JPH05148030A - Silicon nitride-silicon carbide composite sintered material - Google Patents

Silicon nitride-silicon carbide composite sintered material

Info

Publication number
JPH05148030A
JPH05148030A JP3312149A JP31214991A JPH05148030A JP H05148030 A JPH05148030 A JP H05148030A JP 3312149 A JP3312149 A JP 3312149A JP 31214991 A JP31214991 A JP 31214991A JP H05148030 A JPH05148030 A JP H05148030A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
silicon carbide
weight
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3312149A
Other languages
Japanese (ja)
Inventor
Takehiro Oda
武廣 織田
Shoji Kosaka
祥二 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3312149A priority Critical patent/JPH05148030A/en
Publication of JPH05148030A publication Critical patent/JPH05148030A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject sintered material having uniform room temperature strength while suppressing the formation of abnormal texture caused by Fe and reducing the lowering of the high-temperature strength. CONSTITUTION:The objective material is produced by adding 0.01-2wt.% (in terms of W metal) of a W compound to a sintered material containing 5-2,000ppm (in terms of metallic element) of Fe and produced by adding 1-100 pts.wt. of silicon carbide to 100 pts.wt. of a silicon nitride component composed mainly of silicon nitride and containing 0.5-10mol% (in terms of oxide) of a compound of Y or a rare-earth element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、室温および高温におけ
る強度に優れた窒化珪素−炭化珪素質複合焼結体に関す
るものであり、特に不純物の影響を低減するための改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride-silicon carbide composite sintered body having excellent strength at room temperature and high temperature, and more particularly to an improvement for reducing the influence of impurities.

【0002】[0002]

【従来技術】窒化珪素質焼結体は、強度に優れることか
らエンジニアリングセラミックスとして特に熱機関用構
造材料としてその応用が進められているが、優れた特性
を有する反面、高温において強度が低下するという問題
を有している。この高温強度の劣化という問題に対し
て、これまで焼結助剤の軽量や焼成雰囲気や焼成パター
ン等を変更することにより改善が進められてきたが、決
定的な対策には至っていないのが現状であった。
2. Description of the Prior Art Sintered silicon nitride is being applied to engineering ceramics, especially structural materials for heat engines, because it has excellent strength. However, it has excellent properties, but its strength decreases at high temperatures. I have a problem. The problem of deterioration of high temperature strength has been improved by changing the weight of the sintering aid, the firing atmosphere, the firing pattern, etc., but the definitive countermeasure has not yet been reached. Met.

【0003】一方、炭化珪素質焼結体は、窒化珪素質焼
結体に比較して強度が低いものの高温における強度劣化
がほとんどないという特性を有することから、最近に至
り、窒化珪素に対して炭化珪素を添加し焼成した複合焼
結体が提案されている。また、この複合焼結体は、炭化
珪素を含有することにより系の焼結性が低下するために
2 3 等の希土類元素酸化物やAl23 等を添加す
ることにより高密度化が図られている。
On the other hand, the silicon carbide based sintered body has a characteristic that it has a lower strength than the silicon nitride based sintered body, but has almost no strength deterioration at high temperatures. A composite sintered body has been proposed in which silicon carbide is added and fired. Further, since this composite sintered body contains silicon carbide, the sinterability of the system is deteriorated. Therefore, a rare earth element oxide such as Y 2 O 3 or Al 2 O 3 is added to increase the density. Is being pursued.

【0004】[0004]

【発明は解決しようとする問題点】しかしながら、上記
複合焼結体は、窒化珪素質焼結体に比較して高温強度の
劣化をある程度小さくすることができるが、Al2 3
等の低融点の酸化物が存在すると高温強度が低下する傾
向にあることから、これら低融点の酸化物を添加しない
ことが望まれる。
However, although the above-mentioned composite sintered body can reduce the deterioration of high temperature strength to some extent as compared with the silicon nitride based sintered body, Al 2 O 3
Since the high temperature strength tends to decrease in the presence of such low melting point oxides, it is desirable not to add these low melting point oxides.

【0005】ところが、このようなAl2 3 を添加し
ない系において、ある程度の高温強度の改善が可能であ
るが、特性にばらつきが生じるという問題があった。
However, although the high temperature strength can be improved to some extent in such a system to which Al 2 O 3 is not added, there is a problem in that the characteristics vary.

【0006】そこで、このばらつきの原因について調査
を行ったところ、特に室温領域においてばらつきが大き
く、しかもその異常破壊を生じた焼結体の破壊源が異常
組織によるものであることが判明した。また、この異常
組織部分について分析したところ、鉄(Fe)が存在し
ており、これがケイ素(Si)と共晶反応を生じ、その
周辺に添加した希土類元素が過剰に集まったものである
ことを突き止めた。
Therefore, when the cause of this variation was investigated, it was found that the variation was large especially in the room temperature region, and the fracture source of the sintered body which caused the abnormal breakdown was due to the abnormal structure. In addition, an analysis of this abnormal structure portion revealed that iron (Fe) was present, which caused a eutectic reaction with silicon (Si), and the rare earth elements added around it were excessively collected. I found it.

【0007】[0007]

【問題点を解決するための手段】本発明者等は、かかる
問題点に対して添加物によるFeの悪影響を低減する方
法について詳細に検討したところ、Wを所定の割合で添
加含有させることにより破壊源となりうる異常組織が顕
著に低減でき、強度の異常な劣化を防止し、特性のばら
つきが低減されることを見出し本発明に至った。
[Means for Solving the Problems] The inventors of the present invention have studied in detail the method of reducing the adverse effect of Fe due to the additive on the above problems, and found that by adding W in a predetermined ratio. The present inventors have found that the abnormal structure that can be a destruction source can be significantly reduced, the abnormal deterioration of the strength can be prevented, and the variation of the characteristics can be reduced, and the present invention has been completed.

【0008】即ち、本発明の焼結体は、窒化珪素を主成
分とし、少なくともYまたは希土類元素を酸化物換算で
0.5〜10mol%を割合で含有する窒化珪素成分1
00重量部に対して、炭化珪素を1〜100重量部の割
合で添加してなり、且つ全量中Feが重量比で5ppm
〜2000ppmの割合で含有する焼結体に対して、W
を0.01重量%〜2重量%の割合で添加含有したこと
を特徴とするものである。
That is, the sintered body of the present invention is a silicon nitride component 1 containing silicon nitride as a main component and containing at least Y or a rare earth element in an amount of 0.5 to 10 mol% in terms of oxide.
Silicon carbide is added at a ratio of 1 to 100 parts by weight with respect to 00 parts by weight, and the total amount of Fe is 5 ppm by weight.
~ 2000ppm relative to the sintered body containing W
Is added in an amount of 0.01% by weight to 2% by weight.

【0009】以下、本発明を詳述する。本発明の焼結体
は、組成上では、窒化珪素を主成分とし、さらに焼結助
剤として少なくともYまたは希土類元素を0.5〜10
mol%の含有した窒化珪素成分100重量部に対し
て、炭化珪素を1〜100重量部の割合で添加してなる
ものであるが、純度の低い原料を用いたり、あるいは製
造過程において混合工程において系中にFeが混入する
場合がある。このFeは、純度の高い原料を用いたり、
Feを除去するような処理を行うことによりその量が5
ppm以下と非常に少ない場合には、焼結体の特性に影
響を及ぼすことはないが、その量が5ppm以上の割合
で混入すると、前述したように焼結体中に破壊源となる
異常組織を形成し、これにより焼結体の特性を低下させ
たり、特性のばらつきを発生させたりする。
The present invention will be described in detail below. In terms of composition, the sintered body of the present invention contains silicon nitride as a main component and further contains at least Y or a rare earth element as a sintering aid in an amount of 0.5 to 10.
Silicon carbide is added at a ratio of 1 to 100 parts by weight with respect to 100 parts by weight of a silicon nitride component contained in mol%, but a raw material of low purity is used, or in a mixing step in a manufacturing process. Fe may be mixed in the system. This Fe uses a high-purity raw material,
By performing the treatment to remove Fe, the amount becomes 5
When the content is very low, such as less than ppm, it does not affect the characteristics of the sintered body. However, if the content is 5 ppm or more, as described above, an abnormal structure that becomes a fracture source in the sintered body is generated. Are formed, thereby deteriorating the characteristics of the sintered body or causing variations in the characteristics.

【0010】本発明は、このようなFeを含有するよう
な系に対して、Wを金属換算で0.01〜2重量%、特
に0.05〜2重量%の割合で存在させることが重要で
ある。このWの存在により、Feの焼結体中での挙動を
固定化することができるものである。よってWの量が
0.01重量%より少ないと、異常組織の発生を抑制す
ることができず、特性のばらつきが大きくなり、Wの量
が2重量%を超えるとW自体が凝集し、これが破壊源と
なり、焼結体の強度を低下させる要因となる。
In the present invention, it is important that W is present in an amount of 0.01 to 2% by weight, particularly 0.05 to 2% by weight in terms of metal, in such a system containing Fe. Is. Due to the presence of W, the behavior of Fe in the sintered body can be fixed. Therefore, if the amount of W is less than 0.01% by weight, the occurrence of abnormal tissue cannot be suppressed and the variation in characteristics becomes large, and if the amount of W exceeds 2% by weight, W itself agglomerates. It becomes a destruction source, and becomes a factor that reduces the strength of the sintered body.

【0011】このWの添加効果は、Fe量が多く成り過
ぎるとその効果が充分に発揮されず、Fe量が2000
ppm、特に1000ppmが上限値である。
The effect of adding W is not sufficiently exhibited when the amount of Fe becomes too large, and the amount of Fe is 2000.
The upper limit is ppm, especially 1000 ppm.

【0012】なお、本発明において、焼結助剤であるY
あるいは希土類元素の酸化物換算量および炭化珪素量を
上記範囲に限定したのは、Yあるいは希土類元素量が
0.5モル%より少ないと焼結性が悪く緻密化すること
ができず、10モル%を越えると高温強度が低下する。
また炭化珪素の量が窒化珪素成分に対して1重量部より
少ないと、高温強度の劣化が顕著となり、100重量部
を越えると緻密体が得にくくなるからである。
In the present invention, Y which is a sintering aid is used.
Alternatively, the oxide conversion amount of the rare earth element and the amount of silicon carbide are limited to the above-mentioned ranges, because when the amount of Y or the rare earth element is less than 0.5 mol%, the sinterability is poor and the densification cannot be performed. If it exceeds%, the high temperature strength will decrease.
Further, if the amount of silicon carbide is less than 1 part by weight with respect to the silicon nitride component, the deterioration of high temperature strength becomes remarkable, and if it exceeds 100 parts by weight, it becomes difficult to obtain a dense body.

【0013】また、本発明の焼結体を作成する場合に
は、出発原料として窒化珪素粉末、炭化珪素粉末および
焼結助剤として少なくともYまたは希土類元素の例えば
酸化物粉末を用いる。また、本発明によれば、かかる系
に対してWの化合物をW金属換算で0.01〜2重量%
の割合で添加することが重要である。用いられるW化合
物としては、Wの酸化物、炭化物、珪化物等が挙げられ
る。
When the sintered body of the present invention is prepared, silicon nitride powder, silicon carbide powder as a starting material, and at least Y or an oxide powder of a rare earth element as a sintering aid is used. According to the present invention, the compound of W is 0.01 to 2% by weight in terms of W metal based on the system.
Is important to add. Examples of the W compound used include W oxides, carbides, and silicides.

【0014】これらの出発原料は上記所定の割合で混合
した後、公知の方法で成形するが、Feは出発原料中に
含有される以外に、成形工程までの工程間で混入するこ
とも考えられる。本発明によれば、これらの混入量も考
慮し、最終成形体中でのFe量を金属換算で5〜200
0ppmに制御することが必要である。なお、成形手段
としてはプレス成形、押出成形、射出成形、鋳込み成
形、冷間静水圧成形等が挙げられる。
These starting materials are mixed at the above-mentioned predetermined ratios and then molded by a known method. It is conceivable that Fe is mixed in the starting materials in addition to being contained in the starting materials. .. According to the present invention, the amount of Fe in the final molded body is 5 to 200 in terms of metal in consideration of these mixed amounts.
It is necessary to control to 0 ppm. Examples of the molding means include press molding, extrusion molding, injection molding, cast molding, cold isostatic molding and the like.

【0015】次に、この成形体を窒素等の非酸化性雰囲
気中で1600〜2000℃で焼成する。焼成方法とし
ては、常圧焼成、窒素ガス圧力焼成、ホットプレス焼成
等が挙げられる。また、特殊な焼成方法として熱間静水
圧焼成法では、上記の方法にて対理論密度比95%以上
に緻密化した後、1000〜2000気圧の窒素を含有
する雰囲気中で1600〜2000℃で焼成する方法、
また前記成形体の表面にBNを塗布した後、ガラス粉末
をその表面に塗布したり、ガラス製カプセル内に封入す
るか、または内部にガラス粉末が充填された耐熱容器内
に埋めた後、高温下でガラスを溶融しガラスシールを形
成した後、1000〜2000気圧下で1600〜20
00℃で焼成する方法等が採用される。
Next, this compact is fired at 1600 to 2000 ° C. in a non-oxidizing atmosphere such as nitrogen. Examples of the firing method include atmospheric pressure firing, nitrogen gas pressure firing, hot press firing and the like. Further, in the hot isostatic firing method as a special firing method, after densifying to a theoretical density ratio of 95% or more by the above-mentioned method, it is performed at 1600 to 2000 ° C. in an atmosphere containing nitrogen of 1000 to 2000 atm. How to bake,
Further, after applying BN to the surface of the molded body, applying glass powder to the surface, enclosing it in a glass capsule, or burying it in a heat-resistant container filled with glass powder, the high temperature After melting the glass below to form a glass seal, 1600-20 under 1000-2000 atmospheres
A method of firing at 00 ° C. or the like is adopted.

【0016】また、Yまたは希土類元素の酸化物換算量
を0.5〜10mol%に限定したのは、0.5重量%
より少ないと充分な緻密体が得られず、10mol%を
超えると高温強度等機械的特性が低下する。希土類元素
としては、Er、Y、Sc、Ce、Yb、Dy、Tb、
Ho等が挙げられる。
Further, the amount of Y or rare earth element converted to oxide is limited to 0.5 to 10 mol% by 0.5 wt%.
If it is less, a sufficient dense body cannot be obtained, and if it exceeds 10 mol%, mechanical properties such as high temperature strength are deteriorated. As the rare earth element, Er, Y, Sc, Ce, Yb, Dy, Tb,
Ho etc. are mentioned.

【0017】さらに、本発明によれば、上記系に対して
Al2 3 、MgO、CaO、AlN、ZrO2 、Si
2 等を10重量%以下の割合で添加しても何ら本発明
の効果に影響ないものであるが、これらのうち、Al2
3 、MgO、CaO等の低融点物質がある程度存在す
るとFeによる悪影響は顕著でなく、しかも高温特性が
劣化するために、本発明の構成は、特にこれらの低融点
物質は1重量%以下、特に0.5重量%以下の組成系に
おいてWの添加効果が顕著であり、且つ特性的にも望ま
しい。
Further, according to the present invention, Al 2 O 3 , MgO, CaO, AlN, ZrO 2 , Si is added to the above system.
Addition of O 2 or the like in a proportion of 10% by weight or less does not affect the effects of the present invention, but among these, Al 2
If low-melting-point substances such as O 3 , MgO, and CaO are present to some extent, the adverse effect of Fe is not remarkable, and the high-temperature characteristics are deteriorated. In particular, in the composition system of 0.5% by weight or less, the effect of adding W is remarkable, and the characteristics are desirable.

【0018】[0018]

【作用】本発明によれば、Feが系内に存在すると、焼
結過程において窒化珪素および炭化珪素を分解し、発生
したSiとの共晶反応が生じる。このFe−Si共晶反
応生成物の周囲には、理由は定かでないが、希土類元素
が過剰に集まり、通常とは異なる異常組織を形成する。
According to the present invention, when Fe is present in the system, silicon nitride and silicon carbide are decomposed during the sintering process, and a eutectic reaction with generated Si occurs. Although the reason is not clear, the rare earth elements are excessively gathered around the Fe-Si eutectic reaction product to form an abnormal structure different from usual.

【0019】これらの挙動に対して、Wが存在すると、
Feの存在による異常組織の生成がが低減される。この
理由は、Wが焼結過程において、珪化物等の化合物を生
成し、この化合物内にFeが積極的に固溶されることに
より、Fe元素が不活性状態となり、窒化珪素の分解が
抑制されるためと考えられる。
For these behaviors, if W exists,
Generation of abnormal tissue due to the presence of Fe is reduced. The reason for this is that W produces a compound such as a silicide during the sintering process, and Fe is positively dissolved in this compound, so that the Fe element becomes inactive and the decomposition of silicon nitride is suppressed. It is thought to be done.

【0020】それにより、焼結体の破壊起点がFeの存
在による異常組織の破壊源によるものから、常に焼結体
表面となるために焼結体の特性が向上し、特性のばらつ
きが低減され、安定した特性を有する窒化珪素質焼結体
を作製することができる。
As a result, since the fracture starting point of the sintered body is due to the fracture source of the abnormal structure due to the presence of Fe, the surface of the sintered body is always present, so that the characteristics of the sintered body are improved and variations in the characteristics are reduced. A silicon nitride sintered body having stable characteristics can be manufactured.

【0021】また、Wによる上記添加効果により比較的
低純度の窒化珪素原料を用いた場合でも強度劣化や特性
のばらつきを低減することができるために、焼結体のコ
ストの低減を図ることができる。
Further, due to the above addition effect of W, even when a relatively low-purity silicon nitride raw material is used, strength deterioration and characteristic variation can be reduced, so that the cost of the sintered body can be reduced. it can.

【0022】[0022]

【実施例】窒化珪素原料(酸素量1.0%、BET比表
面積10m2 /g、α率98%以上、Fe含有量30p
pm)と焼結助剤としてY2 3 、Yb2 3 、Er2
3 、Ho2 3 、Dy2 3 の各粉末、さらに炭化珪
素粉末(α型、BET比表面積19m2 /g、Fe含有
量200ppm)を用いて、これらの粉末を用いて表1
に示す割合で秤量後、ポリポットに入れ、メタノールを
溶媒として用い窒化珪素ボールにより72時間混合し
た。得られた混合物を乾燥後、造粒し、80mm×45
mm×5mmにプレス成形した。得られた成形体に対し
て、Fe量をICP発光分光分析により測定した。さら
に、各成形体を窒素ガス圧力10気圧の雰囲気中で表1
の温度で焼成した。なお、表中、試料No.20について
は表1の組成からなる成形体の表面にBNを塗布しガラ
ス浴中にて1600℃の2000atmの高圧下で焼成
した。
Example Silicon nitride raw material (oxygen content 1.0%, BET specific surface area 10 m 2 / g, α ratio 98% or more, Fe content 30 p
pm) and Y 2 O 3 , Yb 2 O 3 and Er 2 as sintering aids.
Each powder of O 3 , Ho 2 O 3 , and Dy 2 O 3 was further used, and further, silicon carbide powder (α type, BET specific surface area 19 m 2 / g, Fe content 200 ppm) was used, and these powders were used.
After being weighed at the ratio shown in (1), the mixture was placed in a polypot and mixed with a silicon nitride ball for 72 hours using methanol as a solvent. The resulting mixture is dried and then granulated, 80 mm x 45
It was press molded into a size of 5 mm × 5 mm. The Fe content of the obtained molded body was measured by ICP emission spectroscopy. Furthermore, each molded product was placed in an atmosphere of nitrogen gas pressure of 10 atm.
It was fired at the temperature of. For sample No. 20 in the table, BN was applied to the surface of a molded product having the composition shown in Table 1 and baked in a glass bath at a high pressure of 2000 atm at 1600 ° C.

【0023】得られた焼結体に対して、組成分析を行っ
た結果、焼結体の組成は成形体の組成と実質的に変化し
ていないことを確認した。また、各試験片を20個切り
出し、そのうち17本をJISR1601により室温に
おける抗折強度を測定しその最低値、最高値を示した。
さらにその抗折片より、破壊源を調べ、破壊源が鉄によ
る異常粒成長であったものの個数を調べた。さらに、3
個の試験片により1400℃強度を上記と同様な方法で
測定した。結果は、表1に示した。
As a result of composition analysis of the obtained sintered body, it was confirmed that the composition of the sintered body did not substantially change from the composition of the molded body. Further, 20 pieces of each test piece were cut out, and 17 pieces of them were measured for bending strength at room temperature by JISR1601 and the minimum value and the maximum value were shown.
Furthermore, the fracture source was examined from the transverse folds, and the number of grains having abnormal grain growth due to iron was examined. Furthermore, 3
The strength of 1400 ° C. was measured on each test piece in the same manner as above. The results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】表1から明らかなように、前記条件での製
造でFe含有量が数十ppmのレベルの不純物の混入が
認められたが、これに対してWを全く添加しなかった試
料No,3では、平均強度が小さく、また破壊源の多くが
Fe−Siの異常組織によるものであった。
As is apparent from Table 1, impurities were mixed at a Fe content level of several tens of ppm in the production under the above-mentioned conditions. In No. 3, the average strength was small, and most of the fracture sources were due to the abnormal structure of Fe-Si.

【0026】これに対してW化合物を添加すると、0.
01重量%の添加により、試料No,4に示すように平均
強度が向上し、Wの量を増加するに従い、Fe−Siの
異常組織が破壊源となるものが減少し、特性のばらつき
が改善されることが理解できる。しかしながら、Wの量
が2重量%を越える試料No,12ではWによる凝集が観
察され、これにより強度が劣化した。
On the other hand, when the W compound was added,
Addition of 01% by weight improves the average strength as shown in sample No.4, and as the amount of W is increased, the Fe-Si abnormal structure is reduced as a destruction source, and the variation in characteristics is improved. I understand that it will be done. However, in the sample No. 12, in which the amount of W exceeded 2% by weight, aggregation due to W was observed, which deteriorated the strength.

【0027】また、Wの添加効果を確認するために系中
にFeを添加してFe量を増加させた系に対して評価し
たところ、Fe量が2000ppmを越える試料No,1
1よりW添加効果が極端に小さくなり、Fe−Siの異
常組織が破壊源となるものが増え平均強度が低下した。
これにより原料として2000ppm程度Feが含有さ
れている場合においてもばらつきの改善ができることが
わかった。
Further, in order to confirm the effect of adding W, an evaluation was made on a system in which Fe was added to the system to increase the amount of Fe.
The effect of W addition was extremely smaller than that of No. 1, and more Fe-Si abnormal structures became the fracture source, and the average strength decreased.
As a result, it was found that the variation can be improved even when the raw material contains about 2000 ppm of Fe.

【0028】さらに、焼結体中のY2 3 の添加量を変
化させたところ、添加量が0.5モル%より少ない試料
No,15では十分に緻密化が達成されず、10モル%を
越えると強度の劣化が認められた。
Further, when the addition amount of Y 2 O 3 in the sintered body was changed, the densification was not sufficiently achieved in Sample No. 15 in which the addition amount was less than 0.5 mol%, and 10 mol% When it exceeded, deterioration of strength was recognized.

【0029】なお、焼成条件を熱間静水圧焼成法にて行
っても本発明の効果が認められ、さらにW化合物として
WO3 以外のWSi2 やWCを用いても、さらにはその
他の希土類元素においても同様な効果が認められた。
The effect of the present invention can be recognized even when the hot isostatic firing method is used as the firing condition. Further, even if WSi 2 or WC other than WO 3 is used as the W compound, other rare earth elements are used. A similar effect was observed in.

【0030】また、炭化珪素の添加効果に関して炭化珪
素を全く添加しなかった試料No.1は高温強度の劣化が
見られた。また炭化珪素が過剰に含有される試料No.1
4では緻密化されず特性も低いものであった。
Regarding the effect of adding silicon carbide, deterioration of high temperature strength was observed in sample No. 1 in which silicon carbide was not added at all. Sample No. 1 containing excessive silicon carbide
In No. 4, it was not densified and the characteristics were low.

【0031】[0031]

【発明の効果】以上詳述した通り、本発明によれば、F
eを含む系に対してWを添加することによりFeによる
異常組織の生成を抑制し、窒化珪素−炭化珪素複合焼結
体の高温強度の低下を抑制しつつ、室温強度のばらつき
を小さくすることができる。
As described in detail above, according to the present invention, F
The addition of W to a system containing e suppresses the generation of an abnormal structure by Fe, suppresses the decrease in the high temperature strength of the silicon nitride-silicon carbide composite sintered body, and reduces the variation in the room temperature strength. You can

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素を主成分とし、少なくともYまた
は希土類元素を酸化物換算で0.5〜10mol%を含
む窒化珪素成分100重量部に対して、炭化珪素を1〜
100重量部の割合で含有し、且つ不純物としてFeを
全量中に重量比で5ppm〜2000ppmの割合で含
有する焼結体に対して、Wを0.01重量%〜2重量%
の割合で添加含有したことを特徴とする窒化珪素−炭化
珪素質複合焼結体。
1. To 100 parts by weight of a silicon nitride component containing silicon nitride as a main component and containing at least Y or a rare earth element in an amount of 0.5 to 10 mol% in terms of oxide, 1 to 1 part of silicon carbide is used.
0.01 wt% to 2 wt% of W with respect to a sintered body containing 100 parts by weight and Fe as an impurity in a total amount of 5 ppm to 2000 ppm by weight.
A silicon nitride-silicon carbide based composite sintered body characterized by being added and contained at a ratio of.
JP3312149A 1991-11-27 1991-11-27 Silicon nitride-silicon carbide composite sintered material Pending JPH05148030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3312149A JPH05148030A (en) 1991-11-27 1991-11-27 Silicon nitride-silicon carbide composite sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3312149A JPH05148030A (en) 1991-11-27 1991-11-27 Silicon nitride-silicon carbide composite sintered material

Publications (1)

Publication Number Publication Date
JPH05148030A true JPH05148030A (en) 1993-06-15

Family

ID=18025841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3312149A Pending JPH05148030A (en) 1991-11-27 1991-11-27 Silicon nitride-silicon carbide composite sintered material

Country Status (1)

Country Link
JP (1) JPH05148030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6657166B2 (en) * 2001-03-09 2003-12-02 Ngk Spark Plug Co., Ltd. Silicon nitride sintered material and production process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6657166B2 (en) * 2001-03-09 2003-12-02 Ngk Spark Plug Co., Ltd. Silicon nitride sintered material and production process thereof

Similar Documents

Publication Publication Date Title
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
US5114888A (en) Silicon nitride sintered body and method for producing same
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JPH05148030A (en) Silicon nitride-silicon carbide composite sintered material
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP2883234B2 (en) Silicon nitride sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP2724764B2 (en) Method for producing silicon nitride based sintered body
JP2742619B2 (en) Silicon nitride sintered body
JPH1179848A (en) Silicon carbide sintered compact
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2631102B2 (en) Method for producing silicon nitride based sintered body
JPH05139840A (en) Siliceous nitride sintered compact and its production
JP3207065B2 (en) Silicon nitride sintered body
JP2720201B2 (en) Method for producing silicon nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH05170542A (en) Silicon nitride-silicon carbide composite sintered product
JP3236733B2 (en) Silicon nitride sintered body
JP2734755B2 (en) Method for producing high-temperature high-strength silicon nitride sintered body
JP2694354B2 (en) Silicon nitride sintered body
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JPH07187792A (en) Production of silicon nitride-based sintered compact
JPH07187790A (en) Silicon nitride-based sintered compact
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH04238868A (en) Production of silicon nitride-silicon carbide compounded sintered material