °C/min, or the substrate is coated while being thermally cycled between the upper limit temperature and the lower limit temperature of the thermal decomposition reaction at the start of coating. . A method for coating a metal carbide film, characterized in that the temperature of the substrate is then maintained at the upper limit temperature of a thermal decomposition reaction to terminate the coating.
JP17899180A 1980-12-19 1980-12-19 Metal carbide film coating method Expired JPS591791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17899180A JPS591791B2 (en) 1980-12-19 1980-12-19 Metal carbide film coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17899180A JPS591791B2 (en) 1980-12-19 1980-12-19 Metal carbide film coating method

Publications (2)

Publication Number Publication Date
JPS57104661A JPS57104661A (en) 1982-06-29
JPS591791B2 true JPS591791B2 (en) 1984-01-13

Family

ID=16058198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17899180A Expired JPS591791B2 (en) 1980-12-19 1980-12-19 Metal carbide film coating method

Country Status (1)

Country Link
JP (1) JPS591791B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245348Y2 (en) * 1986-04-26 1990-11-30

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2818318B2 (en) * 1991-04-23 1998-10-30 松下電工株式会社 Method of forming conductive film on ceramic circuit board
JP2761118B2 (en) * 1991-04-23 1998-06-04 松下電工株式会社 Method of forming conductive film on ceramic circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245348Y2 (en) * 1986-04-26 1990-11-30

Also Published As

Publication number Publication date
JPS57104661A (en) 1982-06-29

Similar Documents

Publication Publication Date Title
SE453403B (en) ALSTER COVERED WITH HIGH QUALITY MATERIAL, PROCEDURE FOR ITS MANUFACTURING AND USE OF THE ALSTRET
US5505808A (en) Method to produce an inorganic wear layer
US4414085A (en) Method of depositing a high-emissivity layer
JPS61153272A (en) Surface treatment of nylon filled with mineral
US4256780A (en) Metallization process
EP0010971B1 (en) Deposition process
US7279078B2 (en) Thin-film coating for wheel rims
JPS591791B2 (en) Metal carbide film coating method
US7820018B2 (en) Process and apparatus for applying optical coatings
CA1334155C (en) Process for restoring locally damaged parts, particularly anticathodes
Fukutomi et al. Effect of substrate temperature control during deposition on the adherence of ion-plated titanium carbide and vanadium carbide films on molybdenum
JPS60224778A (en) Ceramic coated hard parts
JPH046790B2 (en)
JPH029104B2 (en)
Shikama et al. Erosion behaviour of physically vapour-deposited and chemically vapour-deposited SiC films coated on molybdenum during oxygenated argon beam thinning
JPH0331469A (en) Coated tool steel and production thereof
JPH04276062A (en) Arc deposition device
JPS5849634B2 (en) Method for producing heat-resistant silicide film with composite vapor deposition of aluminum oxide
JPS59162272A (en) Titanium carbide coated material having superior thermal stability at high temperature
KR100298599B1 (en) Titanium Compound Coating
KR950004779B1 (en) Hard blacking film with an excellant adhesion and method for making the same
JPH06116711A (en) Formation of alumina film
JP2646979B2 (en) Method for forming alumina film on glass substrate
JPS6331549B2 (en)
JPH0674497B2 (en) Ceramic hard film coating method