JPH07187798A - Production of silicon nitride-based sintered compact - Google Patents

Production of silicon nitride-based sintered compact

Info

Publication number
JPH07187798A
JPH07187798A JP5330788A JP33078893A JPH07187798A JP H07187798 A JPH07187798 A JP H07187798A JP 5330788 A JP5330788 A JP 5330788A JP 33078893 A JP33078893 A JP 33078893A JP H07187798 A JPH07187798 A JP H07187798A
Authority
JP
Japan
Prior art keywords
silicon nitride
silicon
nitriding
weight
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5330788A
Other languages
Japanese (ja)
Inventor
Sentarou Yamamoto
泉太郎 山元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5330788A priority Critical patent/JPH07187798A/en
Publication of JPH07187798A publication Critical patent/JPH07187798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a silicon nitride-based sintered compact low in deterioration of strength from a room temperature to a high temperature, especially to 1500 deg.C and having excellent mechanical strength. CONSTITUTION:A formed body having 50-65% relative density and having a composition composed of 30-80wt.% of silicon nitride, 19.5-69.5wt.% of silicon and 0.5-20wt.% of one or more kinds of oxides of group IIIa elements in the Periodic Table is subjected to nitriding treatment by carrying out heat treatment in a nitrogen-containing atmosphere so that the content of beta-silicon nitride in total silicon nitride may become <=10wt.%, and then, this nitride is baked in a non-oxidizing atmosphere containing nitrogen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、室温から高温までの強
度特性に優れ、特に自動車用部品やガスタービンエンジ
ン用部品等に使用される窒化珪素質焼結体の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride sintered body which is excellent in strength characteristics from room temperature to high temperature and is particularly used for automobile parts, gas turbine engine parts and the like.

【0002】[0002]

【従来技術】従来から、窒化珪素質焼結体は、耐熱性、
耐熱衝撃性、および耐酸化特性に優れることからエンジ
ニアリングセラミックス、特に、ターボロータ等の熱機
関用として応用が進められている。この窒化珪素質焼結
体は、一般には窒化珪素に対してY2 3 、Al2 3
あるいはMgOなどの焼結助剤を添加することにより高
密度で高強度の特性が得られている。このような窒化珪
素質焼結体に対しては、さらにその使用条件が高温化す
るに際して、高温における強度および耐酸化特性のさら
なる改善が求められている。かかる要求に対して、これ
まで焼結助剤の検討や焼成条件等を改善する等各種の改
良が試みられている。
2. Description of the Related Art Conventionally, silicon nitride sintered bodies have
Due to its excellent thermal shock resistance and oxidation resistance, it is being applied to engineering ceramics, especially for heat engines such as turbo rotors. This silicon nitride sintered material is generally used for Y 2 O 3 , Al 2 O 3 and silicon nitride.
Alternatively, by adding a sintering aid such as MgO, high density and high strength characteristics are obtained. Further improvement in strength and oxidation resistance at high temperatures is demanded for such silicon nitride sintered bodies when the operating conditions thereof further increase. In order to meet such demands, various improvements have been attempted so far, such as examination of sintering aids and improvement of firing conditions.

【0003】一方、高密度の焼結体を作製する過程にお
いて、成形体を焼結させる際には液相焼結に伴い必然的
に焼成収縮が生じる。そのため、寸法精度が要求される
部品を製造するに最終的に設定する寸法に制御するのが
非常に難しく、また研磨工程が複雑になるという問題が
あった。そこで、このような寸法精度が要求される部品
を製造する方法として出発原料中に珪素粉末を含みこれ
を窒化させることにより成形体時の密度を高めておき、
これを焼成する、いわゆる反応焼結法が知られている。
On the other hand, in the process of producing a high-density sintered body, when the molded body is sintered, firing contraction is inevitably caused by liquid phase sintering. Therefore, there is a problem in that it is very difficult to control the dimension to be finally set when manufacturing a component requiring dimensional accuracy, and the polishing process becomes complicated. Therefore, as a method of manufacturing a component requiring such dimensional accuracy, the starting material contains silicon powder and is nitrided to increase the density during molding,
A so-called reactive sintering method is known in which this is fired.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、従来
の反応焼結法によれば、窒化工程を含まない一般法に比
較して焼結性が劣化するという傾向にある。そのため、
最終的に得られる焼結体の高温強度が一般法により得ら
れた焼結体に比較して高温強度および耐酸特性に劣ると
いう問題があるため、高温強度および耐酸化性に優れる
と同時に寸法精度に優れた製品を作製することができな
かった。そのために、反応焼結法を用いた焼結体は、実
用化的には未だ不十分であり、寸法精度を高めた上で、
さらなる焼結性、強度の改良、および耐酸化特性の改良
が要求されている。
However, according to the conventional reaction sintering method, the sinterability tends to deteriorate as compared with the general method not including the nitriding step. for that reason,
Since the high-temperature strength of the finally obtained sintered body is inferior to that obtained by the general method in high-temperature strength and acid resistance, it has excellent high-temperature strength and oxidation resistance, and at the same time dimensional accuracy. It was not possible to produce a product excellent in quality. Therefore, the sintered body using the reaction sintering method is still insufficient for practical use, and after improving the dimensional accuracy,
Further improvements in sinterability, strength, and oxidation resistance are required.

【0005】本発明は、特に焼結性に優れ、低温から高
温までの耐酸化特性に優れ、室温から高温までの自動車
部品、やガスタービンエンジン用等で使用されるに十分
な強度特性、特に室温から1500℃の高温までの抗折
強度に優れ、高い寸法精度を要求される部品等に適用さ
れる窒化珪素質焼結体の製造方法を提供することを目的
とするものである。
The present invention is particularly excellent in sinterability, has excellent resistance to oxidation from low temperature to high temperature, and has sufficient strength property to be used for automobile parts from room temperature to high temperature, gas turbine engine, etc. It is an object of the present invention to provide a method for producing a silicon nitride sintered body which is excellent in bending strength from room temperature to a high temperature of 1500 ° C. and is applied to parts and the like that require high dimensional accuracy.

【0006】[0006]

【問題を解決するための手段】本発明者は、反応焼結法
により作製される焼結体の特性が、一般法によるものと
比較して劣る原因と、窒化工程における窒化の挙動につ
いて検討を重ねた結果、焼結体の組織が一般法に比較し
て不均一となりやすく、その傾向は窒化後の窒化体中の
β−窒化珪素量が多いほど顕著であること、また、窒化
時におけるβ-窒化珪素の生成が窒化前の成形体の密度
に依存することを知見し、窒化前の成形体密度および窒
化後の窒化体中のβ−窒化珪素量を特定の範囲に制御す
ることにより、一般法による焼結体に劣ることなく、優
れた強度が得られることを見出し本発明に至った。
[Means for Solving the Problem] The present inventor has investigated the cause of the characteristics of the sintered body produced by the reaction sintering method being inferior to those obtained by the general method and the nitriding behavior in the nitriding step. As a result of stacking, the structure of the sintered body is more likely to be nonuniform as compared with the general method, and the tendency is more remarkable as the amount of β-silicon nitride in the nitrided body is larger, and β -By finding that the formation of silicon nitride depends on the density of the molded body before nitriding, and controlling the density of the molded body before nitriding and the amount of β-silicon nitride in the nitrided body after nitriding within a specific range, The inventors have found that excellent strength can be obtained without being inferior to that of a sintered body produced by a general method, and completed the present invention.

【0007】即ち、本発明の窒化珪素質焼結体の製造方
法は、窒化珪素が30〜80重量%、珪素が19.5〜
69.5重量%および周期律表第3a族元素酸化物の1
種以上が0.5〜20重量%の組成からなる混合物を相
対密度が50〜65%となるように成形し、その成形体
を窒素含有雰囲気中で熱処理して全窒化珪素量に対する
β−窒化珪素量の含有量が10%以下となるように窒化
処理した後、該窒化体を窒素を含む非酸化性雰囲気で焼
成することを特徴とするものである。
That is, in the method for manufacturing a silicon nitride sintered body according to the present invention, 30 to 80% by weight of silicon nitride and 19.5 to 59.5 of silicon are used.
69.5% by weight and 1 of Group 3a element oxides of the periodic table
A mixture having a composition of 0.5 to 20% by weight of seeds is molded to have a relative density of 50 to 65%, and the molded body is heat-treated in a nitrogen-containing atmosphere to perform β-nitriding with respect to the total amount of silicon nitride. After the nitriding treatment is performed so that the content of silicon is 10% or less, the nitride is fired in a non-oxidizing atmosphere containing nitrogen.

【0008】以下、本発明を詳述する。本発明の窒化珪
素質焼結体の製造方法によれば、原料粉末の主成分とし
て窒化珪素粉末、珪素粉末と、焼結助剤として少なくと
も周期律表第3a族酸化物を含むものである。用いる珪
素粉末は、窒化を容易にするためにその平均粒径が10
μm以下、特に3μm以下の微粒のものが望ましい。窒
化珪素粉末は、窒化後の窒化体中のβ−窒化珪素量を抑
制するためにα−Si3 4 が95%以上であることが
望ましく、それらの粒子径は0.4〜1.2μmが適当
である。なお、本発明に用いられる周期律表第3a族元
素としては、Yやランタノイド元素が挙げられるが特に
Yb,Er,Luが好ましい。
The present invention will be described in detail below. According to the method for producing a silicon nitride sintered body of the present invention, the raw material powder contains silicon nitride powder and silicon powder as main components, and at least a Group 3a oxide of the periodic table as a sintering aid. The silicon powder used has an average particle size of 10 to facilitate nitriding.
Fine particles having a particle size of less than or equal to μm, particularly 3 μm or less are desirable. In order to suppress the amount of β-silicon nitride in the nitrided silicon nitride powder, it is desirable that α-Si 3 N 4 is 95% or more, and the particle size thereof is 0.4 to 1.2 μm. Is appropriate. Examples of the Group 3a element of the periodic table used in the present invention include Y and lanthanoid elements, but Yb, Er and Lu are particularly preferable.

【0009】これらの原料粉末の混合粉末を公知の成形
方法、例えば、プレス成形、鋳込み成形、押し出し成
形、射出成形、冷間静水圧成形(ラバープレス)等によ
り所望の形状に成形した後に、窒素含有雰囲気中で80
0℃〜1500℃の温度で熱処理をして、成形体中に含
まれる珪素を窒化して、窒化珪素を生成させる。この珪
素の窒化珪素への変換に際し寸法変化が無く、重量増加
するために成形体の密度が向上する。
After the mixed powder of these raw material powders is molded into a desired shape by a known molding method such as press molding, cast molding, extrusion molding, injection molding, cold isostatic molding (rubber press), etc. 80 in the containing atmosphere
Heat treatment is performed at a temperature of 0 ° C. to 1500 ° C. to nitrid the silicon contained in the compact to generate silicon nitride. When this silicon is converted into silicon nitride, there is no dimensional change, and since the weight increases, the density of the compact improves.

【0010】本発明によれば、この時の窒化処理後の窒
化体中に含まれるβ−窒化珪素の量が全窒化珪素量に対
して10%以下、特に5%以下となるように制御するこ
とが重要である。これは、β−窒化珪素の量が10%を
越えると、その後の焼成において緻密化が阻害された
り、不均一な粒成長を招き、強度特性、耐酸化特性を劣
化させてしまう。よって、窒化工程において生成する窒
化珪素中のβ率を10%以下に制御することにより、焼
結性を高め、高温強度を高めると同時に耐酸化特性を高
めることができるのである。
According to the present invention, the amount of β-silicon nitride contained in the nitrided body at this time is controlled to be 10% or less, particularly 5% or less with respect to the total amount of silicon nitride. This is very important. This is because if the amount of β-silicon nitride exceeds 10%, densification is hindered in the subsequent firing, non-uniform grain growth is caused, and strength properties and oxidation resistance properties are deteriorated. Therefore, by controlling the β ratio in the silicon nitride generated in the nitriding step to be 10% or less, it is possible to enhance the sinterability, the high temperature strength and the oxidation resistance.

【0011】上記のように窒化体中のβ−窒化珪素の生
成を抑制するために方法としては、窒化前の成形体の理
論密度に対する相対密度が50〜65%、特に55〜6
2%をなるように制御することが重要である。即ち、相
対密度が50%より小さいと、窒化反応が急激に進行す
るためにβ−窒化珪素の生成が促進されるために窒化体
中のβ−窒化珪素量が10%を越えることとなり、65
%を越えると窒化反応が進まず、珪素粉末が残留するた
めである。成形体密度を上記の範囲に制御するには、成
形時の粉末に負荷される圧力を調整することにより容易
に制御することができる。
As a method for suppressing the formation of β-silicon nitride in the nitride as described above, the relative density with respect to the theoretical density of the compact before nitriding is 50 to 65%, particularly 55 to 6
It is important to control it to be 2%. That is, when the relative density is less than 50%, the nitriding reaction rapidly progresses and the production of β-silicon nitride is promoted, so that the amount of β-silicon nitride in the nitride exceeds 10%.
This is because if the content exceeds%, the nitriding reaction does not proceed and the silicon powder remains. In order to control the compact density within the above range, it can be easily controlled by adjusting the pressure applied to the powder during compaction.

【0012】この窒化処理においては、β−窒化珪素の
生成量を抑えつつ、窒化の進行を効率的に進行させるた
めには、上記温度範囲において、窒化温度を多段に上昇
させつつ徐々に窒化させていくことが望ましく、一定温
度での窒化処理では珪素の完全な窒化もしくはβ−窒化
珪素の生成抑制ができない場合がある。また、窒化を促
進するために窒素ガス圧を1〜30atmとしてもよい
が、高温、高圧下での窒化は発熱量が大きくなるため、
成形体の温度が上昇し、β−窒化珪素の生成量が、増加
するため1300℃以上の温度域では、5atm以下に
設定することが望ましい。
In this nitriding treatment, in order to efficiently proceed the nitriding while suppressing the amount of β-silicon nitride produced, the nitriding temperature is raised in multiple steps within the above temperature range and gradually nitrided. It is desirable that the nitriding treatment at a constant temperature cannot completely nitridize silicon or suppress the formation of β-silicon nitride. The nitrogen gas pressure may be 1 to 30 atm in order to promote nitriding, but nitriding at high temperature and high pressure produces a large amount of heat.
Since the temperature of the molded body rises and the amount of β-silicon nitride produced increases, it is desirable to set it to 5 atm or less in the temperature range of 1300 ° C. or higher.

