JPH06305839A - Sintered silicon nitride and its production - Google Patents

Sintered silicon nitride and its production

Info

Publication number
JPH06305839A
JPH06305839A JP5099587A JP9958793A JPH06305839A JP H06305839 A JPH06305839 A JP H06305839A JP 5099587 A JP5099587 A JP 5099587A JP 9958793 A JP9958793 A JP 9958793A JP H06305839 A JPH06305839 A JP H06305839A
Authority
JP
Japan
Prior art keywords
oxide
silicon
group
aluminum
lutetium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5099587A
Other languages
Japanese (ja)
Other versions
JP3124864B2 (en
Inventor
Shoji Kosaka
祥二 高坂
Masahiro Sato
政宏 佐藤
Hideki Uchimura
英樹 内村
Takehiro Oda
武廣 織田
Kenichi Tajima
健一 田島
Tomohiro Iwaida
智広 岩井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14251232&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06305839(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP05099587A priority Critical patent/JP3124864B2/en
Publication of JPH06305839A publication Critical patent/JPH06305839A/en
Application granted granted Critical
Publication of JP3124864B2 publication Critical patent/JP3124864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a sintered material composed of beta-sialon crystal phase and a grain boundary phase containing lutetium, etc., and having improved bending strength from room temperature to high temperature and thermal shock resistance by baking a formed material containing silicon nitride as a main component and a specific amount of an assistant at a prescribed temperature. CONSTITUTION:A main component consisting of powdery silicon nitride is mixed with an assistant component consisting of the group 3a element oxide including lutetium oxide, silicon oxide and aluminum oxide or their compounds to obtain a mixture containing 0.1-10mol% of the group 3a elements in total and 1.2-8.4mol% of aluminum oxide based on the sum of the main component oxide and the aluminum oxide. The mixture is baked in a non-oxidizing atmosphere at 1600-1900 deg.C to obtain a sintered material composed of a beta-sialon crystal phase and a grain boundary phase containing group 3 elements including lutetium in combination with silicon, aluminum, oxygen and nitrogen and having a thermal conductivity of >=15 w/m.K at room temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、室温から高温までの強
度特性に優れ、さらに高熱伝導率を有し、耐熱衝撃性に
優れた自動車用部品やガスタ−ビンエンジン用部品等に
使用される窒化珪素質焼結体及びその製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for automobile parts, gas turbine engine parts, etc. which have excellent strength characteristics from room temperature to high temperature, high thermal conductivity and excellent thermal shock resistance. The present invention relates to a silicon nitride sintered body and a method for manufacturing the same.

【0002】[0002]

【従来技術】従来から、窒化珪素質焼結体は、耐熱性、
耐熱衝撃性および耐酸化性に優れることからエンジニア
リングセラミックス、特にタ−ボロ−タ−等の熱機関用
として応用が進められている。近時、高密度で高強度の
焼結体を作製するために焼結助剤としてY2 3 、Sc
2 3 などの希土類元素酸化物や酸化アルミニウムを添
加することが特公昭52−3649号、特公昭58−5
190号にて提案されている。
2. Description of the Related Art Conventionally, silicon nitride sintered bodies have
Due to its excellent thermal shock resistance and oxidation resistance, it is being applied to engineering ceramics, especially for heat engines such as turbochargers. Recently, Y 2 O 3 and Sc are used as sintering aids for producing high density and high strength sintered bodies.
The addition of rare earth element oxides such as 2 O 3 and aluminum oxide is disclosed in Japanese Examined Patent Publication Nos. 52-3649 and 58-5.
No. 190 proposed.

【0003】また、酸化アルミニウムを含む系において
は、窒化珪素との反応によりβ−サイアロンが形成され
ることが知られており、このβ−サイアロンを主成分と
する焼結体を得ることにより耐食性を改善することも提
案されている。
It is known that β-sialon is formed by the reaction with silicon nitride in a system containing aluminum oxide. Corrosion resistance is obtained by obtaining a sintered body containing β-sialon as a main component. It is also proposed to improve.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、焼結
助剤としてY2 3 等と酸化アルミニウムを併用して用
いた場合には、その焼結性を高めることができ、これに
より室温や高温強度に優れた高密度の焼結体が得られ、
構造用材料として用いられつつあるが、その使用条件が
厳しくなるとともに耐熱衝撃性等の熱に対する耐久性を
高める必要があり、材料としての信頼性を高めるために
さらなる特性の向上が望まれている。
However, when Y 2 O 3 or the like and aluminum oxide are used in combination as the sintering aid, the sinterability can be increased, which results in room temperature or high temperature. A high density sintered body with excellent strength is obtained,
Although it is being used as a structural material, it is necessary to increase its durability against heat such as thermal shock resistance as the usage conditions become stricter, and further improvement of its characteristics is desired in order to increase its reliability as a material. .

【0005】よって、本発明は、室温から高温まで自動
車用部品やガスタ−ビンエンジン用部品等で使用される
に充分な機械的特性、特に、室温から1000℃の高温
までの抗折強度に優れ、しかも高熱伝導率を有する耐熱
衝撃抵抗に優れた窒化珪素質焼結体およびその製造方法
を提供するにある。
Therefore, the present invention is excellent in mechanical properties sufficient to be used in automobile parts, gas turbine engine parts and the like from room temperature to high temperature, and particularly excellent in bending strength from room temperature to high temperature of 1000 ° C. Further, it is to provide a silicon nitride sintered body having a high thermal conductivity and an excellent thermal shock resistance, and a method for producing the same.

【0006】[0006]

【問題点を解決するための手段】本発明者らは、焼結体
の機械的、熱的特性を高めるためには、焼結体の主結晶
相および窒化珪素相の粒界に存在する副相を制御するこ
とが重要であるという見地に基づき検討を重ねた結果、
助剤成分として用いられる希土類元素化合物のうち、L
2 3 等のルテチウム化合物を用いることによりこれ
まで多用されているY2 3 等に比較して高強度化が可
能であり、且つこれを粒界相中に存在させること、ま
た、β−サイアロン(Si6-Z Alz z 8-z )を主
結晶相として構成し、そのz値を特定の範囲に制御する
とともに熱伝導率が特定以上の焼結体が、室温から10
00℃の高温までの抗折強度に優れるとともに、耐熱衝
撃性を高めることができることを知見した。
In order to improve the mechanical and thermal characteristics of the sintered body, the inventors of the present invention have found that the sub-crystals existing in the grain boundaries of the main crystal phase and the silicon nitride phase of the sintered body. As a result of repeated studies based on the viewpoint that it is important to control the phase,
Of the rare earth element compounds used as auxiliary components, L
By using a lutetium compound such as u 2 O 3 or the like, it is possible to increase the strength as compared with Y 2 O 3 or the like which has been widely used so far, and to make it exist in the grain boundary phase, and β -Sialon (Si 6-Z Al z O z N 8-z ) is used as a main crystal phase, and the z value thereof is controlled within a specific range, and a sintered body having a specific thermal conductivity of 10% or more is selected from room temperature to 10%.
It has been found that not only the bending strength up to a high temperature of 00 ° C is excellent, but also the thermal shock resistance can be enhanced.

【0007】即ち、本発明の窒化珪素質焼結体は、β−
サイアロン(Si6-Z Alz z 8-z 、0.05≦z
≦0.35)結晶相を主相とし、その粒界相中に少なく
ともルテチウムを含む周期律表第3a族元素、珪素、ア
ルミニウム、酸素および窒素を含有してなる焼結体であ
って、前記周期律表第3a族元素の総量が酸化物換算で
0.1乃至10モル%であり、且つ室温の熱伝導率が1
5W/m・K以上であることを特徴とするものである。
That is, the silicon nitride sintered body of the present invention is β-
Sialon (Si 6-Z Al z O z N 8-z , 0.05 ≦ z
≦ 0.35) A sintered body containing a crystal phase as a main phase, and a grain boundary phase containing at least lutetium, an element of Group 3a of the periodic table, silicon, aluminum, oxygen and nitrogen, wherein The total amount of Group 3a elements of the Periodic Table is 0.1 to 10 mol% in terms of oxide, and the thermal conductivity at room temperature is 1
It is characterized by being 5 W / m · K or more.

【0008】また、本発明の製法は、窒化珪素粉末から
なる主成分に対して、少なくとも酸化ルテチウムを含む
周期律表第3a族元素酸化物、酸化珪素および酸化アル
ミニウム、あるいはこれらの化合物を助剤成分として含
み、前記周期律表第3a族元素の総量が酸化物換算で
0.1乃至10モル%であり、前記主成分とアルミニウ
ムの酸化物換算量との合計量に対するアルミニウムの酸
化物換算量が1.2モル%乃至8.4モル%の割合から
なる混合物を成形後、1600〜1900℃の非酸化性
雰囲気中で焼成するか、あるいは珪素粉末、あるいは珪
素粉末と窒化珪素粉末からなる主成分に対して、少なく
とも酸化ルテチウムを含む周期律表第3a族元素酸化
物、酸化珪素および酸化アルミニウム、あるいはこれら
の化合物を助剤成分として含み、前記周期律表第3a族
元素の総量が酸化物換算で0.1乃至10モル%であ
り、前記主成分中の窒化珪素換算量とアルミニウムの酸
化物換算量との合計量に対するアルミニウムの酸化物換
算量が1.2モル%乃至8.4モル%の割合からなる混
合物を成形後、800℃〜1500℃の窒素含有雰囲気
中で熱処理をして前記珪素を窒化した後、1600〜1
900℃の非酸化性雰囲気中で焼成することにより、β
−サイアロン(Si6-Z Alz z 8-z 、0.05≦
z≦0.35)結晶相と、ルテチウム、珪素、アルミニ
ウム、酸素および窒素を含有する粒界相からなる焼結体
を得ることを特徴とするものである。
Further, in the production method of the present invention, an oxide of a Group 3a element of the periodic table containing at least lutetium oxide, silicon oxide and aluminum oxide, or a compound thereof is used as an auxiliary agent with respect to the main component composed of silicon nitride powder. As a component, the total amount of the Group 3a elements of the Periodic Table is 0.1 to 10 mol% in terms of oxide, and the oxide equivalent of aluminum relative to the total amount of the main component and the oxide equivalent of aluminum. Is molded in a non-oxidizing atmosphere at 1600 to 1900 ° C. after molding a mixture having a ratio of 1.2 mol% to 8.4 mol%, or is composed mainly of silicon powder or silicon powder and silicon nitride powder. With respect to the components, an oxide of a Group 3a element of the periodic table containing at least lutetium oxide, silicon oxide and aluminum oxide, or a compound thereof is used as an auxiliary component. And the total amount of the Group 3a elements of the Periodic Table is 0.1 to 10 mol% in terms of oxide, and the total amount of silicon nitride in the main component and the amount of oxide of aluminum in the main component is the total amount of aluminum. After molding a mixture having an oxide conversion amount of 1.2 mol% to 8.4 mol%, the mixture is heat treated in a nitrogen-containing atmosphere at 800 ° C. to 1500 ° C. to nitride the silicon, and then 1600 to 1
By firing in a non-oxidizing atmosphere at 900 ° C, β
-Sialon (Si 6-Z Al z O z N 8-z , 0.05 ≦
z ≦ 0.35) and a grain boundary phase containing lutetium, silicon, aluminum, oxygen and nitrogen are obtained.

【0009】以下、本発明を詳述する。本発明の窒化珪
素質焼結体は、組織上、β−サイアロン(Si6-Z Al
z z8-z )を主結晶相とし、少なくともルテチウム
と、珪素、アルミニウム、酸素および窒素を含有する粒
界相から構成される。
The present invention will be described in detail below. The silicon nitride sintered body of the present invention has a structure of β-sialon (Si 6 -Z Al
z O z N 8-z ) as a main crystal phase, and is composed of a grain boundary phase containing at least lutetium and silicon, aluminum, oxygen and nitrogen.

【0010】本発明によれば、第1に主結晶相であるβ
−サイアロン(Si6-Z Alz z8-z )の組成式中
のzの値が0.05乃至0.35である事が重要であ
る。これは、zが0.05未満では、β−サイアロンの
優れた特長が引き出せなく、zが0.35を越えると焼
結体の熱伝導率が低下してしまうためである。
According to the present invention, firstly, the main crystalline phase β
It is important that the value of z in the composition formula of sialon (Si 6-Z Al z O z N 8-z ) is 0.05 to 0.35. This is because if z is less than 0.05, the excellent characteristics of β-sialon cannot be taken out, and if z exceeds 0.35, the thermal conductivity of the sintered body decreases.

【0011】また、本発明によれば、焼結助剤成分とし
て少なくともルテチウム化合物を用いることが重要で、
粒界相中にルテチウムを含有させることにより、粒界相
の融点が上昇し高温強度を高める事ができる。なお、こ
のルテチウムは、その他の周期律表第3a族元素のうち
の1種以上を併用して含有させることも当然できる。
Further, according to the present invention, it is important to use at least a lutetium compound as a sintering aid component,
By including lutetium in the grain boundary phase, the melting point of the grain boundary phase can be increased and the high temperature strength can be increased. It should be noted that this lutetium can naturally be contained in combination with one or more other elements of Group 3a of the periodic table.

【0012】また、これらのルテチウムの酸化物換算
量、あるいはルテチウムとその他の周期律表第3a族元
素のうちの1種以上の酸化物換算量の合計量が0.1乃
至10モル%、特に0.3乃至5モル%であることが望
ましい。これは、上記量が0.1モル%未満では焼結性
が低下し、10モル%を越えると、焼結体中に占める粒
界相の体積分率が増加し、高温強度を低下させると共に
熱伝導率を低下させてしまうためである。なお、ルテチ
ウムとその他の周期律表第3a族元素とを併用する場合
には、ルテチウムが酸化物換算量で0.1モル%以上、
特に全周期律表第3a族元素の酸化物換算量中、20%
以上の割合で存在させることによりルテチウムの添加効
果が発揮される。
Further, the total amount of these lutetium in terms of oxide or the total amount of lutetium and one or more of lutetium and one or more of the other elements in Group 3a of the Periodic Table is 0.1 to 10 mol%, particularly It is preferably 0.3 to 5 mol%. This is because if the above amount is less than 0.1 mol%, the sinterability decreases, and if it exceeds 10 mol%, the volume fraction of the grain boundary phase in the sintered body increases, and the high temperature strength decreases. This is because the thermal conductivity is reduced. When lutetium and other elements of Group 3a of the periodic table are used in combination, lutetium is 0.1 mol% or more in terms of oxide,
In particular, 20% in the oxide conversion amount of Group 3a element of the entire periodic table
The lutetium addition effect is exerted by making it exist in the above ratio.

【0013】本発明に用いられるルテチウム以外の周期
律表第3a族元素として、Yやランタノイド元素が上げ
られるが、特にYb、Erが好ましい。
Other than lutetium used in the present invention, elements of Group 3a of the periodic table include Y and lanthanoid elements, and Yb and Er are particularly preferable.

【0014】次に、本発明の窒化珪素質焼結体を製造す
る方法について説明する。まず、原料粉末として窒化珪
素粉末、または珪素粉末および/または窒化珪素粉末を
主成分として用いる。窒化珪素粉末はそれ自体α−Si
3 4 、β−Si3 4 のいずれでも用いることがで
き、それらの粒径は0.4〜1.2μmが好ましい。
Next, a method for manufacturing the silicon nitride sintered body of the present invention will be described. First, silicon nitride powder or silicon powder and / or silicon nitride powder is used as a main component as a raw material powder. The silicon nitride powder itself is α-Si.
Either 3 N 4 or β-Si 3 N 4 can be used, and their particle size is preferably 0.4 to 1.2 μm.

【0015】出発原料として珪素粉末を用いると、後述
する窒化工程において、寸法変化が無く、重量増加する
ために、成形体の密度が向上し、焼成時の寸法収縮量を
小さくでき、焼結体の寸法精度を向上できる。珪素粉末
は窒化を容易にするためにその平均粒径が10μm以
下、特に3μm以下の微粒のものが適当である。ただ
し、出発原料中に珪素粉末を多量に含む場合は、後述す
る窒化工程において、添加された珪素粉末を全て窒化珪
素に変換することが困難となり、逆に特性が低下するこ
とがあるために、珪素粉末と窒化珪素粉末とを珪素粉末
の窒化珪素換算量と窒化珪素粉末の比率が1以下となる
比率で併用することが好ましい。
When silicon powder is used as the starting material, there is no dimensional change in the nitriding step described later and the weight increases, so that the density of the molded body is improved and the dimensional shrinkage during firing can be reduced, and the sintered body can be reduced. The dimensional accuracy of can be improved. In order to facilitate nitriding, it is suitable that the silicon powder has fine particles having an average particle size of 10 μm or less, particularly 3 μm or less. However, when the starting raw material contains a large amount of silicon powder, it becomes difficult to convert all of the added silicon powder into silicon nitride in the nitriding step described later, and conversely, the characteristics may deteriorate. It is preferable to use the silicon powder and the silicon nitride powder together in such a ratio that the silicon nitride conversion amount of the silicon powder and the ratio of the silicon nitride powder are 1 or less.

【0016】次に、上記主成分に対する助剤成分とし
て、少なくも酸化ルテチウム、あるいは酸化ルテチウム
と周期律表第3a族元素酸化物のうちの一種以上と、酸
化珪素、酸化アルミニウム粉末を添加するか、あるいは
これらの成分の化合物粉末を用いる。ここで、酸化珪素
は、窒化珪素原料に不可避的に含まれる酸素、あるい
は、SiO2 等の添加物として添加する全量を示してい
る。
Then, at least lutetium oxide, or at least one of lutetium oxide and one or more oxides of Group 3a elements of the periodic table, and silicon oxide and aluminum oxide powder are added as auxiliary components for the above main components. Alternatively, compound powders of these components are used. Here, the total amount of silicon oxide added is oxygen, which is inevitably contained in the silicon nitride raw material, or an additive such as SiO 2 .

【0017】本発明による窒化珪素と酸化アルミニウム
の反応によるβ−サイアロン(Si6-Z Alz z
8-z )の生成反応は下記化1
The β-sialon (Si 6 -Z Al z O z N) produced by the reaction of silicon nitride and aluminum oxide according to the present invention is used.
8-z ) formation reaction is shown below.

【0018】[0018]

【化1】 [Chemical 1]

【0019】のように考えられる(M. E. MILBERG and
W. M. MILLER, J. Am. Ceram. Soc., 61 3-4 179(197
8))。
[ME MILBERG and
WM MILLER, J. Am. Ceram. Soc., 61 3-4 179 (197
8)).

【0020】したがって、zの値を0.05乃至0.3
5の間に制御するためには、アルミニウムの酸化物換算
量の、主成分組成である珪素の窒化珪素換算量と窒化珪
素の合計量とアルミニウムの酸化物換算量の合計量に対
するモル分率が1.2モル%乃至8.4モル%になるよ
うに調製、混合する必要がある。
Therefore, the value of z is 0.05 to 0.3.
In order to control the amount within the range of 5, the molar fraction of the oxide equivalent of aluminum with respect to the silicon nitride equivalent of silicon as the main component, the total amount of silicon nitride and the oxide equivalent of aluminum is calculated. It is necessary to prepare and mix so as to be 1.2 mol% to 8.4 mol%.

【0021】一方、助剤成分として添加される酸化ルテ
チウム、あるいは酸化ルテチウムとその他の周期律表第
3a族元素酸化物との合計量は0.1乃至10モル%、
特に0.3乃至5モル%になるように調製、混合する。
なお、ルテチウム以外の周期律表第3a族元素酸化物を
併用する場合、酸化ルテチウムは0.1モル%以上、特
に0.3モル%以上であることが必要である。
On the other hand, the total amount of lutetium oxide or lutetium oxide and other oxides of Group 3a of the periodic table added as an auxiliary component is 0.1 to 10 mol%,
In particular, it is prepared and mixed so as to be 0.3 to 5 mol%.
When an oxide of a Group 3a element of the periodic table other than lutetium is used together, lutetium oxide needs to be 0.1 mol% or more, and particularly 0.3 mol% or more.

【0022】このようにして得られた混合粉末を公知の
成形方法、例えば、プレス成形、鋳込み成形、押出し成
形、射出成形、冷間静水圧成形などにより所望の形状に
成形する。
The mixed powder thus obtained is molded into a desired shape by a known molding method such as press molding, cast molding, extrusion molding, injection molding or cold isostatic pressing.

【0023】次に、成形体に珪素粉末が含まれる場合
は、成形体を窒素含有雰囲気中で800℃〜1500℃
の温度で熱処理して成形体に含まれる珪素粉末を窒化
し、窒化珪素を生成させる。この窒化処理において、含
有される珪素粉末をすべて窒化させるためには、上記温
度範囲内にて、温度を多段に上昇させつつ徐々に窒化さ
せていくことが好ましい。
Next, when the compact contains silicon powder, the compact is in a nitrogen-containing atmosphere at 800 ° C. to 1500 ° C.
The silicon powder contained in the molded body is nitrided by heat treatment at the temperature of 1 to generate silicon nitride. In this nitriding treatment, in order to completely nitrid the contained silicon powder, it is preferable to gradually nitridize the temperature within the above temperature range while raising the temperature in multiple stages.

【0024】その後、得られた成形体を公知の焼成方
法、例えば、ホットプレス方法、常圧焼成、窒素ガス圧
力焼成、さらには、これらの焼成後にHIP焼成やガラ
スシ−ルHIP焼成等で焼成し、緻密な焼結体を得る。
この焼結過程でルテチウム、あるいはルテチウムと周期
律表第3a族元素のうちの一種以上とアルミニウムと酸
素と窒素から構成される液相を通して、窒化珪素粒子が
溶解−再析出段階で、窒化珪素が液相中のアルミニウム
元素と酸素元素を取り込みながら、焼結が進行し、β−
サイアロン主結晶相が生成されると考えられる。
Thereafter, the obtained molded body is fired by a known firing method, for example, hot pressing method, normal pressure firing, nitrogen gas pressure firing, and further, HIP firing or glass seal HIP firing after these firings. , To obtain a dense sintered body.
During this sintering process, silicon nitride particles are dissolved-reprecipitated in a liquid phase composed of lutetium or one or more of lutetium and one or more elements of Group 3a of the periodic table, aluminum, oxygen and nitrogen, and silicon nitride Sintering proceeds while taking in aluminum element and oxygen element in the liquid phase, β-
It is thought that the main crystalline phase of sialon is generated.

【0025】この時の焼成温度は、高すぎると主結晶相
であるβ−サイアロン結晶が粒成長し強度が低下するた
め、1900℃以下、特に、1600〜1850℃の窒
素ガス含有非酸化性雰囲気であることが望ましい。
If the firing temperature at this time is too high, the β-sialon crystal which is the main crystal phase grows grains and the strength decreases, so that the nitrogen gas-containing non-oxidizing atmosphere at 1900 ° C. or lower, particularly 1600 to 1850 ° C. Is desirable.

【0026】また、本発明によれば、上記組成に加え、
周期律表第4a、5a、6a族元素金属や、それらの炭
化物、窒化物、珪化物、または、SiCなどのは、分散
粒子やウィスカ−として本発明の焼結体に存在しても特
性を劣化させるような影響が少ないことから、これらを
周知技術の基づき、適量添加して複合材料として特性の
改善を行うことも当然可能である。
According to the present invention, in addition to the above composition,
Metals of Group 4a, 5a, and 6a elements of the periodic table and their carbides, nitrides, silicides, or SiC have characteristics even if they exist in the sintered body of the present invention as dispersed particles or whiskers. Since there is little influence such as deterioration, it is naturally possible to improve the characteristics as a composite material by adding an appropriate amount thereof based on a well-known technique.

【0027】[0027]

【作用】窒化珪素焼結体の機械的特性および熱的特性
は、構成されるβ−サイアロン粒子と粒界相によって決
定されるが、通常、セラミックスの熱衝撃破壊抵抗係数
は下記数1
The mechanical and thermal properties of the silicon nitride sintered body are determined by the β-sialon particles and the grain boundary phase, and the thermal shock fracture resistance coefficient of ceramics is usually expressed by the following formula 1.

【0028】[0028]

【数1】 [Equation 1]

【0029】より求められる。式中、R’は熱衝撃破壊
抵抗係数、Sは抗折強度、Eはヤング率、νはポアソン
比、kは熱伝導率、αは熱膨張率である 焼結体のヤング率、ポアソン比、熱膨張率は粒界相量が
極端に多くならない限り、ほぼ一定であるが、抗折強度
と熱伝導率は焼結体により大幅に変化する。特に、高強
度材料において、数1から明らかなように、熱伝導率を
高める事で、熱衝撃破壊抵抗係数を高める事ができ、ひ
いては焼結体の耐熱衝撃抵抗を高める事ができる。
It is obtained from In the formula, R'is a thermal shock fracture resistance coefficient, S is a flexural strength, E is a Young's modulus, ν is a Poisson's ratio, k is a thermal conductivity, and α is a thermal expansion coefficient. Young's modulus of a sintered body, Poisson's ratio The coefficient of thermal expansion is almost constant unless the amount of grain boundary phase is extremely large, but the transverse rupture strength and the coefficient of thermal conductivity greatly change depending on the sintered body. In particular, in the case of a high-strength material, by increasing the thermal conductivity, the coefficient of thermal shock fracture resistance can be increased, and as a result, the thermal shock resistance of the sintered body can be increased, as is clear from Equation 1.

【0030】セラミックスは結晶と粒界相から構成され
る多結晶体である。したがって、熱伝導率を低下させる
フォノン散乱の要因が多数存在する。β−サイアロン焼
結体の熱伝導率は、粒子内部や粒界に残存している不純
物量、結晶の完全性、微構造に大きく依存している。特
に、結晶内のAlとOの固溶量の増加とともに熱伝導率
は低下する。本発明によれば、上記観点に基づき、熱伝
導率とAlとOの固溶量との関係を検討した結果、zが
0.05乃至0.35の範囲において熱伝導率を最大に
することができ、これにより焼結体の耐熱衝撃抵抗を高
めることができる。
Ceramics is a polycrystalline body composed of crystals and grain boundary phases. Therefore, there are many factors of phonon scattering that reduce the thermal conductivity. The thermal conductivity of the β-sialon sintered body largely depends on the amount of impurities remaining inside the grains and the grain boundaries, the crystal perfection, and the microstructure. In particular, the thermal conductivity decreases as the solid solution amount of Al and O in the crystal increases. According to the present invention, based on the above viewpoint, as a result of examining the relationship between the thermal conductivity and the solid solution amounts of Al and O, the thermal conductivity is maximized in the range of z of 0.05 to 0.35. It is possible to increase the thermal shock resistance of the sintered body.

【0031】また、ルテチウムは、周期律表第3a族元
素の中でも最もイオン半径が小さい元素であり、粒界相
の融点およびガラス転移温度を上昇できるため室温から
高温まで機械的強度を向上させることができる。
Further, lutetium is an element having the smallest ionic radius among the elements of Group 3a of the periodic table, and since it can raise the melting point and glass transition temperature of the grain boundary phase, it must improve the mechanical strength from room temperature to high temperature. You can

【0032】本発明によれば、上述したようにβ−サイ
アロン(Si6-Z Alz z 8-z)結晶相のz値を制
御し、且つ粒界相に少なくともルテチウムと珪素とアル
ミニウムと酸素と窒素を含有せしめることにより、室温
から1000℃までの優れた機械的特性と優れた熱伝導
率を付与することができ、これにより高温での耐熱衝撃
性を大幅に向上することができる。
According to the present invention, as described above, the z value of the β-sialon (Si 6 -Z Al z O z N 8-z ) crystal phase is controlled, and at least lutetium, silicon and aluminum are contained in the grain boundary phase. By containing oxygen and nitrogen, excellent mechanical properties from room temperature to 1000 ° C. and excellent thermal conductivity can be imparted, and thereby thermal shock resistance at high temperatures can be significantly improved. .

【0033】[0033]

【実施例】【Example】

実施例1 窒化珪素粉末(BET比表面積9m2 /g、α率98
%、酸素量1.2重量%)と酸化ルテチウム、あるいは
酸化ルテチウムと各種の周期律表第3a族元素酸化物、
酸化珪素粉末、酸化アルミニウム粉末を用い、一部、酸
化ルテチウムと酸化珪素粉末から合成したLu2 Si2
7 粉末を用いて(試料No.11)、表1に示す組成
になるように調合後、1t/cm2 で金型成形した。
Example 1 Silicon nitride powder (BET specific surface area 9 m 2 / g, α ratio 98
%, Oxygen content 1.2% by weight) and lutetium oxide, or lutetium oxide and various oxides of Group 3a of the periodic table,
Lu 2 Si 2 partially synthesized from lutetium oxide and silicon oxide powder using silicon oxide powder and aluminum oxide powder
O 7 powder was used (Sample No. 11) to prepare the composition shown in Table 1, and the mixture was molded with 1 t / cm 2 .

【0034】成形体を炭化珪素質の匣鉢に入れて、組成
変動を少なくするために、雰囲気を制御し、加圧窒素ガ
ス気流中、1800℃の温度で10時間焼成した。
The molded body was placed in a silicon carbide mortar and fired at 1800 ° C. for 10 hours in a pressurized nitrogen gas stream under controlled atmosphere in order to reduce composition fluctuation.

【0035】得られた焼結体をJIS−R1601にて
指定されている形状まで研磨し試料を作製した。この試
料についてアルキメデス法に基づく比重測定、X線回折
測定によるβ−窒化珪素結晶のピ−クシフトよりz値を
求め、さらにJIS−R1601に基づく室温および1
000℃での4点曲げ抗折強度試験を実施した。また、
熱伝導率をレ−ザ−フラッシュ法により求めた。結果を
表2に示した。
The obtained sintered body was ground to a shape specified in JIS-R1601 to prepare a sample. For this sample, the z value was determined from the specific gravity measurement based on the Archimedes method and the peak shift of the β-silicon nitride crystal by X-ray diffraction measurement, and further at room temperature and 1 based on JIS-R1601.
A 4-point bending bending strength test at 000 ° C. was performed. Also,
The thermal conductivity was determined by the laser flash method. The results are shown in Table 2.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】表1および表2の結果によると、β−サイ
アロン(Si6-Z Alz z 8-z)結晶相中のz値が
0.05未満のNo.1は緻密化不足であり、z値が
0.35を越えるNo.14は熱伝導率が低下した。ル
テチウムを含まない試料No.3、4、5は、ルテチウ
ムを含む本発明品に比較して高温強度が低いことがわか
る。さらに、ルテチウムと周期律表第3a族元素の酸化
物換算量が10モル%を越えるNo.19の試料は熱伝
導率が低下していた。これらの比較例に対して、その他
の本発明に基づく試料は、いずれも室温および1000
℃の抗折強度に優れるとともに、高い熱伝導率を有する
ものであった。
According to the results shown in Tables 1 and 2, the z-value in the β-sialon (Si 6 -Z Al z O z N 8-z ) crystal phase was less than 0.05. No. 1 is insufficiently densified, and No. 1 having a z value exceeding 0.35. No. 14 had lower thermal conductivity. Sample No. containing no lutetium It can be seen that 3, 4, and 5 have low high-temperature strength as compared with the product of the present invention containing lutetium. Further, the lutetium and Group 3a elements of the Periodic Table have oxide conversion amounts exceeding 10 mol%. Sample No. 19 had low thermal conductivity. In contrast to these comparative examples, all the other samples according to the present invention were at room temperature and 1000
It was excellent in bending strength at ° C and had high thermal conductivity.

【0039】実施例2 原料粉末として平均粒径3μm、酸素量1.1重量%の
珪素粉末と窒化珪素粉末(BET比表面積9m2 /g、
α率98%、酸素量1.2重量%)と酸化ルテチウム、
周期律表第3a族元素酸化物素粉末、酸化珪素粉末、酸
化アルミニウム粉末を用いて、表3に示す組成になるよ
うに調合後、1t/cm2 で金型成形した。
Example 2 As a raw material powder, a silicon powder having an average particle size of 3 μm and an oxygen content of 1.1% by weight and a silicon nitride powder (BET specific surface area 9 m 2 / g,
α rate 98%, oxygen content 1.2% by weight) and lutetium oxide,
A group 3a element oxide powder, silicon oxide powder, and aluminum oxide powder of the periodic table were mixed to have a composition shown in Table 3 and then molded at 1 t / cm 2 .

【0040】得られた成形体を窒素気流中、1200℃
で5時間、さらに1400℃で10時間窒化処理をし
た。この際、重量増加率から珪素の窒化率を下記数2
The obtained molded body was heated at 1200 ° C. in a nitrogen stream.
Nitriding treatment was performed for 5 hours at 1400 ° C. for 10 hours. At this time, the nitriding rate of silicon is calculated from

【0041】[0041]

【数2】 [Equation 2]

【0042】により求めた。It was determined by

【0043】得られた窒化体を炭化珪素質の匣鉢に入れ
て、組成変動を少なくするために、雰囲気を制御し、加
圧窒素ガス気流中で1800℃の温度で10時間の条件
で焼成した。
The obtained nitride was placed in a silicon carbide sagger, and the atmosphere was controlled and fired in a pressurized nitrogen gas stream at a temperature of 1800 ° C. for 10 hours in order to reduce the composition variation. did.

【0044】得られた焼結体の評価は実施例1と同じに
行った。結果は表4に示す。
Evaluation of the obtained sintered body was performed in the same manner as in Example 1. The results are shown in Table 4.

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【表4】 [Table 4]

【0047】表3および表4の結果によると、β−サイ
アロン(Si6-Z Alz z 8-z) 結晶相中のz値が
0.05未満のNo.22は緻密化不足であり、z値が
0.35を越えるNo.26は熱伝導率が低下してい
た。ルテチウムを含まないNo.24は高温強度が低下
していた。さらに、ルテチウムの酸化物換算量が10モ
ル%を越えるNo.27の試料は熱伝導率が低下してい
た。これらの比較例に対して、その他の本発明に基づく
試料は、いずれも高温までの抗折強度に優れ、高い熱伝
導率を有していた。
According to the results shown in Tables 3 and 4, No. having a z-value of less than 0.05 in the β-sialon (Si 6-Z Al z O z N 8-z ) crystal phase is less than 0.05. No. 22 is insufficiently densified, and No. 22 having a z value exceeding 0.35. No. 26 had low thermal conductivity. No. containing no lutetium No. 24 had low high temperature strength. Furthermore, the oxide conversion of lutetium exceeds 10 mol%. Sample No. 27 had low thermal conductivity. In contrast to these comparative examples, all the other samples according to the present invention were excellent in bending strength up to high temperature and had high thermal conductivity.

【0048】[0048]

【発明の効果】以上詳述したように、本発明によれば、
β−サイアロンを主相として系において、室温から10
00℃までの強度を高めるとともに耐熱衝撃性を向上さ
せることができ、自動車用部品やガスタ−ビンエンジン
用部品等への実用化を図ることができる。
As described in detail above, according to the present invention,
In the system with β-sialon as the main phase, room temperature to 10
The strength up to 00 ° C. can be increased and the thermal shock resistance can be improved, and it can be put to practical use as parts for automobiles, parts for gas turbine engines and the like.

フロントページの続き (72)発明者 織田 武廣 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 (72)発明者 田島 健一 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 (72)発明者 岩井田 智広 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内Front page continued (72) Inventor Takehiro Oda 1-4 Yamashita-cho, Kokubun-shi, Kagoshima Prefecture Kyocera Stock Company Research Institute (72) Kenichi Tajima 1-4-4 Yamashita-cho, Kokubun-shi, Kagoshima Kyocera Stock Company In the laboratory (72) Inventor Tomohiro Iwata 1-4 Yamashita-cho, Kokubun-shi, Kagoshima Kyocera Stock Company Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】β−サイアロン(Si6-Z Alz z
8-z 、0.05≦z≦0.35)結晶相を主相とし、そ
の粒界相中に少なくともルテチウムを含む周期律表第3
a族元素、珪素、アルミニウム、酸素および窒素を含有
してなる焼結体であって、前記周期律表第3a族元素の
総量が酸化物換算で0.1乃至10モル%であり、且つ
室温の熱伝導率が15W/m・K以上であることを特徴
とする窒化珪素質焼結体。
1. β-sialon (Si 6-Z Al z O z N
8-z , 0.05 ≦ z ≦ 0.35) Periodic table containing a crystal phase as a main phase and at least lutetium in the grain boundary phase.
A sintered body containing a group a element, silicon, aluminum, oxygen and nitrogen, wherein the total amount of the group 3a elements of the periodic table is 0.1 to 10 mol% in terms of oxide and at room temperature. Has a thermal conductivity of 15 W / m · K or more.
【請求項2】窒化珪素粉末からなる主成分に対して、少
なくとも酸化ルテチウムを含む周期律表第3a族元素酸
化物、酸化珪素および酸化アルミニウム、あるいはこれ
らの化合物を助剤成分として含み、前記周期律表第3a
族元素の総量が酸化物換算で0.1乃至10モル%であ
り、前記主成分とアルミニウムの酸化物換算量との合計
量に対するアルミニウムの酸化物換算量が1.2モル%
乃至8.4モル%の割合からなる混合物を成形後、16
00〜1900℃の非酸化性雰囲気中で焼成し、β−サ
イアロン(Si6-Z Alz z 8-z 、0.05≦z≦
0.35)結晶相と、少なくともルテチウムを含む周期
律表第3a族元素、珪素、アルミニウム、酸素および窒
素を含有する粒界相からなる焼結体を得ることを特徴と
する窒化珪素質焼結体の製法。
2. An oxide of Group 3a element of the periodic table containing at least lutetium oxide, silicon oxide and aluminum oxide, or a compound thereof as an auxiliary component with respect to the main component of silicon nitride powder, and Table 3a
The total amount of the group elements is 0.1 to 10 mol% in terms of oxide, and the amount of aluminum in terms of oxide is 1.2 mol% with respect to the total amount of the main component and the amount of oxide in aluminum.
To 8.4 mol% of the mixture, after molding,
Firing in a non-oxidizing atmosphere at 00 to 1900 ° C., β-sialon (Si 6-Z Al z O z N 8-z , 0.05 ≦ z ≦
0.35) Silicon nitride based sintering characterized by obtaining a sintered body comprising a crystal phase and a grain boundary phase containing at least lutetium group 3a element in the periodic table, silicon, aluminum, oxygen and nitrogen How to make a body.
【請求項3】珪素粉末、あるいは珪素粉末と窒化珪素粉
末からなる主成分に対して、少なくとも酸化ルテチウム
を含む周期律表第3a族元素酸化物、酸化珪素および酸
化アルミニウム、あるいはこれらの化合物を助剤成分と
して含み、前記周期律表第3a族元素の総量が酸化物換
算で0.1乃至10モル%であり、前記主成分中の窒化
珪素換算量とアルミニウムの酸化物換算量との合計量に
対するアルミニウムの酸化物換算量が1.2モル%乃至
8.4モル%の割合からなる混合物を成形後、800℃
〜1500℃の窒素含有雰囲気中で熱処理をして前記珪
素を窒化した後、1600〜1900℃の非酸化性雰囲
気中で焼成し、β−サイアロン(Si6-Z Alz z
8-z 、0.05≦z≦0.35)結晶相と、少なくとも
ルテチウムを含む周期律表第3a族元素、珪素、アルミ
ニウム、酸素および窒素を含有する粒界相からなる焼結
体を得ることを特徴とする窒化珪素質焼結体の製法。
3. An oxide of a group 3a group 3a element of the periodic table containing at least lutetium oxide, silicon oxide and aluminum oxide, or a compound thereof with respect to the main component of silicon powder or silicon powder and silicon nitride powder. The total amount of the elements of Group 3a of the Periodic Table is 0.1 to 10 mol% in terms of oxide, and the sum of the amount of silicon nitride in the main component and the amount of oxide in aluminum is included as an agent component. 800 ° C. after molding a mixture having a ratio of aluminum to oxide of 1.2 mol% to 8.4 mol% relative to
After heat-treating in a nitrogen-containing atmosphere at ˜1500 ° C. to nitride the silicon, it is fired in a non-oxidizing atmosphere at 1600˜1900 ° C. to obtain β-sialon (Si 6 -Z Al z O z N
8-z , 0.05 ≦ z ≦ 0.35) to obtain a sintered body composed of a crystal phase and a grain boundary phase containing at least lutetium and a Group 3a element of the periodic table, silicon, aluminum, oxygen and nitrogen A method for producing a silicon nitride-based sintered body characterized by the above.
JP05099587A 1993-04-26 1993-04-26 Silicon nitride sintered body and method for producing the same Expired - Fee Related JP3124864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05099587A JP3124864B2 (en) 1993-04-26 1993-04-26 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05099587A JP3124864B2 (en) 1993-04-26 1993-04-26 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06305839A true JPH06305839A (en) 1994-11-01
JP3124864B2 JP3124864B2 (en) 2001-01-15

Family

ID=14251232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05099587A Expired - Fee Related JP3124864B2 (en) 1993-04-26 1993-04-26 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3124864B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033177A1 (en) * 1999-10-29 2001-05-10 Robert Bosch Gmbh Temperature detector which is resistant to high temperatures and mechanically stable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033177A1 (en) * 1999-10-29 2001-05-10 Robert Bosch Gmbh Temperature detector which is resistant to high temperatures and mechanically stable

Also Published As

Publication number Publication date
JP3124864B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JP3454993B2 (en) Silicon nitride sintered body and method for producing the same
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP3124864B2 (en) Silicon nitride sintered body and method for producing the same
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP2736386B2 (en) Silicon nitride sintered body
JP3810183B2 (en) Silicon nitride sintered body
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JPH1179848A (en) Silicon carbide sintered compact
JP2980342B2 (en) Ceramic sintered body
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH10279360A (en) Silicon nitride structural parts and its production
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JPH1029869A (en) Silicon nitride-silicon carbide composite sintered compact and its production
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP2892246B2 (en) Silicon nitride sintered body and method for producing the same
JP3207065B2 (en) Silicon nitride sintered body
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP3236733B2 (en) Silicon nitride sintered body
JPH10212167A (en) Silicon nitride-base composite sintered compact and its production
JPH0686331B2 (en) High-strength sialon-based sintered body
JP2777051B2 (en) Method for producing silicon nitride based sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees