JPH08104570A - Production of silicon nitride-based sintered compact - Google Patents

Production of silicon nitride-based sintered compact

Info

Publication number
JPH08104570A
JPH08104570A JP6236509A JP23650994A JPH08104570A JP H08104570 A JPH08104570 A JP H08104570A JP 6236509 A JP6236509 A JP 6236509A JP 23650994 A JP23650994 A JP 23650994A JP H08104570 A JPH08104570 A JP H08104570A
Authority
JP
Japan
Prior art keywords
silicon nitride
wsi
oxide
average particle
sintered compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6236509A
Other languages
Japanese (ja)
Other versions
JP3241215B2 (en
Inventor
Masahiro Sato
政宏 佐藤
Takeo Fukutome
武郎 福留
Noriaki Hamada
紀彰 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23650994A priority Critical patent/JP3241215B2/en
Publication of JPH08104570A publication Critical patent/JPH08104570A/en
Application granted granted Critical
Publication of JP3241215B2 publication Critical patent/JP3241215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To reduce the harmful effect of the reactions of a tungsten compd. with silicon nitride and silicon oxide on a sintered compact, to finely disperse WSi2 in the sintered compact and to produce a sintered compact having high strength over the temp. range from room temp. to 1,000 deg.C with low-cost starting materials. CONSTITUTION: A compact based on silicon nitride, contg. at least oxide of a group IIIa element of the Periodic Table and aluminum oxide as additive components and further contg. a tungsten compd. of <=3μm average particle diameter other than tungsten silicide by 0.5-10wt.% (expressed in terms of WSi2 ) of the total amt. is heated at 800-1,400 deg.C under a reduced pressure of <=10Torr to form WSi2 of <=3μm average particle diameter and then the compact is fired in a nonoxidizing atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、室温から高温までの強
度特性に優れ耐熱衝撃抵抗に優れた自動車用部品やガス
タ−ビンエンジン用部品等に使用される窒化珪素質焼結
体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride sintered body used for automobile parts, gas turbine engine parts, etc., which has excellent strength characteristics from room temperature to high temperature and excellent thermal shock resistance. Regarding

【0002】[0002]

【従来技術】従来から、窒化珪素質焼結体は、耐熱性、
耐熱衝撃性および耐酸化性に優れることからエンジニア
リングセラミックス、特にタ−ボロ−タ−等の熱機関用
として応用が進められている。
2. Description of the Related Art Conventionally, silicon nitride sintered bodies have
Due to its excellent thermal shock resistance and oxidation resistance, it is being applied to engineering ceramics, especially for heat engines such as turbochargers.

【0003】通常、窒化珪素質焼結体は、窒化珪素単味
での焼成が困難であるため、焼結助剤としてY2 3
どの周期律表第3a族元素酸化物や、Al2 3 などの
を添加し高緻密化することが行われている(特公昭52
−3649号、特公昭58−5190号)。
Generally, since it is difficult to sinter a silicon nitride sintered body by using silicon nitride alone, as a sintering aid, an oxide of a Group 3a group 3a element such as Y 2 O 3 or Al 2 is used. O 3 and the like are added to achieve high densification (Japanese Examined Patent Publication No. 52).
-3649, Japanese Patent Publication No. 58-5190).

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、焼結
助剤として希土類元素酸化物と酸化アルミニウムを用い
た場合、その焼結性が高められることにより高密度化を
達成することができ、室温強度の高い焼結体となるが、
1000℃の高温特性の点では、希土類元素、珪素、ア
ルミニウム、酸素、窒素からなる粒界相自体が低融点で
あり、高温で軟化しやすいために焼結体全体としての高
温特性も実用的には未だ不十分であるがために、その使
用条件は低温域に限定されていた。よって、このような
焼結性を維持しながらも高温特性、特に高温強度、熱衝
撃抵抗の改良が要求されている。
However, when a rare earth element oxide and aluminum oxide are used as the sintering aid, the sinterability is enhanced, so that the densification can be achieved and the room temperature strength is improved. Although it becomes a high sintered body,
In terms of high temperature characteristics of 1000 ° C., the grain boundary phase composed of rare earth elements, silicon, aluminum, oxygen, and nitrogen itself has a low melting point, and is easily softened at high temperatures, so that the high temperature characteristics of the entire sintered body are practical. However, its use conditions were limited to the low temperature range. Therefore, it is required to improve the high temperature characteristics, especially the high temperature strength and the thermal shock resistance while maintaining such sinterability.