【0013】また、本発明によれば、出発原料における
組成が、窒化珪素が30〜80重量%、珪素が19.5
〜69.5重量%および周期律表第3a族元素酸化物の
1種以上が0.5〜20重量%の組成からなるように調
製することが必要である。即ち、周期律表第3a族元素
酸化物が20重量%を越えると、β−窒化珪素が生成し
やすくなり、また焼結体中に占める粒界相の体積分率が
増加し、高温強度を劣化させてしまい、0.5重量%未
満では十分な焼結が進行せずに緻密体が得られず、焼結
体特性の劣化を招く。窒化珪素粉末量が30重量%未
満、あるいは珪素粉末が69.5重量%を越えると珪素
の窒化が困難となり、またβ−窒化珪素が生成しやすく
なる。逆に窒化珪素量が80重量%を越えるか、珪素量
が19.5重量%より少ないと寸法収縮が大きくなり所
定の寸法精度が得られない。望ましい範囲は、窒化珪素
は50〜70重量%、珪素は25〜45重量%、周期律
表第3a族元素酸化物が5〜15重量%が望ましい。
According to the present invention, the composition of the starting material is such that silicon nitride is 30 to 80% by weight and silicon is 19.5.
˜69.5 wt% and one or more of Group 3a element oxides of the Periodic Table should be prepared so as to have a composition of 0.5 to 20 wt%. That is, when the oxide of the Group 3a element of the Periodic Table exceeds 20% by weight, β-silicon nitride is likely to be formed, and the volume fraction of the grain boundary phase in the sintered body is increased to increase the high temperature strength. If it is less than 0.5% by weight, sufficient sintering does not proceed, a dense body cannot be obtained, and the characteristics of the sintered body deteriorate. If the amount of silicon nitride powder is less than 30% by weight, or if the amount of silicon powder exceeds 69.5% by weight, nitriding of silicon becomes difficult and β-silicon nitride is likely to be produced. On the contrary, if the amount of silicon nitride exceeds 80% by weight or the amount of silicon is less than 19.5% by weight, the dimensional shrinkage becomes large and the predetermined dimensional accuracy cannot be obtained. Desirable ranges are 50 to 70% by weight for silicon nitride, 25 to 45% by weight for silicon, and 5 to 15% by weight for Group 3a element oxide of the periodic table.

【0014】次に、得られた成形体を公知の焼成方法、
例えば、ホットプレス焼成、常圧焼成、窒素ガス圧焼
成、さらには、これらの焼成後に熱間静水圧焼成(HI
P)処理、及びガラスシールHIP焼成等で焼成し緻密
な焼結体を得る。この時の温度は、高温にしすぎると窒
化珪素結晶が粒子成長し、強度が低下するため、160
0℃から2000℃、特に1650℃〜1900℃であ
ることが望ましい。
Next, the obtained molded body is subjected to a known firing method,
For example, hot press firing, atmospheric pressure firing, nitrogen gas pressure firing, and further hot isostatic firing (HI) after these firings.
P) treatment and glass seal HIP firing to obtain a dense sintered body. If the temperature at this time is too high, the silicon nitride crystal grains grow and the strength decreases.
It is desirable that the temperature is 0 ° C to 2000 ° C, particularly 1650 ° C to 1900 ° C.

【0015】[0015]

【作用】通常、珪素を窒化した場合には、α−窒化珪素
よりもβ−窒化珪素が生成されやすい傾向にある。そこ
で、この珪素粉末と焼結性に優れたα−窒化珪素と混合
した成形体を窒化処理した時、α−窒化珪素とβ−窒化
珪素が共存する成形体となる。このように成形体中にα
−窒化珪素とβ−窒化珪素が共存する場合、焼結過程で
α−窒化珪素はβ−窒化珪素に変化する伴い焼結が進行
するが、β−窒化珪素は、相変態することなく、単純な
液相焼結で焼結が進行することから、全く異なる焼結挙
動が1つの成形体内で同時に進行することになる。その
ために、最終焼結体中に焼結挙動の不均一さから異常粒
成長などにより不均一な組織が形成されることとなる。
In general, when silicon is nitrided, β-silicon nitride tends to be produced more easily than α-silicon nitride. Therefore, when a molded body obtained by mixing the silicon powder and α-silicon nitride having excellent sinterability is subjected to nitriding treatment, a molded body in which α-silicon nitride and β-silicon nitride coexist. In this way, α
-When silicon nitride and β-silicon nitride coexist, α-silicon nitride changes to β-silicon nitride during the sintering process, but the sintering progresses, but β-silicon nitride does not undergo phase transformation and is simple. Since the sintering progresses in a simple liquid phase sintering, completely different sintering behaviors simultaneously proceed in one compact. Therefore, a non-uniform structure is formed in the final sintered body due to non-uniform sintering behavior due to abnormal grain growth or the like.

【0016】これに対して、本発明によれば、出発原料
組成や窒化条件等を前述したように制御して窒化処理後
の成形体中のβ−窒化珪素量を10%以下に抑えること
によりその後の焼結過程での焼結の進行をα−窒化珪素
の焼結挙動に一元化できることにより焼結の進行を均一
化できる。それにより最終焼結体において、組織の均一
化を図ることができるために高温強度および耐酸化性を
向上することができるのである。
On the other hand, according to the present invention, the starting material composition, the nitriding conditions, etc. are controlled as described above to suppress the amount of β-silicon nitride in the compact after the nitriding treatment to 10% or less. Since the progress of sintering in the subsequent sintering process can be unified with the sintering behavior of α-silicon nitride, the progress of sintering can be made uniform. Thereby, in the final sintered body, it is possible to improve the high temperature strength and the oxidation resistance because the structure can be made uniform.

【0017】また、窒化前の成形体において、その相対
密度が低い場合、窒素含有雰囲気と珪素との反応面積が
広くなり、窒化反応が促進し、窒化時の発熱反応により
β−窒化珪素が生成される。これに対して、相対密度が
高すぎる場合、窒化反応が進まず、未窒化部が発生し、
焼結性を悪くするため、相対密度を50〜65%とする
ことにより窒化反応の安定化を図り、高強度を焼結体を
得ることができる。
When the relative density of the green body before nitriding is low, the reaction area between the nitrogen-containing atmosphere and silicon is widened, the nitriding reaction is promoted, and β-silicon nitride is generated by the exothermic reaction during nitriding. To be done. On the other hand, if the relative density is too high, the nitriding reaction does not proceed, and unnitrided parts occur,
Since the sinterability is deteriorated, by setting the relative density to 50 to 65%, the nitriding reaction can be stabilized and a sintered body with high strength can be obtained.

【0018】[0018]

【実施例】原料粉末として平均粒径3μm、酸素量1.
1重量%の珪素粉末、窒化珪素粉末(BET比表面積8
2 /g、α率98%、酸素量1.2重量%)と周期律
表第3a族元素酸化物粉末、酸化珪素粉末を用いて表1
に示す組成になるように調合して混合後、ラバープレス
によりプレス圧力を変え、相対密度の異なる数種の成形
体を作製した。得られた成形体を1200℃、窒素圧1
0気圧で2時間、1300℃、窒素圧4気圧で2時間、
1400℃、窒素圧1気圧で2時間処理して窒化を行っ
た。この窒化処理の際に、成形体の重量増加率から珪素
の残存の有無を確認した。そして、窒化後の成形体の一
部を粉砕しX線回折測定によりβ−窒化珪素量を求め
た。β−窒化珪素量の算出には、β−Si3 4 の(1
01),(210)のピーク強度をH(101)、H
(210)、α−Si3 4 の(102),(210)
のピークをh(102)、h(210)とした時、Σ
〔H(101)+H(210)〕/Σ〔H(101)+
H(210)+h(102)+h(210)〕の式のよ
り比率を求めた。
Example As a raw material powder, the average particle size is 3 μm, and the amount of oxygen is 1.
1% by weight of silicon powder, silicon nitride powder (BET specific surface area 8
m 2 / g, α ratio 98%, oxygen amount 1.2% by weight) and periodic table 3a element oxide powder, silicon oxide powder are used in Table 1.
After mixing and mixing so as to have the composition shown in (1), the pressing pressure was changed by a rubber press to prepare several kinds of molded bodies having different relative densities. The obtained molded body is 1200 ° C., nitrogen pressure is 1
2 hours at 0 atm and 1300 ° C, nitrogen pressure 4 atm for 2 hours,
Nitriding was performed by treating at 1400 ° C. and a nitrogen pressure of 1 atm for 2 hours. At the time of this nitriding treatment, it was confirmed from the weight increase rate of the molded body whether or not silicon remained. Then, a part of the molded body after nitriding was crushed and the amount of β-silicon nitride was obtained by X-ray diffraction measurement. To calculate the amount of β-silicon nitride, (1 of β-Si 3 N 4 is used.
01), (210) peak intensities are H (101), H
(210), α-Si 3 N 4 (102), (210)
When the peaks of h (102) and h (210) are
[H (101) + H (210)] / Σ [H (101) +
The ratio was calculated from the formula of H (210) + h (102) + h (210)].

【0019】その後、得られた窒化体を炭化珪素中の匣
鉢に入れて、組成変動を少なくするために雰囲気を制御
し、10気圧窒素ガス気流中で1850℃、4時間の条
件で焼成した。
Thereafter, the obtained nitride was placed in a jar in silicon carbide, and the atmosphere was controlled in order to reduce the compositional variation, and it was fired in a nitrogen gas stream of 10 atm at 1850 ° C. for 4 hours. .

【0020】得られた焼結体に対し寸法を測定し、成形
体の寸法に対する収縮率を測定した。そして、その焼結
体をJIS−R1601にて指定されている形状まで切
断、加工、研磨して特性評価用の試料を作製した。この
試料についてアルキメデス法に基づく比重測定、JIS
−R1601に基づく室温および1500℃での4点曲
げ抗折試験を実施した。なお、比重測定で相対密度が9
0%に満たないものは収縮率、強度の測定は行わなかっ
た。結果は表2に示した。
The dimensions of the obtained sintered body were measured, and the shrinkage ratio with respect to the dimension of the molded body was measured. Then, the sintered body was cut into a shape specified in JIS-R1601, processed, and polished to prepare a sample for characteristic evaluation. Specific gravity measurement based on Archimedes method, JIS
A 4-point bending bending test was carried out at room temperature and 1500 ° C. according to R1601. It should be noted that the relative density was 9 in the specific gravity measurement.
When the content was less than 0%, the shrinkage ratio and the strength were not measured. The results are shown in Table 2.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】表1および表2の結果によると、窒化前の
成形体の密度が50%より低い試料No.9,13,17
はβ−窒化珪素の生成が顕著で窒化後でのβ−窒化珪素
量がいずれも10%を越え、緻密化が不十分であり強度
が低い。また成形体の密度が65%を越える試料No.1
0,20では窒化が不十分で珪素が残存し相対密度90
%以上の焼結体が得られなかった。また、出発原料中で
の珪素量が少ない試料No.1では寸法の収縮が大きく、
窒化珪素量が少ない試料No.5、周期律表第3a族元素
酸化物量が0.5重量%未満の試料No.6では緻密化が
不十分で満足できる特性の焼結体を得ることができなか
った。
According to the results of Tables 1 and 2, samples No. 9, 13, and 17 in which the density of the molded body before nitriding was lower than 50% were obtained.
The formation of β-silicon nitride is remarkable, and the amount of β-silicon nitride after nitriding exceeds 10%, and the densification is insufficient and the strength is low. In addition, the sample No. 1 in which the density of the molded body exceeds 65%
With 0 and 20, nitriding is insufficient and silicon remains, resulting in a relative density of 90.
% Or more of the sintered body could not be obtained. Further, in sample No. 1 in which the amount of silicon in the starting material is small, the dimensional shrinkage is large,
Sample No. 5 containing a small amount of silicon nitride and Sample No. 6 containing an oxide of a Group 3a element of the periodic table of less than 0.5% by weight were not sufficiently densified, and a sintered body having satisfactory characteristics could be obtained. There wasn't.

【0024】これらの比較例に対して、本発明品はいず
れも15%以下の小さな収縮率を示しつつ、残留珪素も
なく緻密化され、室温強度800MPa以上、1500
℃強度450MPa以上の優れた機械的特性を示した。
In contrast to these comparative examples, all the products of the present invention showed a small shrinkage ratio of 15% or less, were densified without residual silicon, and had a room temperature strength of 800 MPa or more and 1500
It showed excellent mechanical properties with a strength of 450 MPa or higher.

【0025】[0025]

【発明の効果】以上詳述したように、本発明によれば、
窒化後のβ窒化珪素の生成量を抑制することにより寸法
精度に優れ、室温から高温、特に1500℃における強
度劣化が小さい優れた窒化珪素焼結体を提供することが
できる。これによりガスタービンブレード、タービンロ
ータ、ノズルなどの高寸法精度が要求される高温材料に
おける信頼性を高めることができる。
As described in detail above, according to the present invention,
By suppressing the amount of β-silicon nitride produced after nitriding, it is possible to provide an excellent silicon nitride sintered body which is excellent in dimensional accuracy and has little strength deterioration from room temperature to high temperature, particularly 1500 ° C. As a result, the reliability of high-temperature materials such as gas turbine blades, turbine rotors, and nozzles that require high dimensional accuracy can be improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素が30〜80重量%、珪素が1
9.5〜69.5重量%および周期律表第3a族元素酸
化物の1種以上が0.5〜20重量%の組成からなる相
対密度50〜65%の成形体を窒素含有雰囲気中で熱処
理して全窒化珪素量に対するβ−窒化珪素量の含有量が
10%以下となるように窒化処理した後、該窒化体を窒
素を含む非酸化性雰囲気で焼成することを特徴とする窒
化珪素質焼結体の製造方法。
1. Silicon nitride is 30 to 80% by weight, and silicon is 1
A molded product having a relative density of 50 to 65%, which is composed of 9.5 to 69.5% by weight and 0.5 to 20% by weight of one or more kinds of Group 3a element oxides of the periodic table, in a nitrogen-containing atmosphere. After heat treatment to perform nitriding treatment so that the content of β-silicon nitride content with respect to the total silicon nitride content is 10% or less, the nitride is baked in a non-oxidizing atmosphere containing nitrogen. Of manufacturing a high quality sintered body.
JP5330788A 1993-12-27 1993-12-27 Production of silicon nitride-based sintered compact Pending JPH07187798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5330788A JPH07187798A (en) 1993-12-27 1993-12-27 Production of silicon nitride-based sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5330788A JPH07187798A (en) 1993-12-27 1993-12-27 Production of silicon nitride-based sintered compact

Publications (1)

Publication Number Publication Date
JPH07187798A true JPH07187798A (en) 1995-07-25

Family

ID=18236558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5330788A Pending JPH07187798A (en) 1993-12-27 1993-12-27 Production of silicon nitride-based sintered compact

Country Status (1)

Country Link
JP (1) JPH07187798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006455A (en) * 2006-06-28 2008-01-17 Kyocera Corp Inner cylinder and plunger for injection pump, and hot chamber die-casting machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006455A (en) * 2006-06-28 2008-01-17 Kyocera Corp Inner cylinder and plunger for injection pump, and hot chamber die-casting machine

Similar Documents

Publication Publication Date Title
JPH07187798A (en) Production of silicon nitride-based sintered compact
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP2631102B2 (en) Method for producing silicon nitride based sintered body
JP2662863B2 (en) Method for producing silicon nitride based sintered body
JPH07187797A (en) Production of silicon nitride-based sintered compact
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP2980342B2 (en) Ceramic sintered body
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP2710865B2 (en) Manufacturing method of silicon nitride sintered body
JPH06116045A (en) Silicon nitride sintered compact and its production
JPH07187799A (en) Production of silicon nitride-based sintered compact
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JPH10279360A (en) Silicon nitride structural parts and its production
JP3124866B2 (en) Method for producing silicon nitride based sintered body
JPH05139840A (en) Siliceous nitride sintered compact and its production
JPH0524926A (en) Production of silicon nitride-silicon carbide combined sintered compact
JP3981510B2 (en) Method for producing silicon nitride sintered body
JPH05117032A (en) Production of silicon nitride sintered compact
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP3667064B2 (en) Silicon nitride-based sintered body and method for producing the same
JPH0867566A (en) Silicon nitride sintered compact and production thereof
JPH08104570A (en) Production of silicon nitride-based sintered compact
JPH05117040A (en) Production of beta-sialon-based sintered compact
JPH0840774A (en) Silicon nitride sintered product

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees