JP4421180B2 - Surface treatment method and vacuum containers - Google Patents

Surface treatment method and vacuum containers Download PDF

Info

Publication number
JP4421180B2
JP4421180B2 JP2002284396A JP2002284396A JP4421180B2 JP 4421180 B2 JP4421180 B2 JP 4421180B2 JP 2002284396 A JP2002284396 A JP 2002284396A JP 2002284396 A JP2002284396 A JP 2002284396A JP 4421180 B2 JP4421180 B2 JP 4421180B2
Authority
JP
Japan
Prior art keywords
vacuum
film
surface treatment
treatment method
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002284396A
Other languages
Japanese (ja)
Other versions
JP2004115899A (en
Inventor
さかえ 稲吉
透 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002284396A priority Critical patent/JP4421180B2/en
Publication of JP2004115899A publication Critical patent/JP2004115899A/en
Application granted granted Critical
Publication of JP4421180B2 publication Critical patent/JP4421180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、真空装置の真空容器等の真空容器類の表面にガス放出の少ない均質な膜を堆積させる表面処理方法及び真空容器類に関するものである。
【0002】
【従来の技術】
従来、真空容器の排気において、容器の圧力降下速度を速くする目的として、真空容器内壁の表面からガスの放出速度を少なくするために窒化チタンやシリコン(特許文献1参照)を成膜することが行われていた。これら膜の成膜においては、原料にチタン、シリコン等の固体を用いるいことが多かった。また、電子産業でアモルファスシリコンを成膜するためにシラン等の気体を原料にした平行平板のCVDが行われている。
【0003】
【特許文献1】
特開平11−286772号公報(特許請求の範囲)
【0004】
【発明が解決しようとする課題】
しかしながら、ガス放出を少なくするためには、真空容器の全面をガス放出の少ない膜で被覆しなければならないが、一般的に真空容器の形状は複雑であり、固体を原料にする前者の方法では、ガス放出の少ない均質な膜を全面に成膜することは技術的に困難であった。また、シラン等の気体を原料にした平行平板のCVDによる後者の方法では、3次元構造物の真空容器内壁に成膜することはできないという問題点があった。
この発明は上記のような従来技術の問題点を解決するもので、真空装置の真空容器内壁の表面全面にガス放出の少ない均質な膜を成膜する表面処理方法及び真空容器類を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明の表面処理方法は、前記目的を達成するべく、請求項1記載の通り、窒素及び酸素のうち少なくとも1種類の元素と、水素と、炭素とが含まれたシリコン化合物を原料とし、この原料を10-3〜10-5Paの圧力に減圧された処理容器に気体状態で導入し、該原料によるプラズマを生成することにより、酸素及び窒素の少なくとも1種類の元素と、シリコンと、水素と、炭素とが含まれたガス放出の少ない均質な膜を、前記処理容器内壁の全面に堆積させることを特徴とする。
また、請求項2記載の表面処理方法は、請求項1記載の表面処理方法において、前記シリコン化合物を2種類以上とすることを特徴とする。
また、請求項3記載の表面処理方法は、請求項1または2の何れかに記載の表面処理方法において、前記容器内にヘリウム、アルゴンガス等の不活性ガスを導入させてクリーニング処理をしてから、前記膜の堆積を行うことを特徴とする。
また、請求項4記載の表面処理方法は、請求項1乃至3の何れかに記載の表面処理方法において、前記堆積された膜を、大気中で、或いは、真空中で100〜500℃の温度で加熱することを特徴とする。
また、本発明の真空容器類は、請求項5記載の通り、請求項1乃至4の何れかに記載の方法により表面処理されたことを特徴とする。
【0006】
【発明の実施の形態】
本発明の表面処理方法に用いる原料である、水素と炭素と、窒素、酸素のうち少なくとも1種類の元素が含まれたシリコン化合物としては、テトラメチルジシロキサン、ヘキサメチルジシロキサン等のシロキサン、テトラメトキシシラン、テトラエトキシシラン等のアルコキシシラン、ヘプタメチルジシラザン、ヘキサメチルジシラザン等のシラザが挙げられる。これら原料シリコン化合物は、1種類のみ用いても、2種以上を用いるようにしてもよい。
即ち、シリコン−酸素−炭素、シリコン−窒素−炭素、或いは、シリコン−酸素−窒素−炭素の複合膜を成膜できれば、いかなるシリコン化合物でも使用できる。
【0007】
前記処理容器内は、10-3〜10-5Pa程度の圧力に減圧し、この減圧された処理容器に前記原料を気体状態で導入し、該原料によるプラズマを生成することにより、シリコン、水素と炭素及び酸素、窒素の少なくとも1種類の元素が含まれた膜を、処理容器内壁の表面に堆積させるわけであるが、この処理容器自体を被処理真空容器類として表面処理を行うものである。
【0008】
前記処理容器内に、ヘリウム、アルゴンガス等の不活性ガスを導入させてクリーニング処理を行ってから、前記膜の堆積を行うようにすれば、より、良好な成膜を行うことができる。
【0009】
前記処理容器内の温度は、室温〜500℃程度に設定して、前記膜の堆積を行うようにすればよい。これは、ポラースでない緻密な膜を形成できるからである。
【0010】
また、前記堆積された膜を、大気中、或いは、100〜500℃の温度で加熱することで、膜中に取り込まれた余分な気体や表面に吸着した余分な水分を除去することができるので、このような加熱処理を行うことが好ましい。
【0011】
前記表面処理方法の対象となる真空容器類は、真空装置の真空容器等が含まれ、前記表面処理方法に使用される処理容器自体を対象とするものである。
【0012】
【実施例】
以下、本発明の実施例を参考例と共に図面に基づいて説明する。
図1は成膜を行うための(真空)処理容器の中に、表面処理を行う真空容器を入れて表面処理を実施した参考例である。
図1において、1は表面にシリコン化合物の成膜をされる被処理真空容器、2は電流導入端子、3は直流電源、4は原料のシリコン化合物、5はマスフローコントローラー、6は圧力計、7は成膜を行うための処理容器、8は可変コンダクタンスバルブである。
【0013】
本参考例では、表面にシリコン化合物の成膜をされる被処理真空容器1として、ステンレス鋼で作製し内面を電解研磨処理したものを用いた。この被処理真空容器1を(真空)処理容器7に入れ、(真空)処理容器7を10-4Pa程度に排気した。
【0014】
本参考例では原料シリコン化合物4として、ヘキサメチルジシロキサンを用い、この原料ヘキサメチルジシロキサン4をマスフローコントローラー5を通して、(真空)処理容器7内に導入し、バルブ8を用いて圧力計6の圧力が10Paになるように調整しながら、直流電源3に1kVの電圧を印加しグロー放電によりプラズマを発生させ、被処理真空容器1の全面にシリコン−酸素−炭素の複合膜を成膜した。
【0015】
成膜されたシリコン−酸素−炭素の複合膜の膜厚は場所により異なり、0.05μm〜0.4μm程度の厚みに成膜されていた。また、オージェ電子分光法により分析した水素以外の膜組成は、Siが約50at%、Cが約40at%、Oが約10at%であった。
【0016】
次に、参考例でシリコン−酸素−炭素の複合膜を成膜した真空容器の排気特性を図2に示す。図2は、相対湿度50%の大気に1時間曝露した後、排気開始からの真空容器の圧力変化である。
同図(A)に本発明の参考例のシリコン−酸素−炭素の複合膜を成膜した真空容器、同図(B)に比較のためにシリコン−酸素−炭素の複合膜が成膜される前の真空容器、同図(C)にTiNを成膜した真空容器及び同図(D)にマグネトロンスパッタ法でSiを成膜した真空容器の各測定値をプロットしたものを示した。
図2より、本発明の参考例のシリコン−酸素−炭素の複合膜が成膜された真空容器は、成膜する前の電解研磨されたステンレス鋼容器に比べ圧力降下速度が約10倍に大きくなっていることが明らかとなった。また、TiN成膜によっても電解研磨したステンレス鋼に比べて若干圧力降下速度が増大するが、そのTiN成膜に比べても、本発明のシリコン−酸素−炭素の複合膜の効果が大きいことは明らかである。また、マグネトロンスパッタ法と比較すると圧力降下速度は同等であるが、本発明は気化させた化合物を原料としているため固体を原料とするスパッタ法よりも複雑形状に容易に成膜できる点において優れている。
【0017】
本参考例では、原料に気化したヘキサメチルジシロキサンを用いたが、窒素を含有するヘキサメチルジシラザンでも同様の特性が得られた。このとき成膜したSi−C−N膜の水素以外の組成は、Siが約50at%、Cが約40at%、Nが約10at%であった。
【0018】
また、本参考例では直流電流を用いたが、交流電流を用いてもよい。
【0019】
このように、本参考例では、ステンレス鋼の表面をシリコン−酸素−炭素の複合膜に置き換えることで室温での水の脱離速度を速くすることができる。
【0020】
図1に示すものでは成膜されるものは真空容器であったが、真空容器の中に入れる部品を真空容器の代わりに(真空)処理容器内に収容するようにしてもよい。
【0021】
図3は、図1の方法で被処理真空容器1の内壁に成膜されやすいように補助電極を用いたものである。
図3において、1は表面にシリコン化合物の成膜をされる真空容器、2は電流導入端子、3は直流電源、4は原料のシリコン化合物、5はマスフローコントローラー、6は圧力計、7は成膜を行うための容器、8は可変コンダクタンスバルブである。
【0022】
図4は、図1の成膜されるものをアース電位にした場合の参考例である。
図4において、1は表面にシリコン化合物の成膜をされる真空容器、2は電流導入端子、3は直流電源、4は原料のシリコン化合物、5はマスフローコントローラー、6は圧力計、7は成膜を行うための容器、8は可変コンダクタンスバルブである。
【0023】
図5は、成膜される被処理真空容器自身を成膜中の(真空)処理容器にした場合の実施例である。
図5において、1は表面にシリコン化合物の成膜をされる真空容器、2は電流導入端子、3は直流電源、4は原料のシリコン化合物、5はマスフローコントローラー、6は圧力計、7は成膜を行うための容器、8は可変コンダクタンスバルブである。
【0024】
図6は、成膜される被処理真空容器自身を成膜中の(真空)処理容器にした場合の他の実施例を示すもので、1は表面にシリコン化合物が成膜される真空容器、2は電流導入端子、3は直流電源、4は原料のシリコン化合物、5はマスフローコントローラー、6は圧力計、7は成膜を行うための容器、8は可変コンダクタンスバルブ、9は絶縁体、10は保護カバーである。
【0025】
図1、図3乃至図6の各実施例並びに参考例において、いずれの場合も、Ar等の不活性ガスを導入するガスラインを設けて、Si−C成膜と同様な方法でAr等の不活性ガスによるプラズマを生成させることでSi−C膜の成膜前に表面のクリーニングを行うことができる。
【0026】
【発明の効果】
以上説明した通り、本発明によれば、水素と炭素と、窒素、酸素のうち少なくとも1種類の元素が含まれた気体状のシリコン化合物を放電させることで分解し、シリコン−酸素−炭素、シリコン−窒素−炭素、或いは、シリコン−酸素−窒素−炭素の複合膜を成膜するので、真空容器の表面の全面にガス放出の少ない均質な膜を形成することができ、真空排気の際に目的とする真空状態に到達するまでの排気時間を短縮することができる。かくして、ガス放出の少ない均質な膜を備えた真空容器類が得られる。
これを詳述すれば、カーボンやシリコンやゲルマニウムなどのIV属の材料は水の初期付着確率が低く、また、シリコンやゲルマニウムの材料は大気中の水及び酸素により自然に酸化されて表面が安定な酸化物、或いは、水酸化物になる。こうしてできた酸化物や水酸化物は不活性であり通常真空容器の材料として用いられるステンレス鋼やアルミニウム合金などよりも水が吸着しにくいという性質がある。また、これらの性質は、膜中に水素、酸素、窒素などの非金属元素が含まれていても変化しない。被膜として、Si−C−O、Si−C−Nを用いた場合でもこれらの表面は自然に酸化されて、これらの酸化被膜が形成されることになる。かかる酸化物からなる被膜で覆われた容器の内壁には水が吸着しにくくなるので真空排気の際に容器内の水が排出されやすくなり目的とする真空状態に到達するまでの排気時間を短縮することができる。
【図面の簡単な説明】
【図1】 表面処理方法の一参考例を実施するための処理装置の説明線図
【図2】 表面処理方法の参考例で処理された真空容器の排気特性を比較例と共に示した特性線図
【図3】 表面処理方法の他参考例を実施するための処理装置の説明線図
【図4】 表面処理方法の更なる他参考例を実施するための処理装置の説明線図
【図5】 本発明の表面処理方法の実施例を実施するための処理装置の説明線図
【図6】 本発明の表面処理方法の他実施例を実施するための処理装置の説明線図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface treatment method and vacuum containers for depositing a homogeneous film with little gas emission on the surface of vacuum containers such as a vacuum container of a vacuum apparatus.
[0002]
[Prior art]
Conventionally, in evacuation of a vacuum vessel, in order to increase the pressure drop rate of the vessel, titanium nitride or silicon (see Patent Document 1) is formed to reduce the gas release rate from the surface of the inner wall of the vacuum vessel. It was done. In forming these films, it is often desirable to use a solid such as titanium or silicon as a raw material. In addition, parallel plate CVD using a gas such as silane as a raw material is performed in the electronics industry to form amorphous silicon.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-286772 (Claims)
[0004]
[Problems to be solved by the invention]
However, in order to reduce outgassing, the entire surface of the vacuum vessel must be covered with a film with low outgassing. However, the shape of the vacuum vessel is generally complicated, and the former method using a solid as a raw material is difficult. Therefore, it has been technically difficult to form a homogeneous film with little outgassing on the entire surface. Further, the latter method using parallel plate CVD using a gas such as silane as a raw material has a problem in that a film cannot be formed on the inner wall of a vacuum vessel of a three-dimensional structure.
The present invention solves the problems of the prior art as described above, and provides a surface treatment method and vacuum vessels for forming a homogeneous film with little gas release on the entire surface of the inner wall of the vacuum vessel of a vacuum apparatus. It is an object.
[0005]
[Means for Solving the Problems]
In order to achieve the object, the surface treatment method of the present invention uses, as a raw material, a silicon compound containing at least one element of nitrogen and oxygen, hydrogen, and carbon , as described in claim 1 , A raw material is introduced into a processing vessel depressurized to a pressure of 10 −3 to 10 −5 Pa in a gas state, and plasma is generated from the raw material, thereby at least one element of oxygen and nitrogen, silicon, and hydrogen And a homogeneous film containing less carbon and less outgassing is deposited on the entire inner surface of the processing vessel.
The surface processing method according to claim 2, wherein, in the surface treatment method of claim 1, characterized by the silicon compound and two or more kinds.
The surface processing method according to claim 3, wherein, in the surface treatment method according to claim 1 or 2, in said container helium, by introducing an inert gas such as argon gas to the cleaning process Then, the film is deposited.
The surface treatment method according to claim 4 is the surface treatment method according to any one of claims 1 to 3 , wherein the deposited film is heated to a temperature of 100 to 500 ° C in the atmosphere or in a vacuum. It is characterized by heating with.
Moreover, the vacuum containers of the present invention are characterized in that, as described in claim 5, surface treatment is performed by the method according to any one of claims 1 to 4.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Examples of a silicon compound containing at least one element among hydrogen, carbon, nitrogen, and oxygen, which are raw materials used in the surface treatment method of the present invention, include siloxanes such as tetramethyldisiloxane and hexamethyldisiloxane, tetra Examples include alkoxysilanes such as methoxysilane and tetraethoxysilane, and silazanes such as heptamethyldisilazane and hexamethyldisilazane. These raw material silicon compounds may be used alone or in combination of two or more.
That is, any silicon compound can be used as long as a silicon-oxygen-carbon, silicon-nitrogen-carbon, or silicon-oxygen-nitrogen-carbon composite film can be formed.
[0007]
The inside of the processing vessel is depressurized to a pressure of about 10 −3 to 10 −5 Pa, the raw material is introduced into the reduced pressure processing vessel in a gaseous state, and plasma is generated from the raw material, thereby generating silicon, hydrogen, And a film containing at least one element of carbon, oxygen, and nitrogen is deposited on the surface of the inner wall of the processing vessel, and the surface treatment is performed using the processing vessel itself as a vacuum vessel to be processed. .
[0008]
If the film is deposited after introducing an inert gas such as helium or argon gas into the processing container and performing the cleaning process, better film formation can be performed.
[0009]
The temperature in the processing vessel may be set to room temperature to about 500 ° C. to deposit the film. This is because a dense film that is not porous can be formed.
[0010]
Further, by heating the deposited film in the atmosphere or at a temperature of 100 to 500 ° C., excess gas taken in the film and excess moisture adsorbed on the surface can be removed. It is preferable to perform such heat treatment.
[0011]
The vacuum containers to be subjected to the surface treatment method include a vacuum container of a vacuum apparatus and the like, and are intended for the treatment container itself used in the surface treatment method.
[0012]
【Example】
Embodiments of the present invention will be described below together with reference examples based on the drawings.
FIG. 1 shows a reference example in which a surface treatment is performed by placing a vacuum vessel for surface treatment in a (vacuum) treatment vessel for film formation.
In FIG. 1, 1 is a vacuum container to be processed on which a silicon compound is formed, 2 is a current introduction terminal, 3 is a DC power source, 4 is a raw material silicon compound, 5 is a mass flow controller, 6 is a pressure gauge, 7 Is a processing container for forming a film, and 8 is a variable conductance valve.
[0013]
In this reference example , a vacuum vessel 1 to be processed on which a silicon compound film was formed was made of stainless steel and the inner surface was electropolished. Put this treated vacuum container 1 (vacuum) treatment chamber 7 was evacuated (vacuum) treatment chamber 7 to about 10 -4 Pa.
[0014]
In this reference example , hexamethyldisiloxane is used as the raw material silicon compound 4, and this raw material hexamethyldisiloxane 4 is introduced into the (vacuum) processing vessel 7 through the mass flow controller 5, and the pressure gauge 6 is While adjusting the pressure to 10 Pa, a voltage of 1 kV was applied to the DC power source 3 to generate plasma by glow discharge, and a silicon-oxygen-carbon composite film was formed on the entire surface of the vacuum chamber 1 to be processed.
[0015]
The film thickness of the silicon-oxygen-carbon composite film formed was different depending on the location, and was formed to a thickness of about 0.05 μm to 0.4 μm. The film composition other than hydrogen analyzed by Auger electron spectroscopy was about 50 at% for Si, about 40 at% for C, and about 10 at% for O.
[0016]
Next, FIG. 2 shows the exhaust characteristics of a vacuum vessel in which a silicon-oxygen-carbon composite film is formed as a reference example . FIG. 2 shows the pressure change in the vacuum vessel from the start of exhaustion after exposure to an atmosphere with a relative humidity of 50% for 1 hour.
FIG. 6A shows a vacuum vessel in which a silicon-oxygen-carbon composite film of a reference example of the present invention is formed, and FIG. 5B shows a silicon-oxygen-carbon composite film for comparison. The measured values of the previous vacuum container, the vacuum container in which TiN was formed in the same figure (C), and the vacuum container in which Si was formed by the magnetron sputtering method are plotted in the same figure (D).
From FIG. 2, the vacuum vessel in which the silicon-oxygen-carbon composite film of the reference example of the present invention was formed has a pressure drop rate about 10 times larger than the electrolytically polished stainless steel vessel before film formation. It became clear that The TiN film formation also increases the pressure drop rate slightly compared to the electropolished stainless steel, but the effect of the silicon-oxygen-carbon composite film of the present invention is greater than that of the TiN film formation. it is obvious. In addition, the pressure drop rate is equivalent to that of the magnetron sputtering method, but the present invention is superior in that it can be easily formed into a complicated shape compared to the sputtering method using a solid material as a raw material because the present invention uses a vaporized compound as a raw material. Yes.
[0017]
In this reference example , vaporized hexamethyldisiloxane was used as the raw material, but similar characteristics were obtained with hexamethyldisilazane containing nitrogen. The composition other than hydrogen of the Si—C—N film formed at this time was about 50 at% Si, about 40 at% C, and about 10 at% N.
[0018]
Further, although a direct current is used in this reference example , an alternating current may be used.
[0019]
Thus, in this reference example , the desorption rate of water at room temperature can be increased by replacing the surface of stainless steel with a silicon-oxygen-carbon composite film.
[0020]
In the case shown in FIG. 1, the film to be formed is a vacuum container. However, a part to be placed in the vacuum container may be accommodated in a (vacuum) processing container instead of the vacuum container.
[0021]
FIG. 3 shows an example in which an auxiliary electrode is used so that a film can be easily formed on the inner wall of the vacuum chamber 1 to be processed by the method shown in FIG.
In FIG. 3, 1 is a vacuum vessel in which a silicon compound film is formed on the surface, 2 is a current introduction terminal, 3 is a DC power source, 4 is a raw material silicon compound, 5 is a mass flow controller, 6 is a pressure gauge, and 7 is a component. A container for carrying out the membrane, 8 is a variable conductance valve.
[0022]
FIG. 4 is a reference example in the case where the film formation of FIG.
In FIG. 4, 1 is a vacuum vessel in which a silicon compound film is formed on the surface, 2 is a current introduction terminal, 3 is a DC power source, 4 is a raw material silicon compound, 5 is a mass flow controller, 6 is a pressure gauge, and 7 is a component. A container for carrying out the membrane, 8 is a variable conductance valve.
[0023]
FIG. 5 shows an embodiment in which the vacuum container to be processed itself is a (vacuum) processing container during film formation.
In FIG. 5, 1 is a vacuum container in which a silicon compound film is formed on the surface, 2 is a current introduction terminal, 3 is a DC power source, 4 is a raw material silicon compound, 5 is a mass flow controller, 6 is a pressure gauge, and 7 is a component. A container for carrying out the membrane, 8 is a variable conductance valve.
[0024]
FIG. 6 shows another embodiment in which the vacuum container to be processed itself is a (vacuum) processing container during film formation. 1 is a vacuum container in which a silicon compound is formed on the surface, 2 is a current introduction terminal, 3 is a DC power source, 4 is a raw material silicon compound, 5 is a mass flow controller, 6 is a pressure gauge, 7 is a container for film formation, 8 is a variable conductance valve, 9 is an insulator, 10 Is a protective cover.
[0025]
In each of the examples and reference examples of FIGS. 1 and 3 to 6, in any case, a gas line for introducing an inert gas such as Ar is provided, and Ar or the like is formed in the same manner as in the Si—C film formation. By generating plasma with an inert gas, the surface can be cleaned before the formation of the Si—C film.
[0026]
【The invention's effect】
As described above, according to the present invention, the silicon-oxygen-carbon, silicon is decomposed by discharging a gaseous silicon compound containing at least one element of hydrogen, carbon, nitrogen, and oxygen. - nitrogen - carbon, or silicon - oxygen - nitrogen - so forming a composite film of carbon, it is possible to form a less homogeneous film with the entire surface outgassing of the vacuum vessel surface, object during evacuation It is possible to shorten the exhaust time until the vacuum state is reached. Thus, vacuum containers having a homogeneous film with little outgassing can be obtained.
To elaborate, Group IV materials such as carbon, silicon, and germanium have a low initial sticking probability of water, and silicon and germanium materials are naturally oxidized by water and oxygen in the atmosphere to stabilize the surface. Oxide or hydroxide. The oxides and hydroxides thus formed are inert and have the property that water is less likely to adsorb than stainless steel and aluminum alloys that are usually used as materials for vacuum containers. These properties do not change even if the film contains non-metallic elements such as hydrogen, oxygen, and nitrogen. Even when Si—C—O or Si—C—N is used as the coating, these surfaces are naturally oxidized to form these oxide coatings. The inner wall of the container covered with such an oxide film is less likely to adsorb water, so that the water in the container is easily discharged during vacuum evacuation, shortening the exhaust time until the target vacuum state is reached. can do.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a processing apparatus for carrying out a reference example of a surface treatment method . FIG. 2 is a characteristic diagram showing an exhaust characteristic of a vacuum vessel treated in a reference example of a surface treatment method together with a comparative example. FIG. 3 is an explanatory diagram of a processing apparatus for carrying out another reference example of the surface treatment method . FIG. 4 is an explanatory diagram of a processing apparatus for carrying out yet another reference example of the surface treatment method . description diagram of the processing apparatus for carrying out another embodiment of the surface treatment method of the description diagram of a processing apparatus for performing an embodiment of a surface treatment method [6] the present invention of the present invention

Claims (5)

窒素及び酸素のうち少なくとも1種類の元素と、水素と、炭素とが含まれたシリコン化合物を原料とし、この原料を10-3〜10-5Paの圧力に減圧された処理容器に気体状態で導入し、該原料によるプラズマを生成することにより、酸素及び窒素の少なくとも1種類の元素と、シリコンと、水素と、炭素とが含まれたガス放出の少ない均質な膜を、前記処理容器内壁の全面に堆積させることを特徴とする表面処理方法。A silicon compound containing at least one element of nitrogen and oxygen, hydrogen, and carbon is used as a raw material, and the raw material is put in a gas state in a processing vessel depressurized to a pressure of 10 −3 to 10 −5 Pa. By introducing and generating plasma from the raw material, a homogeneous film containing at least one element of oxygen and nitrogen, silicon, hydrogen, and carbon and having a low gas emission is formed on the inner wall of the processing vessel . A surface treatment method characterized by depositing on the entire surface. 前記シリコン化合物を2種類以上とすることを特徴とする請求項1記載の表面処理法。The surface treatment method according to claim 1, wherein two or more types of silicon compounds are used. 前記処理容器内にヘリウム、アルゴンガス等の不活性ガスを導入させてクリーニング処理をしてから、前記膜の堆積を行うことを特徴とする請求項1または2の何れかに記載の表面処理方法。 3. The surface treatment method according to claim 1 , wherein the film is deposited after introducing an inert gas such as helium or argon gas into the processing container and performing a cleaning process. 4. . 前記堆積された膜を、大気中で、或いは、真空中で100〜500℃の温度で加熱することを特徴とする請求項1乃至3の何れかに記載の表面処理方法。The surface treatment method according to claim 1, wherein the deposited film is heated at a temperature of 100 to 500 ° C. in the atmosphere or in a vacuum. 請求項1乃至4の何れかに記載の方法により表面処理されたことを特徴とする真空容器類。Vacuum containers characterized in that they are surface-treated by the method according to any one of claims 1 to 4 .
JP2002284396A 2002-09-27 2002-09-27 Surface treatment method and vacuum containers Expired - Lifetime JP4421180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284396A JP4421180B2 (en) 2002-09-27 2002-09-27 Surface treatment method and vacuum containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284396A JP4421180B2 (en) 2002-09-27 2002-09-27 Surface treatment method and vacuum containers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009186540A Division JP4437161B2 (en) 2009-08-11 2009-08-11 Surface treatment method and vacuum containers

Publications (2)

Publication Number Publication Date
JP2004115899A JP2004115899A (en) 2004-04-15
JP4421180B2 true JP4421180B2 (en) 2010-02-24

Family

ID=32277974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284396A Expired - Lifetime JP4421180B2 (en) 2002-09-27 2002-09-27 Surface treatment method and vacuum containers

Country Status (1)

Country Link
JP (1) JP4421180B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101171A1 (en) * 2005-03-24 2006-09-28 Ulvac, Inc. Production method for vacuum component, resin coating forming device and vacuum film forming system
JP4720266B2 (en) 2005-04-08 2011-07-13 東京エレクトロン株式会社 Film forming method, film forming apparatus, and computer program
JP5359642B2 (en) 2009-07-22 2013-12-04 東京エレクトロン株式会社 Deposition method

Also Published As

Publication number Publication date
JP2004115899A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US7070833B2 (en) Method for chemical vapor deposition of silicon on to substrates for use in corrosive and vacuum environments
JPH0578844A (en) Amorphous thin film having solid lubricity and its production thereof
JPH0338339B2 (en)
US9157146B2 (en) Method for depositing silicon carbide film
EP1169489B1 (en) Method for increasing the yield in processes of deposition of thin layers onto a substrate
TW201704519A (en) Heat generation element and method for producing same
JP4421180B2 (en) Surface treatment method and vacuum containers
JP5795427B1 (en) Manufacturing method of resin container with coating and resin container coating apparatus
JP4437161B2 (en) Surface treatment method and vacuum containers
JP4312357B2 (en) Method for nitriding metal aluminum-containing substrate
JPS62103379A (en) Manufacture of vacuum chamber in cvd apparatus and dry etching apparatus
JPS588640B2 (en) speaker
JP2004269951A (en) Coated member with resistant film to halogen gas, and manufacturing method therefor
JP2011122196A (en) Window glass for vehicle and method of manufacturing the same
KR100719805B1 (en) Method of depositing capacitor electrode adding transition metal
Shen et al. Synthesis of aluminum nitride films by plasma immersion ion implantation–deposition using hybrid gas–metal cathodic arc gun
JP4312356B2 (en) Method and apparatus for nitriding metal aluminum-containing substrate
Obata et al. TiC coatings deposited onto carbon and molybdenum surfaces by electron beam evaporation
JPH09263931A (en) Vacuum treatment and vacuum treating device
JP6797068B2 (en) Method for manufacturing titanium carbide-containing thin film by atomic layer deposition method
JPH07292459A (en) Production of laminated body
JP3388837B2 (en) Plasma CVD equipment
CN116096937A (en) Fluoride coating to improve chamber performance
JP2004010992A (en) Method of producing layered product
JPH0723531B2 (en) Surface treatment method for aluminum material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090908

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090908

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4421180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151211

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term