【0005】そこで、粒界の強化を図る方法として、M
o、W、Ta、Tiの珪化物、炭化物、硼化物などの化
学的安定な微細な化合物を点在させることが特開平5−
194038号などに記載されている。
Therefore, as a method for strengthening the grain boundary, M
It is known to disperse fine chemical stable compounds such as silicides, carbides, borides of o, W, Ta and Ti.
No. 194038 and the like.

【0006】しかしながら、かかる方法によれば、この
ような分散粒子自体高価であり、しかも、出発原料中に
このような化合物を添加すると焼結過程において窒化珪
素や酸化珪素と反応して体積変化などが生じたり、反応
に伴うガスの発生などにより焼結体の特性に対して悪影
響を及ぼす場合があり、微細な粒子の分散による強度向
上効果が十分に得られないという問題があった。
However, according to such a method, such dispersed particles themselves are expensive, and when such a compound is added to the starting material, it reacts with silicon nitride or silicon oxide in the sintering process to change the volume. There is a problem that the characteristics of the sintered body may be adversely affected by the generation of gas or the generation of gas accompanying the reaction, and there is a problem that the strength improving effect due to the dispersion of fine particles cannot be sufficiently obtained.

【0007】[0007]

【問題点を解決するための手段】本発明者らは、上記問
題に対して検討を重ねた結果、焼結体中に微細なWSi
2 を分散させるに際して、小さい粒子径を有する安価な
W化合物を出発原料として配合し、これを焼成前に一旦
熱処理してWSi2 を生成させた後に本焼成することに
より、成形体中の他の成分と反応することなく、WSi
2 の粒径の制御を容易にでき、強度を顕著に高めること
ができ、しかも安価に製造できることを見いだし本発明
に至ったのである。
[Means for Solving the Problems] As a result of repeated studies on the above problems, the present inventors have found that fine WSi is contained in the sintered body.
When 2 is dispersed, an inexpensive W compound having a small particle size is blended as a starting material, and this is heat treated once to generate WSi 2 before firing, and then main firing is performed to obtain another WSi without reacting with the components
The inventors have found that the grain size of 2 can be easily controlled, the strength can be remarkably increased, and that the production can be performed at low cost, and the present invention has been completed.

【0008】即ち、本発明の窒化珪素質焼結体の製造方
法は、窒化珪素を主成分とし、添加成分として少なくと
も周期律表第3a族元素酸化物、酸化アルミニウムを含
み、さらに平均粒径が3μm以下のタングステン化合物
(ただし、Wの珪化物を除く)をWSi2 換算で全量中
0.5〜10重量%の割合で含む成形体を10torr
以下の減圧中、800℃〜1400℃の温度で加熱して
平均粒径3μm以下のWSi2 を生成させた後、これを
非酸化性雰囲気中で焼成することを特徴とするものであ
る。
That is, the method for producing a silicon nitride sintered body of the present invention contains silicon nitride as a main component, contains at least an oxide of a Group 3a element of the periodic table and aluminum oxide as an additive component, and further has an average particle size of 10 torr of a compact containing a tungsten compound of 3 μm or less (excluding W silicide) in a proportion of 0.5 to 10% by weight in terms of WSi 2
It is characterized in that it is heated at a temperature of 800 ° C. to 1400 ° C. in the following reduced pressure to generate WSi 2 having an average particle size of 3 μm or less, and then baked in a non-oxidizing atmosphere.

【0009】本発明の製造方法によれば、まず出発原料
として窒化珪素粉末を主体とし、添加成分として周期律
表第3a族元素酸化物粉末および酸化アルミニウム粉
末、さらに場合により酸化珪素粉末を用いる。これの添
加成分は窒化珪素に対して焼結性を高めるに適当な量で
配合される。具体的には、周期律表第3a族元素酸化物
が1〜15重量%、酸化アルミニウムが1〜10重量
%、酸化珪素が0〜10重量%の割合で配合される。な
お、出発原料として用いる窒化珪素粉末はそれ自体α−
Si3 4 、β−Si3 4 のいずれでも用いることが
でき、それらの粒径は0.4〜1.2μmが好ましい。
According to the production method of the present invention, first, silicon nitride powder is mainly used as a starting material, and oxide powder and aluminum oxide powder of Group 3a element of the Periodic Table, and optionally silicon oxide powder are used as additive components. These additional components are added in an amount suitable for enhancing the sinterability of silicon nitride. Specifically, 3 to 15% by weight of Group 3a element oxide of the periodic table, 1 to 10% by weight of aluminum oxide, and 0 to 10% by weight of silicon oxide are mixed. The silicon nitride powder used as a starting material is itself α-
Either Si 3 N 4 or β-Si 3 N 4 can be used, and their particle size is preferably 0.4 to 1.2 μm.

