JPH07187792A - Production of silicon nitride-based sintered compact - Google Patents

Production of silicon nitride-based sintered compact

Info

Publication number
JPH07187792A
JPH07187792A JP5330789A JP33078993A JPH07187792A JP H07187792 A JPH07187792 A JP H07187792A JP 5330789 A JP5330789 A JP 5330789A JP 33078993 A JP33078993 A JP 33078993A JP H07187792 A JPH07187792 A JP H07187792A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
oxygen
embedded
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5330789A
Other languages
Japanese (ja)
Inventor
Hitoshi Matsunosako
等 松之迫
Shoji Kosaka
祥二 高坂
Masahiro Sato
政宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5330789A priority Critical patent/JPH07187792A/en
Publication of JPH07187792A publication Critical patent/JPH07187792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a uniform sintered compact not having difference in properties between inside and outside of the compact. CONSTITUTION:After forming a mixture consisting of a silicon nitride as a main component and containing at least 0.5-10mol% one oxide of 3a group elements of the Periodic Table into a prescribed shape, the formed body is embedded in a silicon nitride powder containing 0.1-0.5wt.% of oxygen and calcinated in an unoxidizing atmosphere containing nitrogen at 1700-2000 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービンなどの熱
機関用構造材料などに適した窒化珪素質焼結体の製造方
法に関し、詳細には機械的特性の内外差のない均質な焼
結体を作製するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride-based sintered body suitable for a structural material for a heat engine such as a gas turbine, and more particularly, to a homogeneous sintering having no difference in mechanical properties between inside and outside. A method for making a body.

【0002】[0002]

【従来技術】窒化珪素質焼結体は、従来より高温強度に
優れた材料として各種のエンジニアリングセラミックス
として高温用材料等への応用が進められている。この窒
化珪素は、それ自体難焼結性であることから、従来より
2 3 などの周期律表第3a族元素の酸化物やAl2
3 、MgO等の各種の金属酸化物を添加し焼成するこ
とが行われている。
2. Description of the Related Art Sintered silicon nitride materials have been used as high-temperature strength materials and are now being applied to various engineering ceramics as high-temperature materials. This silicon nitride, since it is itself flame sinter, oxides and Al 2 of the Periodic Table Group 3a elements, such as conventionally Y 2 O 3
Various metal oxides such as O 3 and MgO are added and fired.

【0003】最近に至り、窒化珪素質焼結体の使用温度
が1400℃以上の高温域まで広がりつつあり、これに
伴い焼結体の高温特性の改善が望まれている。そこで、
高温特性が窒化珪素質焼結体の粒界の組成等やそれによ
る粒界の融点等により大きく変化するという観点から、
Al2 3 等の低融点物質の添加を抑制し、Y2 3
希土類元素の酸化物、あるいはこれに酸化珪素等を添加
した系の焼結体が提案され、さらに粒界相を結晶化させ
ることにより粒界の高融点化を図ることが提案されてい
る。
Recently, the operating temperature of a silicon nitride sintered body is expanding to a high temperature range of 1400 ° C. or higher, and along with this, improvement of high temperature characteristics of the sintered body is desired. Therefore,
From the viewpoint that the high temperature characteristics greatly change depending on the composition of the grain boundary of the silicon nitride sintered body and the melting point of the grain boundary due to the composition,
It has been proposed to suppress the addition of a low-melting substance such as Al 2 O 3 and to add Y 2 O 3 or an oxide of a rare earth element, or a sintered body of a system to which silicon oxide or the like is added, and to further crystallize a grain boundary phase. It has been proposed to increase the melting point of the grain boundaries by increasing the melting point.

【0004】また、窒化珪素質焼結体を製造する場合に
おける焼成は、一般には常圧焼成、ホットプレス焼成、
窒素ガス加圧焼成などの手法により窒化珪素自体の分解
を抑制するために窒素を含む非酸化性雰囲気中で行われ
るが、焼成に付される成形体中には低温で分解するSi
2 などの成分も含まれており、雰囲気の細かな制御が
必要とされ、例えば、成形体を窒化珪素粉末中に埋設し
て雰囲気を制御して焼成を行うことが行われている。
Further, firing in the case of producing a silicon nitride sintered body is generally carried out under normal pressure firing, hot press firing,
It is carried out in a non-oxidizing atmosphere containing nitrogen in order to suppress the decomposition of silicon nitride itself by a method such as nitrogen gas pressure firing, but in a compact to be fired, it is decomposed at a low temperature.
Components such as O 2 are also included, and fine control of the atmosphere is required. For example, the molded body is embedded in silicon nitride powder and the atmosphere is controlled to perform firing.

【0005】[0005]

【発明は解決しようとする問題点】しかしながら、焼成
時の雰囲気を制御するのに窒化珪素粉末中に成形体を埋
設して焼成する場合、埋粉として使用される窒化珪素粉
末中には不可避的に不純物酸素を含んでいる。この不可
避的不純物はおよそSiO2 として存在すると考えられ
るが、通常市販の窒化珪素粉末中には0.7〜2.0重
量%程度の酸素が含まれている。このような窒化珪素粉
末を埋粉として成形体を埋設して焼成を行うと、埋粉中
のSiO2 成分がSiOガスとして発生し、成形体中の
SiO2 の分解揮散を抑制するが、このようにして焼成
した焼結体の表面で組成的な変化が生じており、焼結体
表面部と中心部とで機械的特性に差が生じるという問題
が発生した。
However, when a molded body is embedded in silicon nitride powder and fired to control the atmosphere during firing, it is unavoidable in the silicon nitride powder used as the filler. Containing oxygen as an impurity. It is considered that the unavoidable impurities are present as approximately SiO 2 , but usually commercially available silicon nitride powder contains about 0.7 to 2.0% by weight of oxygen. When such a silicon nitride powder is used as an embedding powder and the molded body is embedded and fired, the SiO 2 component in the embedded powder is generated as SiO gas to suppress decomposition and volatilization of SiO 2 in the molded body. A compositional change occurs on the surface of the sintered body thus fired, which causes a problem that a difference occurs in mechanical properties between the surface portion and the central portion of the sintered body.

【0006】この現象について検討した結果、埋粉から
発生したSiOガスが成形体中に進入、拡散し成形体の
表面部では中心部に比較して酸素量が増加しており、こ
のため、結晶化処理を行ったとしても消費されない余剰
の酸化物成分が増加し、これがアモルファス相を形成し
て表面部の高温特性を劣化させる原因になっていること
がわかった。
As a result of studying this phenomenon, the SiO gas generated from the embedding powder penetrates and diffuses into the compact, and the amount of oxygen on the surface of the compact increases compared to the central part. It was found that the surplus oxide components that were not consumed even when the chemical treatment was performed increased, and this formed an amorphous phase and deteriorated the high temperature characteristics of the surface portion.

【0007】一方、このような問題を解決するための1
つの方法として、雰囲気中に炭素を含有せしめ、雰囲気
中のCOガス分圧を向上させる手法も考えられるが、こ
のような方法では、COガスの還元作用により酸素量が
少ない不安定な酸化物が生成、分解した層や、メリライ
トなどの耐酸化性に劣る結晶相が焼結体の表面に析出し
焼結体の高温特性を劣化させる傾向にあった。
On the other hand, there are 1
As one of the methods, a method in which carbon is contained in the atmosphere to improve the partial pressure of CO gas in the atmosphere is conceivable, but in such a method, an unstable oxide having a small oxygen content due to the reducing action of CO gas is generated. The formed and decomposed layers and the crystalline phase having poor oxidation resistance such as melilite tended to be deposited on the surface of the sintered body and deteriorate the high temperature characteristics of the sintered body.

【0008】[0008]

【問題点を解決するための手段】本発明者等は、かかる
問題点に対して検討を重ねた結果、成形体を埋設するた
めの埋粉として、窒化珪素粉末を用いるものの、その窒
化珪素粉末中の不純物酸素量を特定の量まで低減させた
ものを用いて焼成を行うと、成形体中のSiO2の分解
揮散を抑制しつつ、埋粉から発生するSiOガスの成形
体中への侵入を抑制することができ、焼結体の表面部と
中心部での組成の変動なく均質な組成の焼結体が得られ
ることを知見し、本発明に至った。
The inventors of the present invention have made extensive studies on such problems, and as a result, although silicon nitride powder is used as the filling powder for burying the molded body, the silicon nitride powder is used. When firing is performed using a substance in which the amount of oxygen in impurities is reduced to a specific amount, the decomposition and volatilization of SiO 2 in the compact is suppressed, and the SiO gas generated from the embedded powder enters the compact. The inventors have found that the above can be suppressed, and that a sintered body having a homogeneous composition can be obtained without changing the composition of the surface portion and the center portion of the sintered body, and the present invention has been accomplished.

【0009】即ち、本発明の窒化珪素質焼結体の製造方
法は、窒化珪素を主成分とし、少なくとも周期律表第3
a族元素酸化物を0.5〜10mol%の割合で含有す
る混合物を所定の形状に成形した後、その成形体を酸素
含有量が0.1〜0.5重量%にまで低減した窒化珪素
粉末中に埋設して、窒素を含む非酸化性雰囲気中で17
00〜2000℃の温度で焼成することを特徴とするも
のである。
That is, the method for producing a silicon nitride-based sintered body of the present invention contains silicon nitride as a main component and contains at least the third periodic table.
Silicon nitride obtained by molding a mixture containing a group a element oxide in a proportion of 0.5 to 10 mol% into a predetermined shape, and then reducing the oxygen content of the molded body to 0.1 to 0.5% by weight. It is embedded in powder and is placed in a non-oxidizing atmosphere containing nitrogen.
It is characterized by firing at a temperature of 00 to 2000 ° C.

【0010】以下本発明を詳述すると、本発明の製造方
法によれば、出発原料は、主成分として窒化珪素粉末
と、焼結助剤成分として少なくとも周期律表第3a族元
素酸化物粉末を用いる。窒化珪素粉末としては、α型、
β型のいずれでも使用でき、平均粒径が0.4〜1.2
μm程度が適当である。前記周期律表第3a族元素酸化
物は、焼結を助長するためにその量は0.5〜10モル
%の割合で添加する。これは、0.5モル%より少ない
と充分な緻密体が得られず、10モル%を超えると高温
強度等の機械的特性が低下するためである。周期律表第
3a族元素としては、Y、Er、Sc、Ce、Yb、L
u、Dy、TbおよびHo等が挙げられるが、これらの
中でもYb、Er、Luが最も望ましい。
The present invention will be described in detail below. According to the production method of the present invention, the starting materials are silicon nitride powder as a main component and at least a Group 3a element oxide powder of the periodic table as a sintering aid component. To use. As the silicon nitride powder, α type,
Beta type can be used and average particle size is 0.4 to 1.2
About μm is appropriate. The Group 3a element oxide of the periodic table is added in an amount of 0.5 to 10 mol% in order to promote sintering. This is because if it is less than 0.5 mol%, a sufficiently dense body cannot be obtained, and if it exceeds 10 mol%, mechanical properties such as high temperature strength are deteriorated. The elements of Group 3a of the periodic table include Y, Er, Sc, Ce, Yb and L.
Examples thereof include u, Dy, Tb and Ho, and among these, Yb, Er and Lu are most desirable.

【0011】これらの出発原料は上記所定の割合で混合
した後、公知の方法、具体的にはプレス成形、押出成
形、射出成形、鋳込み成形、冷間静水圧成形等により所
定の形状に成形し相対密度が50%以上の成形体を得た
後、これを焼成する。
These starting materials are mixed in the above-mentioned predetermined proportions and then molded into a predetermined shape by a known method, specifically, press molding, extrusion molding, injection molding, cast molding, cold isostatic molding or the like. After obtaining a molded body having a relative density of 50% or more, it is fired.

【0012】また、上記のようにして成形体を作製する
他の手法としては、出発原料中の窒化珪素の一部あるい
は全部を珪素粉末に代えて成形体を作製し、これを80
0〜1500℃の温度で窒化処理して成形体中の珪素を
窒化珪素に窒化した後に焼成する。
As another method for producing a molded body as described above, a molded body is prepared by substituting silicon powder for a part or all of silicon nitride in the starting material, and then using this method.
Nitriding is performed at a temperature of 0 to 1500 ° C. to nitrid the silicon in the compact into silicon nitride, and then firing.

【0013】焼成は、常圧焼成、窒素ガス圧力焼成、ホ
ットプレス焼成等の焼成手段により、窒素等の非酸化性
雰囲気中で1700〜2000℃で焼成するが、本発明
によれば、この時、成形体を酸素含有量が0.1〜0.
5重量%、特に0.2〜0.4重量%の窒化珪素粉末中
に埋設して焼成することが大きな特徴である。これによ
り埋粉からのSiOガスの成形体中への侵入なく、雰囲
気制御を行うことができる。即ち、埋粉中の酸素含有量
が0.1重量%より少ないと成形体中に不可避的不純物
として、あるいは配合SiO2 粉末として含まれるSi
2 の分解揮散を抑制することができず、0.5重量%
を越えると埋粉からSiOガスが大量に発生し、これが
成形体中に侵入し成形体表面部の組成などを変化させ、
特性上内外差を有する不均一な焼結体が得られてしま
う。また、何ら成形体を埋めずに焼成を行うと、成形体
中のSiO2 成分の揮散分解を抑制することができず
に、表面部の酸素量が減少し、中心部と表面部とで粒界
の結晶相が異なったり、著しい場合には表面に分解層が
生じるという問題が生じる。
The firing is performed at 1700 to 2000 ° C. in a non-oxidizing atmosphere such as nitrogen by a firing means such as atmospheric pressure firing, nitrogen gas pressure firing, hot press firing, etc. According to the present invention, at this time, , The molded body has an oxygen content of 0.1 to 0.
It is a great feature that it is embedded in 5% by weight, particularly 0.2 to 0.4% by weight of silicon nitride powder and fired. As a result, the atmosphere can be controlled without entering SiO gas from the embedded powder into the molded body. That is, when the oxygen content in the embedding powder is less than 0.1% by weight, Si contained in the compact as an unavoidable impurity or as a compounded SiO 2 powder.
0.5% by weight cannot be suppressed due to decomposition and volatilization of O 2.
If it exceeds, a large amount of SiO gas is generated from the embedded powder, which enters the molded body and changes the composition of the surface of the molded body,
A non-uniform sintered body having internal and external differences in characteristics is obtained. Further, if firing is performed without filling the molded body, the volatilization and decomposition of the SiO 2 component in the molded body cannot be suppressed, the amount of oxygen in the surface portion is reduced, and the particles in the central portion and the surface portion There is a problem that the crystal phase of the field is different or, if it is remarkable, a decomposition layer is formed on the surface.

【0014】本発明において用いられる埋粉は、通常酸
素含有量が0.7〜2.0重量%程度の市販の窒化珪素
粉末を1400〜1800℃の窒素ガス雰囲気中で熱処
理することによりその粉末中の不純物酸素を系外に放出
させて不純物酸素量を低減して得られる。しかし、この
処理により酸素量を低減した窒化珪素粉末を酸化性雰囲
気中で放置すると、大気中の酸素による酸化により酸素
量が増加するため、窒素中で保存しておく必要がある。
The embedding powder used in the present invention is usually obtained by subjecting a commercially available silicon nitride powder having an oxygen content of about 0.7 to 2.0% by weight to a heat treatment in a nitrogen gas atmosphere at 1400 to 1800 ° C. It is obtained by reducing the amount of impurity oxygen by releasing the impurity oxygen in the system to the outside of the system. However, if the silicon nitride powder whose oxygen content is reduced by this treatment is left in an oxidizing atmosphere, the amount of oxygen increases due to oxidation by oxygen in the atmosphere, so it is necessary to store it in nitrogen.

【0015】焼成において、成形体を上記埋粉中に埋設
する時には、成形体が完全に埋粉中に没するように埋設
し、複数の成形体を同時に埋設する場合には、隣接する
成形体間に十分な埋粉が介在するように設置することが
望ましい。
In the firing, when the molded body is embedded in the embedded powder, the molded body is embedded so as to be completely immersed in the embedded powder, and when a plurality of molded bodies are simultaneously embedded, the adjacent molded bodies are It is desirable to install so that sufficient embedding powder is interposed between them.

【0016】上記のようにして得られる窒化珪素質焼結
体は、表面部および中心部で組成的にも特性的にも均質
なものであるが、焼結体の機械的特性の点から、焼結体
は窒化珪素結晶粒と、その粒界がSi3 4 −周期律表
第3a族元素酸化物(RE23 )−SiO2 、Si3
4 −SiO2 、RE2 3 −SiO2 系の組成からな
るYAM、アパタイト、ワラストナイト、シリコンオキ
シナイトライド、ダイシリケートなどの高融点の結晶相
が析出していることが望ましいが、Si3 4−RE2
3 系組成からなるメリライト相は高温での耐酸化性に
劣ることから実質的X線回折などにより検出されないよ
うにすることがよい。また、組成的にAl、Ca、Mg
などは低融点物質を形成し、結晶化を阻害するためこれ
らの量は0.5重量%以下に低減することが望ましい。
ただし、結晶化を阻害しない成分として、Ti、Zr、
Nb、Ta、Mo,W等の周期律表第4a、5a、6a
族金属の炭化物、酸化物、窒化物などは10重量%以下
の割合で添加しても差し支えない。
The silicon nitride-based sintered body obtained as described above is homogeneous in composition and characteristics in the surface portion and the central portion, but from the viewpoint of mechanical characteristics of the sintered body, The sintered body has silicon nitride crystal grains and grain boundaries of Si 3 N 4 -group 3a element oxide (RE 2 O 3 ) -SiO 2 and Si 3 of the periodic table.
It is desirable that a high melting point crystal phase such as YAM, apatite, wollastonite, silicon oxynitride, or disilicate having a composition of N 4 —SiO 2 or RE 2 O 3 —SiO 2 system is deposited. Si 3 N 4 -RE 2
Since the melilite phase composed of O 3 composition is inferior in oxidation resistance at high temperature, it is preferable to prevent it from being substantially detected by X-ray diffraction or the like. Also, compositionally, Al, Ca, Mg
Etc. form a low melting point substance and hinder crystallization, so these amounts are preferably reduced to 0.5% by weight or less.
However, as components that do not inhibit crystallization, Ti, Zr,
Periodic table 4a, 5a, 6a of Nb, Ta, Mo, W, etc.
Carbides, oxides, and nitrides of group metals may be added in a proportion of 10% by weight or less.

【0017】[0017]

【作用】本発明の窒化珪素質焼結体の製造方法によれ
ば、成形体を窒化珪素粉末中に埋設して焼成するに際し
て、埋粉として用いる窒化珪素粉末中の酸素含有量を
0.1〜0.5重量%まで低減した粉末を用いることに
より、埋粉から発生するSiOガスの成形体中への侵入
を抑制することができるために、成形体中の酸素量の変
動がなく、表面部および中心部で組成的、あるいは機械
的特性上も内外差のない均一な焼結体を作製することが
できる。
According to the method for manufacturing a silicon nitride sintered body of the present invention, when the molded body is embedded in silicon nitride powder and fired, the oxygen content in the silicon nitride powder used as the embedded powder is 0.1%. By using the powder reduced to 0.5 wt%, it is possible to suppress the invasion of SiO gas generated from the embedded powder into the molded body, so that the oxygen amount in the molded body does not fluctuate and the surface It is possible to produce a uniform sintered body having no internal or external difference in composition or mechanical properties in the central part and the central part.

【0018】なお、本発明における方法は、成形体中に
おけるSiO2 成分、即ち、窒化珪素原料粉末中に不可
避的に含まれる酸素量のSiO2 換算量と、粒界を結晶
化させるために適宜添加されたSiO2 粉末の合計量が
1.5〜20モル%程度含まれるような組成の成形体を
焼成するのに効果的である。
The method of the present invention is suitable for crystallizing the SiO 2 component in the compact, that is, the amount of oxygen inevitably contained in the silicon nitride raw material powder in terms of SiO 2 and the grain boundaries. It is effective for firing a molded body having a composition such that the total amount of the added SiO 2 powder is about 1.5 to 20 mol%.

【0019】[0019]

【実施例】出発原料として、窒化珪素原料(酸素量1.
2%、BET比表面積2〜10m2 /g、α率98%以
上)と焼結助剤として表1に示すような各種周期律表第
3a族元素酸化物(純度99%以上)の各粉末を用い
て、これらを表1、表2に示す割合で秤量後、ポリポッ
トに入れ、メタノールを溶媒として用い窒化珪素ボール
により72時間混合した。得られた混合物を乾燥後、造
粒し、80mm×45mm×5mmにプレス成形した。
得られた成形体に対して、SiO2 成分量を測定した。
測定には、成形体中の総酸素量を測定し、さらに窒化珪
素に対して周期律表第3a族元素酸化物として混入した
定比酸素量を差し引いた残りの酸素量をSiO2 換算し
たものである。
EXAMPLE As a starting material, a silicon nitride material (oxygen content: 1.
2%, BET specific surface area of 2 to 10 m 2 / g, α ratio of 98% or more) and various powders of various Group 3a element oxides (purity of 99% or more) of the periodic table as shown in Table 1 as a sintering aid. Were weighed in the proportions shown in Tables 1 and 2, and then placed in a polypot and mixed with a silicon nitride ball for 72 hours using methanol as a solvent. The obtained mixture was dried, granulated, and press-molded into a size of 80 mm × 45 mm × 5 mm.
The amount of SiO 2 component was measured for the obtained molded body.
For the measurement, the total amount of oxygen in the molded body was measured, and the remaining amount of oxygen was converted to SiO 2 by subtracting the amount of stoichiometric oxygen mixed as an oxide of a Group 3a element of the periodic table from silicon nitride. Is.

【0020】一方、埋粉として前記窒化珪素粉末を表2
に示す処理条件で処理して酸素量の異なる数種の埋粉を
作製した。
On the other hand, the silicon nitride powder was used as a filling powder.
Several kinds of embedding powders having different oxygen contents were prepared by treating under the treatment conditions shown in.

【0021】そして、表2の埋粉を用いて1800℃、
窒素ガス圧9atmで5時間焼成を行い、冷却過程で1
400℃で5時間保持し結晶化処理を行った。
Then, using the embedding powder shown in Table 2, 1800 ° C.
Nitrogen gas pressure is 9 atm for 5 hours, and the cooling process is 1
Crystallization treatment was performed by holding at 400 ° C. for 5 hours.

【0022】得られた焼結体に対して、焼成面(as−
fire面)を含む表層部、および中心部よりJISR
1601に基づく抗折試験片を切り出し、これを用いて
1400℃での4点曲げ抗折強度を測定した。また、焼
結体に対して、表層部のX線回折測定を行い、窒化珪素
結晶以外の結晶相を同定した。
A sintered surface (as-
JISR from the surface part including the fire surface) and the center part
A bending test piece based on 1601 was cut out, and the 4-point bending bending strength at 1400 ° C. was measured using this. Further, the surface of the sintered body was measured by X-ray diffraction to identify crystal phases other than the silicon nitride crystal.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表1および表2によれば、酸素量が0.5
重量%を越える埋粉E、Fを用いて焼成した試料No.
6,7,12,17は、いずれも焼結体表面部と中心部
とで特性の内外差が発生した。また、カーボンを含み窒
化珪素粉末を埋粉として用いた試料No.8,18では、
いずれも表面部に分解層が見られ、メリライト相が検出
され、高温強度が低いものであった。さらに、何ら埋粉
を用いずに行った試料No.1では、中心部と表面部での
特性差が生じた。
According to Tables 1 and 2, the amount of oxygen is 0.5.
Sample No. baked by using embedding powders E and F in excess of weight%.
In all of 6, 7, 12, and 17, the difference between the inside and the outside of the characteristics occurred between the surface portion and the central portion of the sintered body. In addition, in samples No. 8 and 18 in which carbon-containing silicon nitride powder was used as a filling powder,
In each case, a decomposed layer was observed on the surface, the melilite phase was detected, and the high temperature strength was low. Further, in sample No. 1 which was performed without using any embedding powder, there was a difference in characteristics between the central portion and the surface portion.

【0026】これに対して、本発明の試料は、いずれも
中心部と表面部において特性差が小さく、抗折強度で±
10kg/mm2 以内の均一で、1400℃強度580
MPa以上の優れた焼結体が得られた。
On the other hand, the samples of the present invention have a small difference in characteristics between the central portion and the surface portion and have a bending strength of ±.
Uniform within 10 kg / mm 2 and 1400 ° C strength 580
An excellent sintered body having a pressure of MPa or more was obtained.

【0027】[0027]

【発明の効果】以上詳述した通り、本発明によれば、酸
素量の少ない窒化珪素粉末を埋粉として成形体を焼成す
ることにより、特性の内外差がない均一な焼結体を得る
ことができる。
As described in detail above, according to the present invention, it is possible to obtain a uniform sintered body having no difference between internal and external characteristics by firing a molded body using silicon nitride powder having a small amount of oxygen as a filling powder. You can

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素を主成分とし、少なくとも周期律
表第3a族元素酸化物を0.5〜10mol%の割合で
含有する混合物を所定の形状に成形した後、該成形体を
酸素含有量が0.1〜0.5重量%の窒化珪素粉末中に
埋設して、窒素を含む非酸化性雰囲気中で1700〜2
000℃の温度で焼成することを特徴とする窒化珪素質
焼結体の製造方法。
1. A mixture containing silicon nitride as a main component and containing at least 0.5 to 10 mol% of an oxide of a Group 3a element of the periodic table in a predetermined shape, and the formed body containing oxygen. Embedded in a silicon nitride powder in an amount of 0.1 to 0.5% by weight, and 1700 to 2 in a non-oxidizing atmosphere containing nitrogen.
A method for producing a silicon nitride-based sintered body, which comprises firing at a temperature of 000 ° C.
JP5330789A 1993-12-27 1993-12-27 Production of silicon nitride-based sintered compact Pending JPH07187792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5330789A JPH07187792A (en) 1993-12-27 1993-12-27 Production of silicon nitride-based sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5330789A JPH07187792A (en) 1993-12-27 1993-12-27 Production of silicon nitride-based sintered compact

Publications (1)

Publication Number Publication Date
JPH07187792A true JPH07187792A (en) 1995-07-25

Family

ID=18236569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5330789A Pending JPH07187792A (en) 1993-12-27 1993-12-27 Production of silicon nitride-based sintered compact

Country Status (1)

Country Link
JP (1) JPH07187792A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117229067A (en) * 2023-11-14 2023-12-15 中南大学 Method for preparing silicon nitride ceramics by low-pressure nitridation-embedding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117229067A (en) * 2023-11-14 2023-12-15 中南大学 Method for preparing silicon nitride ceramics by low-pressure nitridation-embedding
CN117229067B (en) * 2023-11-14 2024-02-23 中南大学 Method for preparing silicon nitride ceramics by low-pressure nitridation-embedding

Similar Documents

Publication Publication Date Title
Biswas et al. Effect of rare-earth cation additions on the high temperature oxidation behaviour of LPS-SiC
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
US5114889A (en) Silicon nitride sintered body and process for preparation thereof
JPH07187792A (en) Production of silicon nitride-based sintered compact
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JPH07330436A (en) Silicon nitride heat resistant member and its production
JPH1179848A (en) Silicon carbide sintered compact
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JP2724764B2 (en) Method for producing silicon nitride based sintered body
JP2742619B2 (en) Silicon nitride sintered body
JP2828582B2 (en) Surface-coated silicon nitride heat-resistant member
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JPH06116045A (en) Silicon nitride sintered compact and its production
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2694369B2 (en) Silicon nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP2694354B2 (en) Silicon nitride sintered body
JP2724768B2 (en) Silicon nitride sintered body and method for producing the same
JPH0948671A (en) Silicon nitride sintered compact and its production
JP2883234B2 (en) Silicon nitride sintered body
JP3236733B2 (en) Silicon nitride sintered body
JPH0772105B2 (en) Silicon nitride sintered body and method for manufacturing the same
JPH05148030A (en) Silicon nitride-silicon carbide composite sintered material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080710

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11