JPH07157548A - Starting powder for carbonaceous material of high density and high strength and production of carbonaceous material - Google Patents

Starting powder for carbonaceous material of high density and high strength and production of carbonaceous material

Info

Publication number
JPH07157548A
JPH07157548A JP5309383A JP30938393A JPH07157548A JP H07157548 A JPH07157548 A JP H07157548A JP 5309383 A JP5309383 A JP 5309383A JP 30938393 A JP30938393 A JP 30938393A JP H07157548 A JPH07157548 A JP H07157548A
Authority
JP
Japan
Prior art keywords
pyridine
powder
insoluble
weight
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5309383A
Other languages
Japanese (ja)
Other versions
JP3060450B2 (en
Inventor
Isao Mochida
勲 持田
Takatsugu Fujiura
隆次 藤浦
Takashi Kojima
孝 小島
Hitoshi Sakamoto
斉 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP5309383A priority Critical patent/JP3060450B2/en
Publication of JPH07157548A publication Critical patent/JPH07157548A/en
Application granted granted Critical
Publication of JP3060450B2 publication Critical patent/JP3060450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To prepare a carbonaceous powder for producing carbonaceous material of high density and high strength which has good moldability, can be readily carbonized and graphitized with extremely increased carbonization yield and can be completely fired in a shortened time, attains sufficiently high density and high strength with only single firing in no need of any binder because of its excellent self-welding properties. CONSTITUTION:A condensed polycyclic hydrocarbon or a substance containing the same is polymerized in the presence of a superstrong acid (hydrogen fluoride)-boron trifluoride to prepare a meso-phase pitch. Then, the product is heat-treated in an oxidative atmosphere to give a starting powder for high- density and high strength carbon aceous material containing more than 78wt.% of the fraction insoluble in pyridine and 5.0 to 20.0wt.% of the fraction soluble in pyridine but insoluble in benzene. The powder is molded by compression and fired to give the objective carbonaceous material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度高強度炭素材料に
好適な自己融着性炭素質原料粉体および炭素材料の製造
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-fusing carbonaceous raw material powder suitable for a high density and high strength carbon material and a method for producing the carbon material.

【0002】[0002]

【従来の技術】従来、高密度炭素材料については多くの
製造方法が知られているが、これらは出発原料面から二
つの方法に大別できる。その一つの方法はコークス粉
末、天然黒鉛、カーボンブラックなどの骨材とコールタ
ールピッチなどのバインダーを混練した後、成型、焼成
する方法である。この方法ではバインダーの残炭率が非
常に低いために一回の炭化では成型体密度は非常に小さ
く、密度を上げるために含浸・炭化工程を何度も繰り返
しながら緻密化しなければならない。また炭化過程にお
いては、バインダー中の多量の軽質成分が揮発するので
成型体内部に不均質気孔を残存させるのみならず、成型
体の膨張を引き起こして組織破壊を招きやすい。このよ
うな悪影響を防ぐために、一般に炭化工程では 2〜10℃
/hという極めて緩慢な昇温が行なわれので 3〜4 週間の
製造期間が必要となる。この炭化工程を経た成型体は用
途に応じて更に2500〜3000℃で黒鉛化されるが、この工
程においても一般に 2〜3 週間を要する。従ってコーク
スなどの骨材とコールタールピッチなどのバインダーか
ら複雑な工程を経て黒鉛質の炭素材料を製造するこの方
法では 2〜3 月という長い時間が必要である。
2. Description of the Related Art Conventionally, many methods for producing a high-density carbon material are known, but these can be roughly classified into two methods from the viewpoint of starting raw materials. One of the methods is to knead aggregates such as coke powder, natural graphite, and carbon black with a binder such as coal tar pitch, and then mold and fire the mixture. In this method, since the residual carbon ratio of the binder is very low, the density of the molded body is very small in one carbonization, and in order to increase the density, the impregnation / carbonization process must be repeated many times to densify. Further, in the carbonization process, a large amount of the light component in the binder is volatilized, so that not only the heterogeneous pores remain in the inside of the molded body but also the molded body is likely to expand to cause tissue destruction. In order to prevent such adverse effects, the carbonization process is generally performed at 2-10 ° C.
A very slow temperature rise of / h is required, so a manufacturing period of 3 to 4 weeks is required. The molded body that has undergone this carbonization step is further graphitized at 2500 to 3000 ° C. depending on the application, but this step also generally takes 2 to 3 weeks. Therefore, this method of producing graphitic carbon material from complex materials such as coke and binder such as coal tar pitch through a complicated process requires a long time of 2 to 3 months.

【0003】もう一つの方法はバインダーを用いずに高
密度炭素材料用原料として光学的異方性小球体を利用す
る方法である。すなわち、コールタールピッチや石油系
重質油等を 350〜500 ℃で熱処理する過程で生成するメ
ソフェーズ球晶を溶剤によってピッチマトリックスから
分離、乾燥して得られたメソカーボンマイクロビーズを
原料として、これを加圧成型後、焼成する方法である。
しかしながら、この方法では球晶の分離工程できわめて
多量の抽出溶媒を必要とし、何度も繰り返して溶剤分別
を行なわなければならない。更に得られた球晶から完全
に残存溶剤を除くことは困難であるため、後の炭化工程
において成型体の割れや膨張の原因になりやすい。しか
もこのような球晶溶剤抽出法では分離収率が極端に低い
ことに加えて、生成する球晶の性状コントロールは容易
でなく、一定品質の原料を安定して製造するには工業的
に問題が多い。
Another method is to use optically anisotropic small spheres as a raw material for a high-density carbon material without using a binder. That is, mesocarbon microbeads obtained by separating mesophase spherulites generated in the process of heat treatment of coal tar pitch or heavy petroleum oil at 350 to 500 ° C from the pitch matrix with a solvent and drying it are used as raw materials. Is a method of firing after pressure molding.
However, this method requires an extremely large amount of extraction solvent in the spherulite separation step, and solvent separation must be repeated many times. Furthermore, since it is difficult to completely remove the residual solvent from the obtained spherulite, it tends to cause cracking or expansion of the molded body in the subsequent carbonization step. Moreover, in such a spherulite solvent extraction method, the separation yield is extremely low, and it is not easy to control the properties of the spherulites formed, and it is industrially problematic to stably produce raw materials of constant quality. There are many.

【0004】また、炭素前駆体として特定性状のバルク
メソフェーズを利用する方法も試みられている(特公平
1-58124 号)。しかしながら、このようなバルクメソフ
ェーズ粉砕物を原料として製造された炭素材料は嵩密度
が低く、必ずしも満足すべき性能は得られていない。ま
たこの方法では、メソカーボンマイクロビーズの合体凝
集の結果得られるバルクメソフェーズをピッチマトリッ
クスから分離する工程が必要であり、所定性状のバルク
メソフェーズへ加工されるまでには、多くの煩雑な工程
を経なければならない。
Further, a method utilizing a bulk mesophase having a specific property as a carbon precursor has also been attempted (Japanese Patent Publication No.
1-58124). However, the carbon material produced by using such a pulverized material of bulk mesophase as a raw material has a low bulk density, so that satisfactory performance is not always obtained. In addition, this method requires a step of separating the bulk mesophase obtained as a result of coalescence aggregation of mesocarbon microbeads from the pitch matrix, and many complicated steps are required until the bulk mesophase having a predetermined property is processed. There must be.

【0005】[0005]

【発明が解決しようとする問題点】高密度炭素材料を製
造するプロセスは上記の如く極めて煩雑であり、且つ非
常に長い製造期間を要することから、従来の方法によっ
て製造される炭素材料は高価なものとなり、その利用分
野に大きな制約を受けている。従って高密度炭素材料の
製造工程を大幅に簡略化し、且つ製造期間を短縮するこ
とは、炭素工業における大きな課題となっている。本発
明の目的は高密度且つ高強度の炭素材料を短時間で安価
に製造できる優れた炭素材料用原料粉体および炭素材料
の製造法を提供することである。
The process for producing a high-density carbon material is extremely complicated as described above, and requires a very long production period. Therefore, the carbon material produced by the conventional method is expensive. However, the field of use is severely restricted. Therefore, greatly simplifying the manufacturing process of the high-density carbon material and shortening the manufacturing period are major problems in the carbon industry. An object of the present invention is to provide an excellent raw material powder for a carbon material and a method for producing the carbon material, which can produce a high density and high strength carbon material in a short time and at low cost.

【0006】[0006]

【問題を解決するための手段】本発明者らは上記の如き
課題を有する高密度炭素材料の製造法について鋭意検討
した結果、超強酸フッ化水素・三フッ化ホウ素の存在下
で縮合多環炭化水素またはこれを含有する物質を重合さ
せて得られたメソフェーズピッチを酸化処理することに
よって得られる、特定範囲のピリジンに可溶でベンゼン
に不溶な成分とピリジンに不溶な成分から構成される改
質ピッチ粉体が、優れた成型性を示し、炭素化過程にお
いて形状安定性を維持しながら優れた融着性を有するこ
と、またメソフェーズピッチの性状に応じた適度の酸化
処理は、炭化収率を一層向上させ、優れた炭化性・黒鉛
化性を保持するので、このような酸化による改質メソフ
ェーズピッチ粉体を原料として使用することによって、
バインダーを添加する必要がなく、高密度・高強度炭素
材料が短時間で安価に安定して得られることを見い出
し、本発明に至った。
[Means for Solving the Problems] As a result of diligent studies on the method for producing a high-density carbon material having the above-mentioned problems, the present inventors have found that condensed polycyclic rings are present in the presence of superhydrofluoric acid fluoride / boron trifluoride. A modified compound consisting of a benzene-insoluble component and a benzene-insoluble component in a specific range obtained by oxidizing mesophase pitch obtained by polymerizing a hydrocarbon or a substance containing the same. The fine pitch powder shows excellent moldability, has excellent fusion property while maintaining the shape stability in the carbonization process, and the appropriate oxidation treatment according to the properties of the mesophase pitch is Since it further improves and retains excellent carbonization and graphitization properties, by using a modified mesophase pitch powder by such oxidation as a raw material,
The present inventors have found that a high-density and high-strength carbon material can be obtained stably at low cost in a short time without the need to add a binder, and the present invention has been completed.

【0007】即ち本発明は、超強酸フッ化水素・三フッ
化ホウ素の存在下で縮合多環炭化水素またはこれを含有
する物質を重合させて得られたメソフェーズピッチを酸
化性雰囲気下にて酸化処理することによって調製され
る、ピリジンに可溶でベンゼンに不溶な成分を 5.0〜2
0.0重量% 、ピリジンに不溶な成分を78重量% 以上含有
することを特徴とする高密度炭素材料用原料粉体、およ
び該原料粉体を加圧成形後、焼成することを特徴とする
炭素材料の製造法である。以下、本発明の内容について
詳述する。
That is, the present invention oxidizes mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the condensed polycyclic hydrocarbon in the presence of super strong hydrogen fluoride / boron trifluoride in an oxidizing atmosphere. 5.0 to 2% of pyridine-soluble and benzene-insoluble components prepared by the treatment.
0.0% by weight, 78% by weight or more of a component insoluble in pyridine, and a raw material powder for high-density carbon material, and a carbon material characterized by being pressure-molded and then fired. Is a manufacturing method of. The details of the present invention will be described below.

【0008】本発明の高密度炭素材料用原料粉体の前駆
体は、超強酸であるフッ化水素・三フッ化ホウ素の存在
下で、縮合多環炭化水素またはこれを含有する物質を重
合させて得られるメソフェーズピッチである。このメソ
フェーズピッチは、特開昭63-146920 号、特開平1-1396
21号、特開平1-254796号などに示されるように、ナフタ
レン、アントラセン、フェナントレン、アセナフテン、
アセナフチレン、ピレン等の縮合多環炭化水素およびこ
れらを含有する物質を、超強酸触媒であるフッ化水素・
三フッ化ホウ素の存在下で重合させて得られる。
The precursor of the raw material powder for high density carbon material of the present invention is prepared by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride which is a super strong acid. It is the mesophase pitch obtained as a result. This mesophase pitch is disclosed in JP-A-63-146920 and JP-A-1-1396.
No. 21, as disclosed in JP-A 1-254796, naphthalene, anthracene, phenanthrene, acenaphthene,
Condensed polycyclic hydrocarbons such as acenaphthylene and pyrene and substances containing them are treated with hydrogen fluoride, which is a super strong acid catalyst.
Obtained by polymerizing in the presence of boron trifluoride.

【0009】フッ化水素は三フッ化ホウ素と共存させる
ことにより強力なプロトン酸を形成し、塩基である縮合
多環炭化水素とコンプレックスを形成する。このフッ化
水素は溶媒としても作用し、生成したコンプレックスは
過剰に使用されるフッ化水素に溶解しコンプレックス溶
液を形成する。重合反応はこのフッ化水素溶液において
温和な条件できわめて円滑に進行する。このように過剰
に使用されるフッ化水素は、触媒としての機能ととも
に、反応溶媒としての重要な機能を果たす。
Hydrogen fluoride forms a strong protonic acid by coexisting with boron trifluoride, and forms a complex with a condensed polycyclic hydrocarbon which is a base. The hydrogen fluoride also acts as a solvent, and the produced complex is dissolved in excess hydrogen fluoride to form a complex solution. The polymerization reaction proceeds extremely smoothly in this hydrogen fluoride solution under mild conditions. The hydrogen fluoride used in excess as described above plays an important function as a reaction solvent together with the function as a catalyst.

【0010】また超強酸フッ化水素・三フッ化ホウ素を
重合触媒とする方法では、反応時間および温度、原料の
縮合多環炭化水素/フッ化水素/三フッ化ホウ素のモル
比、原料種等の重合条件の選定によって、生成するメソ
フェーズピッチの性状がコントロールできる。通常はナ
フタレンを原料モノマーとして 200〜300 ℃で数時間重
合反応を進行させる。本触媒の沸点は極めて低いため生
成ピッチから完全に分離されるので、得られるメソフェ
ーズピッチは極めて高い純度を示す。
Further, in the method of using super strong hydrogen fluoride / boron trifluoride as a polymerization catalyst, the reaction time and temperature, the molar ratio of condensed polycyclic hydrocarbon / hydrogen fluoride / boron trifluoride of the raw material, the raw material species, etc. The properties of the generated mesophase pitch can be controlled by selecting the polymerization conditions. Usually, naphthalene is used as a raw material monomer and the polymerization reaction is allowed to proceed at 200 to 300 ° C for several hours. Since the boiling point of this catalyst is extremely low, it is completely separated from the produced pitch, and thus the obtained mesophase pitch shows extremely high purity.

【0011】このメソフェーズピッチは、脱水素を殆ど
伴わないカチオン重合で得られるので、ナフテン水素や
脂肪族水素の含有率の高い特徴ある構造を有している
〔『炭素』 155号,p.370(1992)〕。従って本発明に用い
られるメソフェーズピッチは、従来の石炭系や石油系の
メソフェーズピッチ、すなわち石炭・石油化学プロセス
において副生するコールタールや石油残渣などの熱処理
による縮重合を経て得られるメソフェーズピッチや、特
公平1-58124 号などに記載されているバルクメソフェー
ズとは、構造的に明確に異なるものであり、従来型のメ
ソフェーズピッチには見られない新たな優れた諸特性を
有する。
Since this mesophase pitch can be obtained by cationic polymerization with almost no dehydrogenation, it has a characteristic structure with a high content of naphthene hydrogen and aliphatic hydrogen ["Carbon" 155, p.370. (1992)]. Therefore, the mesophase pitch used in the present invention is a conventional coal-based or petroleum-based mesophase pitch, that is, a mesophase pitch obtained through condensation polymerization by heat treatment of coal tar or petroleum residue produced as a by-product in a coal / petrochemical process, It is structurally distinct from the bulk mesophase described in Japanese Patent Publication No. 1-58124, and has new excellent properties not found in conventional mesophase pitches.

【0012】本発明の高密度炭素材料用原料粉体を製造
するための前駆体ピッチは、その炭化収率が70重量% 以
上、好ましくは80重量% 以上のメソフェーズピッチが好
適に用いられる。この炭化収率はピッチ粉末を不活性雰
囲気下で徐々に昇温し 600℃に到達後 2時間保持したと
きの数値である。炭化収率の低いピッチを用いる場合に
は、成型体の炭素化過程において揮発ガスによる空隙が
生成し易く、得られる炭素材料の密度低下を招き、その
機械的強度、熱伝導性、電気伝導性、耐蝕性などに悪い
影響を与える。
As the precursor pitch for producing the raw material powder for high density carbon material of the present invention, mesophase pitch having a carbonization yield of 70% by weight or more, preferably 80% by weight or more is suitably used. The carbonization yield is a value when the pitch powder is gradually heated in an inert atmosphere and reaches 600 ° C and is held for 2 hours. When a pitch with a low carbonization yield is used, voids are easily generated by volatile gas in the carbonization process of the molded body, which causes a decrease in the density of the obtained carbon material, its mechanical strength, thermal conductivity, and electrical conductivity. , It has a bad effect on corrosion resistance.

【0013】またこの前駆体ピッチは,フローテスター
による軟化点が 170℃以上であり、偏光顕微鏡で観察し
た光学的異方性相が、少なくとも70vol%以上、好ましく
は80vol%以上、さらに好ましくは実質的に 100vol%であ
るメソフェーズピッチが好適に用いられる。本発明の高
密度炭素材料用原料粉体のピリジンならびにベンゼンに
よる分別にはソックスレー抽出によって行なわれる。
The precursor pitch has a softening point of 170 ° C. or higher by a flow tester, and the optically anisotropic phase observed by a polarization microscope is at least 70 vol% or higher, preferably 80 vol% or higher, and more preferably substantially. A mesophase pitch of 100 vol% is suitably used. Soxhlet extraction is used to separate the raw material powder for a high-density carbon material of the present invention with pyridine and benzene.

【0014】本発明の高密度炭素材料用原料粉体を製造
するには、先ず上記のメソフェーズピッチを粉末化す
る。粉末化方法ならびに粉体形状は特に限定されない。
粒度分布についても特に限定されないが、成型の際の充
填密度をできるだけ大きくするような粒度分布が好まし
い。一般には 1〜200 μm 、好ましくは 1〜20μm の粉
末状態にて酸化処理される。
In order to produce the raw material powder for high density carbon material of the present invention, first, the above mesophase pitch is pulverized. The powdering method and the powder shape are not particularly limited.
The particle size distribution is also not particularly limited, but a particle size distribution that maximizes the packing density during molding is preferable. Generally, it is oxidized in a powder state of 1 to 200 μm, preferably 1 to 20 μm.

【0015】次にこのメソフェーズピッチ粉体を空気流
通下、或いは酸素流通下において酸化処理する。このと
きの酸化条件は、前駆体メソフェーズピッチの性状と酸
化反応性を充分考慮に入れて、酸化処理されたメソフェ
ーズピッチ粉体のピリジンに可溶でベンゼンに不溶な成
分が 5.0〜20.0重量% 、且つピリジンに不溶な成分が78
重量% 以上となるように、適切に選択することが肝要で
ある。すなわちピリジンに可溶でベンゼンに不溶な成分
量とピリジンに可溶な成分量が上記の範囲を満足するよ
うなメソフェーズピッチ粉体を調製することによって、
優れた自己融着性が付与され、且つ後続の炭化工程にお
いて割れや膨張を誘発することなく、高密度・高強度が
達成される。
Next, the mesophase pitch powder is subjected to oxidation treatment under air circulation or under oxygen circulation. The oxidizing conditions at this time are 5.0 to 20.0% by weight of benzene-insoluble components soluble in pyridine of the oxidized mesophase pitch powder, with due consideration of the properties and oxidation reactivity of the precursor mesophase pitch. And the pyridine-insoluble component is 78
It is important to select appropriately so that the amount is not less than weight%. That is, by preparing a mesophase pitch powder in which the amount of pyridine-soluble and benzene-insoluble components and the amount of pyridine-soluble components satisfy the above range,
Excellent self-bonding property is provided, and high density and high strength are achieved without inducing cracking or expansion in the subsequent carbonization step.

【0016】このような酸化処理の条件は特に限定され
ないが、工業的に実施する上では、一般に 170〜350
℃、好ましくは 210〜300 ℃の範囲である。 350℃以上
では酸化反応が極めて速く進行するため酸素吸収量の制
御が困難となる。またメソフェーズピッチの性状によっ
ては、酸化温度が高すぎると、全体的あるいは部分的に
メソフェーズ粒子同士の融着が起こり、操作性を著しく
低下させる恐れがある。一方 170℃以下では酸化反応が
きわめて遅く実際的でない。
The conditions for such an oxidation treatment are not particularly limited, but generally 170-350 in industrial practice.
C., preferably 210 to 300.degree. At 350 ° C or higher, it becomes difficult to control the oxygen absorption amount because the oxidation reaction proceeds extremely fast. Further, depending on the properties of the mesophase pitch, if the oxidation temperature is too high, the mesophase particles may be wholly or partially fused to each other, resulting in a marked decrease in operability. On the other hand, below 170 ℃, the oxidation reaction is extremely slow and not practical.

【0017】このように原料メソフェーズピッチの性状
と酸素に対する反応性を考慮した適度の酸化処理によ
り、改質ピッチ中のバインダー成分に相当するピリジン
可溶−ベンゼン不溶成分を 5.0〜20.0重量% の範囲に、
且つ高炭化収率を保証するピリジン不溶成分を78重量%
以上に調節することによって、次のような優れた原料特
性が発現する。すなわち本発明の原料粉体は、加圧下で
良好な粒子変形性を有するので、密充填が達成され、室
温でも優れた成型性が得られる。この成型体は焼成前で
も通常のハンドリングに対しては充分耐える強度を有し
ている。また本発明の原料粉体は、成型体の炭素化初期
過程において成型体としての形状は維持しながらも適度
の溶融流動性を示すため原料粒子同士が極めて強固に結
合する結果、極めて微細なモザイク構造を形成し、高密
度・高強度が達成される。更に本発明の原料粉体は、ピ
リジン不溶成分が78重量% 以上を含有するので炭化収率
がきわめて高く、炭化過程での揮発ガスによる気孔は殆
ど生成しない。この結果、焼成体は均質且つ緻密な組織
となり、実施例に見られるように高密度で高強度な炭素
材料が得られる。
As described above, the pyridine-soluble-benzene-insoluble component corresponding to the binder component in the modified pitch is in the range of 5.0 to 20.0% by weight by the appropriate oxidation treatment in consideration of the properties of the raw material mesophase pitch and the reactivity with oxygen. To
And 78% by weight of pyridine-insoluble component that guarantees high carbonization yield
By adjusting the above, the following excellent raw material characteristics are exhibited. That is, since the raw material powder of the present invention has good particle deformability under pressure, close packing is achieved and excellent moldability is obtained even at room temperature. This molded body has sufficient strength to withstand ordinary handling even before firing. Further, since the raw material powder of the present invention exhibits appropriate melt fluidity while maintaining the shape of the molded body in the initial stage of carbonization of the molded body, the raw material particles are bonded very firmly to each other, resulting in an extremely fine mosaic. The structure is formed and high density and high strength are achieved. Further, since the raw material powder of the present invention contains 78% by weight or more of the pyridine-insoluble component, the carbonization yield is extremely high, and pores due to volatile gas are hardly generated during the carbonization process. As a result, the fired body has a uniform and dense structure, and a high-density and high-strength carbon material can be obtained as seen in the examples.

【0018】改質ピッチ中のバインダー成分相当のピリ
ジンに可溶でベンゼンに不溶な成分が20.0重量% を超え
る場合には、成型体の炭素化初期過程において原料粒子
の溶融流動性が過剰になり、部分的に流れ構造を示すよ
うになるので、炭素化後期の収縮の際に多数のクラック
を生じる。更にピリジンに可溶でベンゼンに不溶な成分
が著しく増加すると、成型体の膨張および発泡を引き起
こす(比較例1)。またピリジンに可溶でベンゼンに不
溶な成分量とピリジンに不溶な成分量は連動して変化す
るので、ピリジンに可溶でベンゼンに不溶な成分が20.0
重量% を超える場合にはピリジンに不溶な成分も78重量
% を下回ることになり、炭化収率も同時に減少する。従
って揮発ガスも増加することとなり、焼成体中の気孔数
も増える。このためピリジンに可溶でベンゼンに不溶な
成分が20.0重量% を超える系では焼成体中のクラックお
よび気孔数共に増加し、焼成体嵩密度と機械的強度が共
に低下する(比較例2)。
If the content of pyridine, which is equivalent to the binder component in the modified pitch, and that is insoluble in benzene exceeds 20.0% by weight, the melt fluidity of the raw material particles becomes excessive during the initial carbonization process of the molded body. Since it partially shows a flow structure, a large number of cracks are generated during contraction in the latter part of carbonization. Further, when the amount of a component soluble in pyridine but insoluble in benzene significantly increases, expansion and foaming of the molded body occur (Comparative Example 1). Also, since the amount of pyridine-soluble and benzene-insoluble components and that of pyridine-insoluble components change in tandem, the amount of pyridine-soluble and benzene-insoluble components is 20.0%.
78% by weight of pyridine-insoluble components when the content exceeds 50%
%, And the carbonization yield also decreases at the same time. Therefore, the amount of volatile gas also increases, and the number of pores in the fired body also increases. Therefore, in a system in which the content of pyridine-soluble and benzene-insoluble components exceeds 20.0% by weight, both the number of cracks and the number of pores in the fired body increase, and the bulk density and mechanical strength of the fired body decrease (Comparative Example 2).

【0019】一方、ピリジンに可溶でベンゼンに不溶な
成分が 5.0重量% より少ない場合には、成型体の炭素化
初期過程において原料粒子の溶融流動性が不足となり、
原料粒子間の結合力は低下する。この結果、炭化後期に
おいて個々の粒子が収縮する際に多数の空隙が生成する
と同時に、光学的異方性サイズの比較的大きな粒子内に
はクラックを生じやすい。従って焼成体組織は空隙とク
ラックの多い不均質なものとなり、嵩密度と機械的強度
が共に減少する(比較例3)。
On the other hand, when the content of pyridine-soluble and benzene-insoluble components is less than 5.0% by weight, the melt flowability of the raw material particles becomes insufficient in the initial stage of carbonization of the molded body,
The binding force between the raw material particles is reduced. As a result, a large number of voids are generated when the individual particles shrink in the latter stage of carbonization, and at the same time, cracks are likely to occur in the particles having a relatively large optically anisotropic size. Therefore, the structure of the fired body becomes inhomogeneous with many voids and cracks, and both bulk density and mechanical strength decrease (Comparative Example 3).

【0020】以上の如くピリジンに可溶でベンゼンに不
溶な成分、およびピリジンに不溶な成分が、本発明にお
ける請求範囲を満足するようにメソフェーズピッチを酸
化改質することによって、メソフェーズピッチ粉体の優
れた自己融着性と成型性を確保し、炭化収率を一層高め
ることができるので、複雑でコストのかかる工程を経る
ことなく、一回の焼成のみで均質且つ緻密な組織を有す
る高密度・高強度の炭素材料を製造できる。
As described above, by oxidizing and modifying the mesophase pitch so that the pyridine-soluble and benzene-insoluble components and the pyridine-insoluble component satisfy the claims of the present invention, High self-bonding property and moldability can be ensured, and the carbonization yield can be further increased. Therefore, a high density that has a homogeneous and dense structure with only one firing without complicated and costly steps.・ Can manufacture high-strength carbon materials.

【0021】本発明の原料粉体から高密度・高強度の炭
素材料を製造するためには、先ずこのようにして適切に
酸化処理されたメソフェーズピッチ粉体を加圧成型す
る。この加圧成型は等方加圧成型することが好ましく、
バインダーは不要である。成型体の形状は、目的、用途
等に応じて自由に選択できる。成型は常温で行なう場合
と、酸化改質粉体が軟化あるいは溶融する温度域で行な
う場合があり、これは要求される形状、性能およびコス
トに応じて決定される。
In order to produce a high-density and high-strength carbon material from the raw material powder of the present invention, first, the mesophase pitch powder thus appropriately oxidized is pressure-molded. This pressure molding is preferably isotropic pressure molding,
No binder is needed. The shape of the molded body can be freely selected according to the purpose, application and the like. The molding may be carried out at room temperature or in a temperature range where the oxidation-modified powder softens or melts, which is determined according to the required shape, performance and cost.

【0022】得られた成型体は引き続き焼成することに
より所望の炭素材料が製造される。焼成工程は、非酸化
性雰囲気下、成型体を 600〜1700℃の温度に加熱して炭
化することによって行なわれる。さらに必要に応じて、
この炭化物は更に高温で黒鉛化することもできる。
The molded body thus obtained is subsequently fired to produce a desired carbon material. The firing step is performed by heating the molded body to a temperature of 600 to 1700 ° C. and carbonizing it in a non-oxidizing atmosphere. If necessary,
This carbide can also be graphitized at higher temperatures.

【0023】[0023]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。但し本発明はこれらの実施例により制限され
るものではない。
EXAMPLES The present invention will be described in more detail below with reference to examples. However, the present invention is not limited to these examples.

【0024】実施例1 ナフタレン 7.0モル、フッ化水素 3.4モル、三フッ化ホ
ウ素1.06モルを3リットル耐酸オートクレーブに仕込
み、反応圧を25kgf/cm2 に保ちながら 265℃に昇温後 4
時間反応させた。次にオートクレーブの放出弁を開け
て、常圧において実質的に全量のフッ化水素、三フッ化
ホウ素をガス状で回収した。その後、窒素を吹き込みな
がら軽質分を除去したメソフェーズピッチを得た。ピッ
チ収率は79重量%(原料ナフタレン基準)であった。この
メソフェーズピッチの光学的異方性相含有率は100%であ
り、軟化点は 235℃、H/C原子比は0.66、炭化収率は
83重量% であった。またこのメソフェーズピッチの溶解
度は、ピリジン可溶−ベンゼン不溶成分が18.0重量%、
ピリジン不溶成分が42.0重量% であった。
Example 1 7.0 mol of naphthalene, 3.4 mol of hydrogen fluoride, and 1.06 mol of boron trifluoride were charged into a 3 liter acid-resistant autoclave, and the temperature was raised to 265 ° C. while maintaining the reaction pressure at 25 kgf / cm 2 4
Reacted for hours. Next, the discharge valve of the autoclave was opened, and under atmospheric pressure, substantially all amounts of hydrogen fluoride and boron trifluoride were recovered in a gaseous state. Then, a mesophase pitch from which light components were removed while blowing nitrogen was obtained. The pitch yield was 79% by weight (based on raw material naphthalene). The optically anisotropic phase content of this mesophase pitch is 100%, the softening point is 235 ° C, the H / C atomic ratio is 0.66, and the carbonization yield is
It was 83% by weight. The solubility of this mesophase pitch is 18.0% by weight of pyridine-soluble-benzene-insoluble component,
The pyridine-insoluble component was 42.0% by weight.

【0025】得られたメソフェーズピッチをボールミル
で粉砕し、平均粒径 7μm の粉体とした後、このメソフ
ェーズピッチ粉体を空気流通下 220℃で 2時間酸化を行
ない、均一な酸化処理粉体を得た。この酸化処理粉体
は、ピリジンに可溶でベンゼンに不溶な成分を13.1重量
% 、ピリジンに不溶な成分を85.9重量% 含有していた。
この酸化処理粉体を成型圧1.5tf/cm2 で室温にてプレー
ト状(35mm×40mm×10mm)に成型した。この成型体をア
ルゴン流通下1000℃まで昇温し 2時間保持した。さらに
この炭化品を2000℃で 2時間焼成し、黒鉛化品を得た。
こうして得られた炭化品ならびに黒鉛化品の物性を表1
に示す。
The obtained mesophase pitch was pulverized with a ball mill to obtain a powder having an average particle size of 7 μm, and the mesophase pitch powder was oxidized at 220 ° C. for 2 hours under air flow to obtain a uniform oxidized powder. Obtained. This oxidised powder contains 13.1% by weight of pyridine soluble and benzene insoluble components.
%, And 85.9% by weight of a component insoluble in pyridine.
The oxidation-treated powder was molded into a plate shape (35 mm × 40 mm × 10 mm) at a molding pressure of 1.5 tf / cm 2 at room temperature. This molded body was heated to 1000 ° C under argon flow and held for 2 hours. Further, this carbonized product was fired at 2000 ° C. for 2 hours to obtain a graphitized product.
Table 1 shows the physical properties of the carbonized products and graphitized products thus obtained.
Shown in.

【0026】実施例2 ナフタレン 7.0モル、フッ化水素 3.5モル、三フッ化ホ
ウ素 1.4モルを3リットル耐酸オートクレーブに仕込
み、反応圧を28kgf/cm2 に保ちながら 270℃に昇温後 4
時間反応させた。次にオートクレーブの放出弁を開け
て、常圧において実質的に全量のフッ化水素、三フッ化
ホウ素をガス状で回収した。その後、窒素を吹き込みな
がら軽質分を除去した。更に 400℃まで昇温して自生圧
下 5時間熱処理を行なうことによって高軟化点のメソフ
ェーズピッチを得た。ピッチ収率は68重量%(原料ナフタ
レン基準)であった。このメソフェーズピッチの光学的
異方性相含有率は100%であり、軟化点は 300℃以上、H
/C原子比は0.53、炭化収率は90重量% であった。また
このメソフェーズピッチの溶解度は、ピリジン可溶−ベ
ンゼン不溶成分が 3.9重量% 、ピリジン不溶成分が93.0
重量% であった。
Example 2 7.0 mol of naphthalene, 3.5 mol of hydrogen fluoride and 1.4 mol of boron trifluoride were charged into a 3 liter acid-resistant autoclave, and the temperature was raised to 270 ° C. while maintaining the reaction pressure at 28 kgf / cm 2 4
Reacted for hours. Next, the discharge valve of the autoclave was opened, and under atmospheric pressure, substantially all amounts of hydrogen fluoride and boron trifluoride were recovered in a gaseous state. Then, the light fraction was removed while blowing nitrogen. Furthermore, the temperature was raised to 400 ° C and heat treatment was performed for 5 hours under autogenous pressure to obtain mesophase pitch with a high softening point. The pitch yield was 68% by weight (based on raw material naphthalene). The mesophase pitch has an optically anisotropic phase content of 100%, a softening point of 300 ° C or higher, and H
The / C atomic ratio was 0.53, and the carbonization yield was 90% by weight. The solubility of this mesophase pitch is 3.9% by weight of pyridine soluble-benzene insoluble component and 93.0% of pyridine insoluble component.
It was weight%.

【0027】得られたメソフェーズピッチをボールミル
で粉砕し、平均粒径 8μm の粉体とした後、このメソフ
ェーズピッチ粉体を空気流通下 220℃で 1時間酸化を行
ない均一な酸化処理粉体を得た。この酸化処理粉体は、
ピリジンに可溶でベンゼンに不溶な成分を 8.2重量% 、
ピリジンに不溶な成分を91.4重量% 含有していた。この
酸化処理粉体を実施例1と同様の条件で焼成を行なっ
た。得られた炭化品ならびに黒鉛化品の物性を表1に示
す。
The obtained mesophase pitch was pulverized with a ball mill to obtain a powder having an average particle size of 8 μm, and the mesophase pitch powder was oxidized at 220 ° C. for 1 hour under air flow to obtain a uniform oxidized powder. It was This oxidation treated powder is
8.2% by weight of components that are soluble in pyridine and insoluble in benzene,
It contained 91.4% by weight of a component insoluble in pyridine. The oxidation-treated powder was fired under the same conditions as in Example 1. The physical properties of the obtained carbonized product and graphitized product are shown in Table 1.

【0028】比較例1 実施例1と同一のメソフェーズピッチ粉体を用い、これ
を空気流通下 220℃で30分間の酸化処理を行なった。こ
の酸化処理粉体は、ピリジンに可溶でベンゼンに不溶な
成分を27.1重量% 、ピリジンに不溶な成分を65.9重量%
含有していた。ピリジンに可溶でベンゼンに不溶な成分
が著しく多いこの酸化処理ピッチ粉体を実施例1と同一
の条件で成型して焼成を試みたが、炭化の途中で著しく
膨張したたため、炭化品ならびに黒鉛化品の強度等は測
定できなかった。
Comparative Example 1 The same mesophase pitch powder as in Example 1 was used, and this was subjected to an oxidation treatment at 220 ° C. for 30 minutes under air circulation. This oxidation-treated powder contains 27.1% by weight of pyridine-insoluble components and 65.9% by weight of pyridine-insoluble components.
Contained. This oxidation-treated pitch powder, which is soluble in pyridine and contains a large amount of components insoluble in benzene, was molded under the same conditions as in Example 1 and tried to be calcined. The strength of the chemical products could not be measured.

【0029】比較例2 実施例1と同一のメソフェーズピッチ粉体を用い、これ
を空気流通下 220℃で1時間酸化した。この酸化処理粉
体は、ピリジンに可溶でベンゼンに不溶な成分を21.0重
量% 、ピリジンに不溶な成分を77.1重量% 含有してい
た。この酸化処理ピッチ粉体を実施例1と同一の条件で
成型・焼成した。酸化処理粉体中のピリジンに可溶でベ
ンゼンに不溶な成分が多いので、表1に示すように高性
能の炭素材料は得られなかった。
Comparative Example 2 The same mesophase pitch powder as in Example 1 was used, and this was oxidized for 1 hour at 220 ° C. under air flow. This oxidation-treated powder contained 21.0% by weight of a component soluble in pyridine and insoluble in benzene, and 77.1% by weight of a component insoluble in pyridine. The oxidized pitch powder was molded and fired under the same conditions as in Example 1. Since a large amount of pyridine-soluble and benzene-insoluble components in the oxidation-treated powder, a high-performance carbon material as shown in Table 1 could not be obtained.

【0030】比較例3 実施例2と同一のメソフェーズピッチ粉体を用い、これ
を空気流通下 220℃で12時間酸化した。この酸化処理粉
体は、ピリジンに可溶でベンゼンに不溶な成分を 3.7重
量% 、ピリジンに不溶な成分を96.2重量% 含有してい
た。この酸化処理粉体を実施例1と同一の条件で成型・
焼成した。酸化処理粉体中のピリジンに可溶でベンゼン
に不溶な成分が少ないので、表1に示すように高性能の
炭素材料は得られなかった。
Comparative Example 3 The same mesophase pitch powder as in Example 2 was used, and this was oxidized for 12 hours at 220 ° C. under air flow. This oxidation-treated powder contained 3.7% by weight of a component soluble in pyridine and insoluble in benzene, and 96.2% by weight of a component insoluble in pyridine. This oxidation-treated powder was molded under the same conditions as in Example 1.
Baked. As shown in Table 1, a high-performance carbon material could not be obtained, because the oxidant-treated powder contained a small amount of pyridine-insoluble and benzene-insoluble components.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明の原料粉体は、高密度炭素材料用
原料として炭化性・黒鉛化性に優れ、且つ炭化収率が極
めて高いので、短時間で焼成が達成されるとともに、一
回の焼成のみで充分な高密度と高強度の炭素材料が得ら
れる。また本発明の原料粉体のメソフェーズピッチに由
来する焼成体組織は光学的異方性を示し、緻密で均質な
構造である上に高純度なので、形成されるカーボンボン
ドは非常に強固である。このカーボンボンドは高温での
焼成により黒鉛化度が向上し、且つ収縮により緻密化が
一層促進されるので、カーボンボンドはさらに強くな
る。加えて本発明において用いられるメソフェーズピッ
チ粉体は、適度の酸化処理により優れた自己融着性が付
与されるので、バインダーは特に不要である。従って本
発明の炭素質粉体を用いることにより、高密度・高強度
の炭素材料が簡単に短時間で、しかも安価に製造するこ
とができる。
The raw material powder of the present invention is excellent in carbonization and graphitization as a raw material for a high-density carbon material, and has an extremely high carbonization yield. Sufficiently high density and high strength carbon material can be obtained only by firing. Further, the fired body structure derived from the mesophase pitch of the raw material powder of the present invention exhibits optical anisotropy, has a dense and homogeneous structure, and has high purity, so that the carbon bond formed is very strong. The carbon bond has a higher degree of graphitization by firing at a high temperature, and the shrinkage further promotes densification, so that the carbon bond is further strengthened. In addition, the mesophase pitch powder used in the present invention is imparted with excellent self-fusing property by an appropriate oxidation treatment, so that a binder is not particularly necessary. Therefore, by using the carbonaceous powder of the present invention, a high-density / high-strength carbon material can be easily manufactured in a short time and at low cost.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/52 // C10C 3/04 A 6958−4H Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C04B 35/52 // C10C 3/04 A 6958-4H

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】超強酸フッ化水素・三フッ化ホウ素の存在
下で縮合多環炭化水素またはこれを含有する物質を重合
させて得られたメソフェーズピッチを酸化性雰囲気下に
て酸化処理することによって調製される、ピリジンに可
溶でベンゼンに不溶な成分を 5.0〜20.0重量% 、ピリジ
ンに不溶な成分を78重量% 以上含有することを特徴とす
る高密度炭素材料用原料粉体。
1. Mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of a super strong hydrogen fluoride / boron trifluoride is subjected to an oxidation treatment in an oxidizing atmosphere. A raw material powder for a high-density carbon material, characterized by containing 5.0 to 20.0% by weight of a pyridine-soluble component and benzene-insoluble component, and 78% by weight or more of a pyridine-insoluble component.
【請求項2】超強酸フッ化水素・三フッ化ホウ素の存在
下で縮合多環炭化水素またはこれを含有する物質を重合
させて得られたメソフェーズピッチを酸化性雰囲気下に
て酸化処理することによって調製される、ピリジンに可
溶でベンゼンに不溶な成分を 5.0〜20.0重量% 、ピリジ
ンに不溶な成分を78重量% 以上含有する高密度炭素材料
用原料粉体を、加圧成形後、焼成することを特徴とする
炭素材料の製造法。
2. Mesophase pitch obtained by polymerizing condensed polycyclic hydrocarbon or a substance containing the same in the presence of super-strong hydrogen fluoride / boron trifluoride is subjected to an oxidation treatment in an oxidizing atmosphere. The raw material powder for high-density carbon material, which is prepared by the method and contains 5.0 to 20.0% by weight of pyridine-insoluble components and 78% by weight or more of pyridine-insoluble components, is pressed and fired. A method for producing a carbon material characterized by:
JP5309383A 1993-12-09 1993-12-09 Raw material powder for high density carbon material and method for producing carbon material Expired - Lifetime JP3060450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5309383A JP3060450B2 (en) 1993-12-09 1993-12-09 Raw material powder for high density carbon material and method for producing carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5309383A JP3060450B2 (en) 1993-12-09 1993-12-09 Raw material powder for high density carbon material and method for producing carbon material

Publications (2)

Publication Number Publication Date
JPH07157548A true JPH07157548A (en) 1995-06-20
JP3060450B2 JP3060450B2 (en) 2000-07-10

Family

ID=17992348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5309383A Expired - Lifetime JP3060450B2 (en) 1993-12-09 1993-12-09 Raw material powder for high density carbon material and method for producing carbon material

Country Status (1)

Country Link
JP (1) JP3060450B2 (en)

Also Published As

Publication number Publication date
JP3060450B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
US4883617A (en) Method of forming binderless carbon materials
EP0575748B1 (en) Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom
JP3382986B2 (en) Sinterable carbon powder and method for producing the same
JP3060450B2 (en) Raw material powder for high density carbon material and method for producing carbon material
JP3060449B2 (en) Raw material powder for high-density and high-strength carbon material and method for producing carbon material
US5484520A (en) Self-adhesive carbonaceous grains and process for producing high-density and high-strength carbon artifacts showing a fine mosaic texture of optical anisotropy derived from such grains
JP2700798B2 (en) Manufacturing method of carbon and graphite materials
JP2806408B2 (en) Self-fusing carbonaceous powder and high density carbon material
JP2918008B2 (en) Self-fusing carbonaceous powder and high density carbon material
JP3599062B2 (en) Method for producing carbon material having fine optically anisotropic structure
JPH0768064B2 (en) Carbon fiber reinforced composite material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JP2989295B2 (en) Method for producing coke for isotropic high-density carbon material
KR970008693B1 (en) Process for the preparation of carbon composite material
JPS59207822A (en) Production of carbon material
JPH0825815B2 (en) Method for producing carbon-carbon composite material
JPH0512398B2 (en)
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JPH0550468B2 (en)
JPH0791107B2 (en) Method for producing isotropic graphite material having high density and high strength
JPH03103490A (en) Coal tar-based impregnating pitch and production thereof
JPH05279005A (en) Production of high-density carbon material
JPH0323207A (en) Production of carbon compact
JPH0158124B2 (en)
JPS6153104A (en) Production of high-strength carbon material