【0010】本発明によれば、上記組成物に対して、さ
らに平均粒径が3μm以下のタングステン化合物を添加
する。WSi2 以外のタングステン化合物としては、W
3、WC、WB、などが挙げられる。このタングテン
化合物は最終的にWSi2 となるために、WSi2 換算
で0.5〜10重量%、特に1〜5重量%の割合で配合
する。ここでW化合物の平均粒径を3μm以下に限定し
たのは、これを大きいと最終焼結体中におけるWSi2
の粒径も3μmを越え、これが逆に破壊源となり、強度
の向上効果が発揮されないためである。また、その量を
上記の範囲に限定したのは、0.5重量%より少ないと
WSi2 分散による粒界の軟化防止効果が十分でなく、
10重量%を越えると、粒界相への溶解量が増加し、融
点を低下させてしまうため目的の強度が得られない。
According to the present invention, a tungsten compound having an average particle size of 3 μm or less is further added to the above composition. Examples of tungsten compounds other than WSi 2 include W
O 3 , WC, WB and the like can be mentioned. Since this tongue-ten compound finally becomes WSi 2 , it is added in a proportion of 0.5 to 10% by weight, especially 1 to 5% by weight in terms of WSi 2 . The reason why the average particle size of the W compound is limited to 3 μm or less is that when the W compound is large, WSi 2 in the final sintered body is limited.
This is because the grain size of 3 exceeds 3 μm, which on the contrary becomes a fracture source, and the effect of improving strength cannot be exhibited. Further, the amount is limited to the above range, because if it is less than 0.5% by weight, the effect of preventing grain boundary softening by WSi 2 dispersion is not sufficient,
If it exceeds 10% by weight, the amount of dissolution in the grain boundary phase increases and the melting point is lowered, so that the desired strength cannot be obtained.

【0011】そして、上記のようにW化合物を添加した
混合物を所望の成形手段、例えば、金型プレス,冷間静
水圧プレス,押出し成形等により任意の形状に成形後、
真空10torr以下の減圧中、800℃〜1400℃
の温度で加熱処理する。この加熱処理によりW化合物と
窒化珪素または酸化珪素とを反応させ、WSi2 を生成
させる。この時の熱処理時の圧力を10torr以下の
減圧にすることにより、W化合物と窒化珪素もしくは酸
化珪素との反応を促進し、かつ反応の際生成する一酸化
珪素や、窒素を成形体外部へ迅速に排出し、粒界相組成
の変化やボイドの生成を防ぐのである。従って、圧力が
10torrを越えたり、処理温度が800℃より低い
といずれも生成ガスの排出が十分でなく、ボイドが焼結
体中に残存するために目的の強度が得られない。また処
理温度が1400℃を越えると、窒化珪素自身が分解し
始めるからである。
Then, the mixture to which the W compound is added as described above is molded into an arbitrary shape by a desired molding means such as a die press, a cold isostatic press, an extrusion molding, and the like.
800 ° C to 1400 ° C under reduced pressure of 10 torr or less
Heat treatment at the temperature of. By this heat treatment, the W compound is reacted with silicon nitride or silicon oxide to generate WSi 2 . By reducing the pressure during the heat treatment at 10 torr or less, the reaction between the W compound and silicon nitride or silicon oxide is promoted, and the silicon monoxide and nitrogen generated during the reaction are rapidly discharged to the outside of the compact. To prevent changes in the composition of the grain boundary phase and formation of voids. Therefore, if the pressure exceeds 10 torr or the processing temperature is lower than 800 ° C., the generated gas is not sufficiently discharged and voids remain in the sintered body, so that the desired strength cannot be obtained. Further, when the processing temperature exceeds 1400 ° C., silicon nitride itself begins to decompose.

【0012】上記のように熱処理を施した後、公知の焼
成方法、例えば、ホットプレス方法、常圧焼成、窒素ガ
ス圧力焼成、さらにはこれらの焼成後の熱間静水圧焼成
(HIP)焼成、およびガラスシ−ルHIP焼成等で焼
成することにより緻密な焼結体を得る。この時の焼成
は、高温すぎると主相である窒化珪素結晶が粒成長し強
度が低下するため、非酸化性雰囲気中で1600〜19
00℃、特に1650〜1850℃の窒素ガス含有非酸
化性雰囲気であることが望ましい。この焼成により窒化
珪素は、原料がα、βのいずれの場合においてもβ−S
3 4 となる。
After the heat treatment as described above, known firing methods such as hot pressing, atmospheric pressure firing, nitrogen gas pressure firing, and hot isostatic firing (HIP) firing after these firing, And a dense sintered body is obtained by firing with glass seal HIP firing or the like. If the firing temperature at this time is too high, the silicon nitride crystal that is the main phase grows grains and the strength decreases.
It is desirable that the nitrogen gas-containing non-oxidizing atmosphere is 00 ° C., particularly 1650 to 1850 ° C. By this firing, silicon nitride is β-S regardless of whether the raw material is α or β.
i 3 N 4 .

【0013】この焼成により最終的にはβ−窒化珪素主
結晶相と、周期律表第3a族元素、アルミニウム、酸
素、珪素および窒素を含む粒界相からなり、その粒界相
中にWSi2 が3μm以下の粒子径で分散した焼結体を
得ることができる。
By this firing, finally, a β-silicon nitride main crystal phase and a grain boundary phase containing a Group 3a element of the periodic table, aluminum, oxygen, silicon and nitrogen are contained, and WSi 2 is contained in the grain boundary phase. It is possible to obtain a sintered body having a particle size of 3 μm or less.

【0014】なお、本発明に用いられる周期律表第3a
族元素としては、Y、Er、Yb,Luが望ましい。こ
れらの元素間での特性の有意差はあまりないが、安価に
入手できる点でYが最も望ましい。
The periodic table No. 3a used in the present invention is as follows.
As the group element, Y, Er, Yb and Lu are desirable. Although there are few significant differences in characteristics among these elements, Y is the most desirable because it can be obtained at low cost.

【0015】[0015]

【作用】窒化珪素質焼結体の機械的特性および熱的特性
は、主結晶相であるβ−窒化珪素相とその粒界相により
決定される。粒界相を周期律表第3a族元素と珪素とア
ルミニウムと酸素と窒素から構成させ、しかも平均粒径
が3μm以下の微細なWSi2 結晶を分散させることに
より微細なWSi2 がピニングとなり、粒界相の軟化を
防止する結果、焼結体としての高温特性を高めることが
できる。
The mechanical and thermal properties of the silicon nitride sintered body are determined by the β-silicon nitride phase which is the main crystal phase and its grain boundary phase. The grain boundary phase is composed of a Group 3a element of the periodic table, silicon, aluminum, oxygen, and nitrogen, and fine WSi 2 crystals having an average grain size of 3 μm or less are dispersed to form fine WSi 2 as pinning. As a result of preventing the softening of the field phase, the high temperature characteristics of the sintered body can be improved.

【0016】しかも、本発明によれば、市販の安価なW
化合物を用いてこれを焼成前に熱処理してWSi2 化し
た後に焼成するために、W化合物の焼成時の窒化珪素や
酸化珪素との反応に伴う弊害を防止することができ、W
Si2 の分散効果を最大限発揮させることができる。そ
れにより、室温から1000℃の高温まで優れた機械的
特性を付与することができる。
Moreover, according to the present invention, commercially available inexpensive W
Since a compound is used for heat treatment before firing to form WSi 2 and then firing, it is possible to prevent adverse effects caused by a reaction of the W compound with silicon nitride or silicon oxide during firing.
The dispersion effect of Si 2 can be maximized. Thereby, excellent mechanical properties can be imparted from room temperature to a high temperature of 1000 ° C.

【0017】[0017]

【実施例】【Example】

実施例1 窒化珪素粉末(BET比表面積9m2 /g、α率98
%、酸素量1.2重量%)と各種の周期律表第3a族元
素酸化物粉末、酸化アルミニウム粉末、酸化珪素粉末、
酸化タングステン粉末(平均粒径1μm)を用いて、表
1に示す組成になるように調合後、1t/cm2 で金型
成形した。得られた成形体に対して、表1に示すような
条件で熱処理してWSi2 を生成させた。この処理後の
成形体を炭化珪素質の匣鉢に入れて、常圧の窒素ガス気
流中で表1の条件で焼成した。
Example 1 Silicon nitride powder (BET specific surface area 9 m 2 / g, α ratio 98
%, Oxygen amount 1.2% by weight) and various periodic table group 3a element oxide powders, aluminum oxide powders, silicon oxide powders,
Tungsten oxide powder (average particle size 1 μm) was used to prepare the composition shown in Table 1, and the mixture was molded with 1 t / cm 2 . The obtained compact was heat-treated under the conditions shown in Table 1 to generate WSi 2 . The molded body after this treatment was put in a silicon carbide sagger and fired under the conditions of Table 1 in a nitrogen gas stream at normal pressure.

【0018】得られた焼結体をJIS−R1601にて
指定されている形状まで研磨し試料を作製した。この試
料についてJIS−R1601に基づく室温および10
00℃での4点曲げ抗折強度試験を実施した。また鏡面
仕上げを行ったサンプルのSEM観察によりWSi2
子の大きさを測定した。測定の結果は表1に示した。
The obtained sintered body was ground to a shape specified in JIS-R1601 to prepare a sample. For this sample, room temperature and 10 based on JIS-R1601
A 4-point bending bending strength test at 00 ° C was performed. Further, the size of WSi 2 particles was measured by SEM observation of the sample subjected to mirror finishing. The measurement results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】表1の結果によると、WSi2 の分散量が
0.5重量%より少ないか、もしくは10重量%を越え
る試料No. 8,9は高温強度が低下しており、熱処理
における減圧での処理温度が800℃より低いか140
0℃を越える場合、または圧力が10torr以上の減
圧で行った試料No.15、18、20では強度特性は低
く目的の特性は得られなかった。
According to the results shown in Table 1, Sample Nos. 8 and 9 in which the amount of WSi 2 dispersed is less than 0.5% by weight or more than 10% by weight have low high-temperature strength, and therefore, the reduced pressure during the heat treatment results. Processing temperature is lower than 800 ℃ 140
Samples Nos. 15, 18, and 20 which were subjected to a temperature higher than 0 ° C. or a reduced pressure of 10 torr or more did not have the desired properties because the strength properties were low.

【0021】これらの比較例に対して、その他の本発明
に基づく試料は、いずれも抗折強度に優れており、室温
および1000℃でいずれも900MPa以上の強度が
達成された。
In contrast to these comparative examples, all the other samples according to the present invention were excellent in flexural strength, and achieved a strength of 900 MPa or more at room temperature and 1000 ° C.

【0022】実施例2 実施例1において、タングステン化合物として数種の粒
径の異なる粉末を準備し、これを表2の組成となるよう
に、1t/cm2 で金型成形した。そしてこの成形体を
1torrの減圧下で1100℃で5時間処理した後、
さらに窒素中で1800℃で5時間常圧焼成した。得ら
れた焼結体に対して実施例1と同様にして特性の評価を
行った。
Example 2 In Example 1, several kinds of powders having different particle diameters were prepared as the tungsten compound, and the powder was mold-molded at 1 t / cm 2 so as to have the composition shown in Table 2. Then, this molded body was treated under a reduced pressure of 1 torr at 1100 ° C. for 5 hours,
Further, it was calcined in nitrogen at 1800 ° C. for 5 hours under normal pressure. The characteristics of the obtained sintered body were evaluated in the same manner as in Example 1.

【0023】成形体を炭化珪素質の匣鉢に入れて、組成
変動を少なくするために、雰囲気を制御し1100℃5
時間(1torr)1800℃5時間の条件で焼成し
た。
The molded body was placed in a silicon carbide sagger and the atmosphere was controlled at 1100 ° C. to reduce composition fluctuation.
Firing was performed under the conditions of time (1 torr) 1800 ° C. for 5 hours.

【0024】得られた焼結体をJIS−R1601にて
指定されている形状まで研磨し試料を作製した。この試
料についてJIS−R1601に基づく室温および1000
℃での4点曲げ抗折強度試験を実施した。また鏡面仕上
げを行ったサンプルのSEM観察によりWSi2 粒子の
大きさを測定した。結果は表2に示した。
The obtained sintered body was ground to a shape specified in JIS-R1601 to prepare a sample. About this sample, room temperature and 1000 based on JIS-R1601
A 4-point bending bending strength test at 0 ° C was performed. Further, the size of WSi 2 particles was measured by SEM observation of the sample subjected to mirror finishing. The results are shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】表2の結果によると、W化合物の平均粒径
が3μmを越えると、WSi2 の平均粒径も3μmを越
える傾向にあり、その結果、W化合物の平均粒径が3μ
mを越えるNo.25〜28はいずれも強度の低いもので
あった。従って、W化合物の平均粒径は3μm以下であ
ることが重要であることがわかる。
According to the results shown in Table 2, when the average particle size of the W compound exceeds 3 μm, the average particle size of WSi 2 tends to exceed 3 μm. As a result, the average particle size of the W compound is 3 μm.
Nos. 25 to 28 exceeding m were all low in strength. Therefore, it is important that the average particle size of the W compound is 3 μm or less.

【0027】[0027]

【発明の効果】以上詳述した通り、本発明の窒化珪素質
焼結体の製造方法によれば、W化合物の窒化珪素や酸化
珪素との反応による焼結体への悪影響を低減し、焼結体
中にWSi2 を微細に分散することができ、しかも安価
な原料を用いて、室温から1000℃まで高強度の焼結
体を作製することができる。
As described above in detail, according to the method for producing a silicon nitride sintered body of the present invention, the adverse effect on the sintered body due to the reaction of the W compound with silicon nitride or silicon oxide is reduced, and the sintering is performed. WSi 2 can be finely dispersed in the bonded body, and a low-strength raw material can be used to produce a high-strength sintered body from room temperature to 1000 ° C.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素を主成分とし、添加成分として少
なくとも周期律表第3a族元素酸化物、酸化アルミニウ
ムを含み、さらに平均粒径が3μm以下のタングステン
化合物(ただし、Wの珪化物を除く)をWSi2 換算で
全量中0.5〜10重量%の割合で含む成形体を10t
orr以下の減圧中、800℃〜1400℃の温度で加
熱して平均粒径3μm以下のWSi2 を生成させた後、
これを非酸化性雰囲気中で焼成することを特徴とする窒
化珪素質焼結体の製造方法。
1. A tungsten compound containing silicon nitride as a main component, at least an oxide of a Group 3a element of the periodic table as an additive component, and aluminum oxide, and having an average particle diameter of 3 μm or less (however, a silicide of W is excluded). ) In an amount of 0.5 to 10% by weight based on the total amount of WSi 2 in an amount of 10 t.
After heating at a temperature of 800 ° C. to 1400 ° C. under reduced pressure of orr to produce WSi 2 having an average particle size of 3 μm or less,
A method for producing a silicon nitride-based sintered body, which comprises firing this in a non-oxidizing atmosphere.
JP23650994A 1994-09-30 1994-09-30 Method for producing silicon nitride based sintered body Expired - Fee Related JP3241215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23650994A JP3241215B2 (en) 1994-09-30 1994-09-30 Method for producing silicon nitride based sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23650994A JP3241215B2 (en) 1994-09-30 1994-09-30 Method for producing silicon nitride based sintered body

Publications (2)

Publication Number Publication Date
JPH08104570A true JPH08104570A (en) 1996-04-23
JP3241215B2 JP3241215B2 (en) 2001-12-25

Family

ID=17001771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23650994A Expired - Fee Related JP3241215B2 (en) 1994-09-30 1994-09-30 Method for producing silicon nitride based sintered body

Country Status (1)

Country Link
JP (1) JP3241215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851369A (en) * 2019-01-24 2019-06-07 中国科学院上海硅酸盐研究所 A method of preparing high heat conductivity silicon nitride ceramics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851369A (en) * 2019-01-24 2019-06-07 中国科学院上海硅酸盐研究所 A method of preparing high heat conductivity silicon nitride ceramics
CN109851369B (en) * 2019-01-24 2022-04-05 江西中科上宇科技有限公司 Method for preparing high-thermal-conductivity silicon nitride ceramic

Also Published As

Publication number Publication date
JP3241215B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JP2980342B2 (en) Ceramic sintered body
JP3454993B2 (en) Silicon nitride sintered body and method for producing the same
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JPH1179848A (en) Silicon carbide sintered compact
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH06116045A (en) Silicon nitride sintered compact and its production
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JP3981510B2 (en) Method for producing silicon nitride sintered body
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP3207065B2 (en) Silicon nitride sintered body
JP3237963B2 (en) Silicon nitride sintered body and method for producing the same
JPH08277166A (en) Silicon nitride powder for producing silicon ntride-based sintered body, silicon nitride-based sintered body and its production
JP2000143352A (en) Silicon nitride-based sintered compact and its production
JPH06305839A (en) Sintered silicon nitride and its production
JPH0559077B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees