JPH071448B2 - Fine positioning device - Google Patents

Fine positioning device

Info

Publication number
JPH071448B2
JPH071448B2 JP61283061A JP28306186A JPH071448B2 JP H071448 B2 JPH071448 B2 JP H071448B2 JP 61283061 A JP61283061 A JP 61283061A JP 28306186 A JP28306186 A JP 28306186A JP H071448 B2 JPH071448 B2 JP H071448B2
Authority
JP
Japan
Prior art keywords
rigid body
displacement mechanism
axial direction
beam displacement
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61283061A
Other languages
Japanese (ja)
Other versions
JPS63137306A (en
Inventor
潔 長澤
耕三 小野
浩二郎 緒方
健 村山
▲吉▼弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP61283061A priority Critical patent/JPH071448B2/en
Priority to EP87201701A priority patent/EP0264147B1/en
Priority to DE3788773T priority patent/DE3788773T2/en
Publication of JPS63137306A publication Critical patent/JPS63137306A/en
Priority to US07/244,168 priority patent/US4888878A/en
Priority to US07/244,102 priority patent/US5005298A/en
Priority to US07/244,169 priority patent/US4920660A/en
Priority to US07/244,101 priority patent/US4991309A/en
Publication of JPH071448B2 publication Critical patent/JPH071448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • B23Q15/24Control or regulation of position of tool or workpiece of linear position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41133Compensation non linear transfer function
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41352Alternative clamping dilation of piezo, caterpillar motion, inchworm

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Control Of Position Or Direction (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造装置、電子顕微鏡等のサブμmオ
ーダの調節を必要とする装置に使用される微細位置決め
装置に関する。
Description: TECHNICAL FIELD The present invention relates to a fine positioning apparatus used for a semiconductor manufacturing apparatus, an electron microscope, or any other apparatus that requires adjustment on the order of sub-μm.

〔従来の技術〕[Conventional technology]

近年、各種技術分野においては、サブμmのオーダーの
微細な変位調節が可能である装置が要望されている。そ
の典型的な例がLSI(大規模集積回路)、超LSIの製造工
程において使用されるマスクアライナ、電子線描画装置
等の半導体製造装置である。これらの装置においては、
サブμmオーダーの微細な位置決めが必要であり、位置
決めの精度が向上するにしたがつてその集積度も増大
し、高性能の製品を製造することができる。このような
微細な位置決めは上記半導体装置に限らず、電子顕微鏡
をはじめとする各種の高倍率光学装置等においても必要
であり、その精度向上により、バイオテクノロジ、宇宙
開発等の先端技術においてもそれらの発展に大きく寄与
するものである。
In recent years, in various technical fields, a device capable of fine displacement adjustment on the order of sub-μm has been demanded. A typical example thereof is a semiconductor manufacturing apparatus such as an LSI (Large Scale Integrated Circuit), a mask aligner used in a manufacturing process of a VLSI, an electron beam drawing apparatus and the like. In these devices,
Submicron-order fine positioning is required, and as the positioning accuracy improves, the degree of integration increases, and high-performance products can be manufactured. Such fine positioning is necessary not only in the above-mentioned semiconductor device but also in various high-magnification optical devices such as electron microscopes, and by improving its precision, even in advanced technologies such as biotechnology and space development. Will greatly contribute to the development of.

従来、このような微細位置決め装置は、例えば「機械設
計」誌、第27巻第1号(1983年1月号)の第32頁乃至第
36頁に示されるような種々の型のものが提案されてい
る。これらのうち、特に面倒な変位縮小機構が不要であ
り、かつ、構成が簡単である点で、平行ばねと微動アク
チユエータを用いた型の微細位置決め装置が優れている
と考えられるので、以下、これを第4図に基づい説明す
る。
Conventionally, such a fine positioning device is disclosed, for example, in "Mechanical Design" magazine, Vol. 27, No. 1 (January 1983), pages 32 to 32.
Various types have been proposed, as shown on page 36. Among these, since it is considered that a fine positioning device of a mold using a parallel spring and a fine movement actuator is superior in that a particularly complicated displacement reduction mechanism is unnecessary and the configuration is simple, Will be described with reference to FIG.

第4図は従来の微細位置決め装置の側面図である。図
で、1は支持台、2a,2bは支持台1上に互いに並行に固
定された板状の平行ばね、3は平行ばね2a,2b上に固定
された剛性の高い微動テーブルである。4は支持台1と
微動テーブル3との間に装架された微動アクチユエータ
である。この微動アクチユエータ4には、圧電素子、電
磁ソレノイド等が用いられ、これを励起することによ
り、微動テーブル3に図中に示す座標軸のx軸方向の力
が加えられる。
FIG. 4 is a side view of a conventional fine positioning device. In the figure, 1 is a support, 2a and 2b are plate-shaped parallel springs fixed in parallel to each other on the support 1, and 3 is a highly rigid fine movement table fixed on the parallel springs 2a and 2b. Reference numeral 4 denotes a fine movement actuator mounted between the support base 1 and the fine movement table 3. A piezoelectric element, an electromagnetic solenoid, or the like is used for the fine movement actuator 4, and when it is excited, a force in the x-axis direction of the coordinate axis shown in the drawing is applied to the fine movement table 3.

ここで、平行ばね2a,2bはその構造上、x軸方向の剛性
は低く、これに対してz軸方向、y軸方向、(紙面に垂
直な方向)の剛性が高いので、微動アクチユエータが励
起されると、微動テーブル3はほぼx軸方向にのみ変位
し、他方向の変位はほとんど発生しない。
Here, due to the structure of the parallel springs 2a and 2b, the rigidity in the x-axis direction is low, whereas the rigidity in the z-axis direction, the y-axis direction, and the direction (perpendicular to the paper surface) are high, so that the fine motion actuator is excited. Then, the fine movement table 3 is displaced only in the x-axis direction, and the displacement in the other direction hardly occurs.

第5図は前述の参考文献に開示された例から容易に考え
られる従来の他の微細位置決め装置の斜視図である。図
で、6は支持台、7a,7bは支持台6上に互いに固定され
た板状の平行ばね、8は平行ばね7a,7bに固定された剛
性の高い中間テーブル、9a,9bは平行ばね7a,7bと直交す
る方向において互いに平行に中間テーブル8に固定され
た板状の平行ばね、10は平行ばね9a,9b上に固定された
剛性の高い微動テーブルである。座標軸を図中に示すよ
うに定めると、平行ばね7a,7bはx軸方向に沿つて配置
され、平行ばね9a,9bはy軸方向に沿つて配置されてい
る。この構造は、基本的には第4図に示す1軸(x軸方
向の変位を生じる)の場合の構造を2段に積層した構造
である。矢印Fxは微動テーブル10に加えられるx軸方向
の力、、矢印Fyは中間テーブル8に加えられるy軸方向
の力を示し、力Fx,Fyを加えることができる図示されて
いない微動アクチユエータが支持台6と微動テーブル1
0、支持台6と中間テーブル8との間にそれぞれ設けら
れる。
FIG. 5 is a perspective view of another conventional micro-positioning device easily conceivable from the examples disclosed in the aforementioned references. In the figure, 6 is a support base, 7a and 7b are plate-shaped parallel springs fixed to each other on the support base 6, 8 is an intermediate table having high rigidity fixed to the parallel springs 7a and 7b, and 9a and 9b are parallel springs. A plate-shaped parallel spring fixed to the intermediate table 8 in parallel with each other in a direction orthogonal to 7a and 7b, and a high-rigidity fine movement table fixed to the parallel springs 9a and 9b. When the coordinate axes are determined as shown in the figure, the parallel springs 7a and 7b are arranged along the x-axis direction, and the parallel springs 9a and 9b are arranged along the y-axis direction. This structure is basically a structure in which the structure for one axis (which causes displacement in the x-axis direction) shown in FIG. 4 is laminated in two stages. An arrow Fx indicates a force in the x-axis direction applied to the fine motion table 10, and an arrow Fy indicates a force in the y-axis direction applied to the intermediate table 8, which is supported by a fine motion actuator (not shown) capable of applying the forces Fx and Fy. Stand 6 and fine table 1
0, provided between the support base 6 and the intermediate table 8, respectively.

微動テーブル10に力Fxが加えられると、平行ばね9a,9b
が変形し、一方、平行ばね7a,7bはx軸方向の力Fxに対
しては高い剛性を有するので、微動テーブル10はほぼx
軸方向にのみ変位する。また、中間テーブル8に力Fyが
加えられると、平行ばね7a,7bが変形し、微動テーブル1
0は平行ばね9a,9bを介してほぼy軸方向にのみ変位す
る。さらに、両方の力Fx,Fyが同時に加えられると、各
平行ばね7a,7b,9a,9bは同時に変形し、微動テーブル10
はこれら応じて2次元的に変位する。
When a force Fx is applied to the fine motion table 10, the parallel springs 9a, 9b
However, since the parallel springs 7a and 7b have high rigidity with respect to the force Fx in the x-axis direction, the fine motion table 10 is almost x.
Displaces only in the axial direction. When a force Fy is applied to the intermediate table 8, the parallel springs 7a and 7b are deformed and the fine movement table 1
0 is displaced substantially only in the y-axis direction via the parallel springs 9a and 9b. Further, when both forces Fx and Fy are applied at the same time, the parallel springs 7a, 7b, 9a and 9b are simultaneously deformed, and the fine movement table 10 is moved.
Is two-dimensionally displaced according to these.

このように、第5図に示す装置は、第4図に示す装置が
1軸方向のみの位置決め装置であるのに対して2軸方向
の位置決めを行うことができる。以上述べた第4図およ
び第5図に示す装置は、微動テーブル10を定められた軸
方向に直線的に変位させる装置である。これに対して、
微動テーブルをある軸のまわりに微小回転変位させる微
細位置決め装置が日本特許出願公告公報、昭57−50433
号に示されている。この微細位置決め装置を第6図によ
り説明する。
As described above, the apparatus shown in FIG. 5 can perform positioning in the biaxial directions, whereas the apparatus shown in FIG. 4 is a positioning apparatus in the uniaxial directions only. The apparatus shown in FIGS. 4 and 5 described above is an apparatus for linearly displacing the fine movement table 10 in a predetermined axial direction. On the contrary,
A fine positioning device for finely rotating a fine movement table around a certain axis is disclosed in Japanese Patent Application Publication No. 57-50433.
No. This fine positioning device will be described with reference to FIG.

第6図は微小回転変位を行う従来の微細位置決め装置の
一部破断斜視図である。図で、11は円柱状の中央固定
部、11a,11b,11cは中央固定部11の周面にその長手方向
に等間隔に形成された縦溝である。12は中央固定部11を
中心として可回動に設けられたリング状のステージ、12
a1〜12a3,12b1〜12b3,12c1〜12c3はそれぞれ縦溝11a,11
b,11cに対向してステージ12に固定されたU字状金具で
ある。13は各縦溝11a,11b,11cと各U字状金具12a1〜12c
3との間に装架されたバイモルフ形圧電素子、13Aはバイ
モルフ形圧電素子13のU字状金具と係合する部分に固定
された突起である。中央固定部11、ステージ12、各U字
状金具12a1〜12c3はいずれも剛体である。ここで、上記
バイモルフ形圧電素子13を第7図により簡単に説明す
る。
FIG. 6 is a partially cutaway perspective view of a conventional fine positioning device which performs fine rotational displacement. In the figure, 11 is a cylindrical central fixing portion, and 11a, 11b, 11c are vertical grooves formed on the circumferential surface of the central fixing portion 11 at equal intervals in the longitudinal direction. Reference numeral 12 denotes a ring-shaped stage that is rotatably provided around the central fixed portion 11.
a 1 to 12a 3 , 12b 1 to 12b 3 , 12c 1 to 12c 3 are vertical grooves 11a, 11 respectively.
The U-shaped metal fitting is fixed to the stage 12 so as to face b and 11c. 13 is each vertical groove 11a, 11b, 11c and each U-shaped metal fitting 12a 1 to 12c
A bimorph type piezoelectric element 13A mounted between the two and 3 is a projection fixed to a portion of the bimorph type piezoelectric element 13 that engages with the U-shaped metal fitting. The central fixed portion 11, the stage 12, the U-shaped bracket 12a 1 ~12c 3 is rigid both. Here, the bimorph type piezoelectric element 13 will be briefly described with reference to FIG.

第7図はバイモルフ形圧電素子の斜視図である。図で、
13a,13bは圧電素子、13cは圧電素子13a,13bの中間に設
けられた共通電極である。圧電素子13a,13bは共通電極1
3cを挾着した状態で互いに密着されている。13d,13eは
それぞれ圧電素子13a,13bに固着された表面電極であ
る。この状態において、表面電極13dと共通電極13cとの
間に圧電素子13aを縮ませる極性の電圧を印加し、同時
に、表面電極13eと共通電極13cとの間に圧電素子13dを
伸ばす極性の電圧を印加すると、各圧電素子13a,13bが
矢印の方向に伸縮することにより、バイモルフ形圧電素
子13全体は図のように変形する。このようなバイモルフ
形圧電素子13により、圧電素子単体に比べて大きな変位
量を得ることができる。
FIG. 7 is a perspective view of a bimorph type piezoelectric element. In the figure,
Reference numerals 13a and 13b are piezoelectric elements, and 13c is a common electrode provided between the piezoelectric elements 13a and 13b. The piezoelectric elements 13a and 13b are the common electrode 1
They are closely attached to each other with 3c clinging together. Reference numerals 13d and 13e denote surface electrodes fixed to the piezoelectric elements 13a and 13b, respectively. In this state, a voltage with a polarity that contracts the piezoelectric element 13a is applied between the surface electrode 13d and the common electrode 13c, and at the same time, a voltage with a polarity that extends the piezoelectric element 13d between the surface electrode 13e and the common electrode 13c is applied. When applied, each piezoelectric element 13a, 13b expands and contracts in the direction of the arrow, so that the entire bimorph piezoelectric element 13 is deformed as shown in the figure. With such a bimorph piezoelectric element 13, it is possible to obtain a large displacement amount as compared with a single piezoelectric element.

このようなバイモルフ形圧電素子13は、第6図に示す装
置において、一端が縦溝11a,11b,11cに固定され、他端
は自由端となつて各対応するU字状金具に突起13Aを介
して接触している。今、各バイモルフ形圧電素子13に適
宜の電圧を印加し、第7図に示す変形を生じさせると、
ステージ12はその変形に応じて中央固定部11を中心とし
て回動変位する。そこで、ステージ12上に微動テーブル
を載置固定しておけば、微動テーブルの微小回転変位を
得ることができる。
Such a bimorph type piezoelectric element 13 has a structure shown in FIG. 6 in which one end is fixed to the vertical grooves 11a, 11b, 11c and the other end is a free end, and the projection 13A is provided on each corresponding U-shaped metal fitting. Are in contact through. Now, when an appropriate voltage is applied to each bimorph piezoelectric element 13 to cause the deformation shown in FIG. 7,
The stage 12 is rotationally displaced about the central fixed portion 11 according to the deformation. Therefore, if the fine movement table is placed and fixed on the stage 12, a fine rotational displacement of the fine movement table can be obtained.

上記従来の装置は、U字状金具とバイモルフ形圧電素子
13とにより両者を係合状態に保持し、これにより、バイ
モルフ形圧電素子13の自然変形のままでの装架を許し、
かつ、バイモルフ形圧電素子13をステージ12に固定した
場合に生じる変位の拘束(干渉)を防止している。
The above-mentioned conventional device includes a U-shaped metal fitting and a bimorph piezoelectric element.
13 and both are held in an engaged state, which allows the bimorph type piezoelectric element 13 to be mounted while being naturally deformed,
In addition, displacement constraint (interference) that occurs when the bimorph piezoelectric element 13 is fixed to the stage 12 is prevented.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、第4図および第5図に示す微細位置決め装置
は、1次元および2次元の位置決めができるのみであ
り、z軸方向の変位や、x軸,y軸,z軸まわりの回転変位
を与えることはできず、又、第6図に示す微細位置決め
装置については、x軸,y軸,z軸方向の変位と他の2軸ま
わりの回転変位を与えることはできない。そして、これ
ら従来の微細位置決め装置からは、第5図および第6図
に示す装置を組合わせてx軸,y軸方向の変位とz軸まわ
りの回転変位を与える3軸の微細位置決め装置を想定し
得るのみであり、これらから4軸以上の微細位置決め装
置を構成するのは極めて困難である。
By the way, the fine positioning device shown in FIGS. 4 and 5 can only perform one-dimensional and two-dimensional positioning, and can provide displacement in the z-axis direction and rotational displacement about the x-axis, y-axis, and z-axis. In addition, the fine positioning device shown in FIG. 6 cannot give displacements in the x-axis, y-axis, and z-axis directions and rotational displacements around the other two axes. Further, from these conventional fine positioning devices, a three-axis fine positioning device is assumed which combines the devices shown in FIGS. 5 and 6 to provide displacement in the x-axis and y-axis directions and rotational displacement around the z-axis. However, it is extremely difficult to construct a fine positioning device with four or more axes from them.

本発明は、このような事情に鑑みてなされたものであ
り、その目的は、上記従来技術の問題点を解決し、簡単
な構造でx軸,y軸,z軸方向の変位、およびx軸,y軸,z軸
まわりの回転変位を与えることができる微細位置決め装
置を提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to solve the above-mentioned problems of the prior art, and to displace in the x-axis, y-axis, z-axis direction, and x-axis with a simple structure. Another object of the present invention is to provide a fine positioning device capable of giving rotational displacement about the y-axis and the z-axis.

[課題を解決するための手段] 上記の目的を達成するため、本発明は、第1の中心剛体
部から第1の軸方向に対称的に突出し各突出部分に前記
第1の軸方向と直交する第2の軸方向に並進変位を発生
させる並行たわみ梁変位機構を備えるとともに前記各突
出部分の端が固定部に連結された第1の組の張出し部、
および前記第1の中心剛体部から第2の軸方向に対称的
に突出した各突出部分に前記第1の軸方向に並進変位を
発生させる並行たわみ梁変位機構を備えた第2の組の張
出し部を有する第1のブロックと、第2の中心剛体部か
ら前記第2の軸方向に対称的に突出し各突出部分に前記
第1の軸方向および前記第2の軸方向と直交する第3の
軸方向に並進変位を発生させる平行たわみ梁変位機構を
備えるとともに前記第2の軸方向の各突出部の端が前記
第2の組の各張出し部の端部に連結される第2のブロッ
クと、剛体のリング上に設けられ前記第1の軸まわりに
回転変位を発生させる第1の放射たわみ梁変位機構の組
および前記第2の軸まわりに回転変位を発生させる第2
の放射たわみ梁変位機構の組、ならびに前記リングで囲
まれる空間を通って前記第2の中心剛体部と連結される
第3の中心剛体部から対称的に突出し各突出部分に前記
第3の軸まわりに回転変位を発生させる第3の放射たわ
み梁変位機構を備えるとともに前記第3の中心剛体部か
ら突出する前記各突出部分の端部と前記放射たわみ梁変
位機構の一方の組の各剛体部とが結合された第3のブロ
ックと、前記第3のブロックの前記第3の放射たわみ梁
変位機構が連結されていない前記放射たわみ梁変位機構
の各剛体部に連結された微動テーブルとで微細位置決め
装置を構成したことを特徴とする。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention is directed to project symmetrically from a first central rigid body portion in a first axial direction and to each projecting portion at right angles to the first axial direction. A second set of overhanging portions, each of which has a parallel flexural beam displacement mechanism for generating a translational displacement in the second axial direction, and has an end of each protruding portion connected to a fixed portion,
And a second set of overhangs provided with parallel flexural beam displacement mechanisms that cause translational displacement in the first axial direction at each projecting portion that symmetrically projects in the second axial direction from the first central rigid body portion. A first block having a portion and a second central rigid body portion that symmetrically protrudes in the second axial direction, and a third block that is orthogonal to the first axial direction and the second axial direction in each protruding portion. A second block including a parallel flexural beam displacement mechanism for generating a translational displacement in the axial direction, and an end of each of the protrusions in the second axial direction connected to an end of each of the overhanging portions of the second set; A first radial flexural beam displacement mechanism set on a rigid ring for generating rotational displacement about the first axis and a second set for generating rotational displacement about the second axis.
Of radial flexure beam displacement mechanisms, as well as symmetrically projecting from a third central rigid body portion connected to the second central rigid body portion through a space surrounded by the ring, and the third axis at each projecting portion. A third radial flexible beam displacement mechanism for generating a rotational displacement around is provided, and end portions of the respective projecting portions projecting from the third central rigid body portion and respective rigid body portions of one set of the radial flexible beam displacement mechanism. And a fine movement table connected to each rigid body portion of the radial bending beam displacement mechanism to which the third radial bending beam displacement mechanism of the third block is not connected. It is characterized in that a positioning device is configured.

〔作用〕[Action]

3つの平行たわみ梁変位機構によりx軸,y軸,z軸方向の
並進変位を生じさせ、又、3つの放射たわみ梁変位機構
によりx軸,y軸方向の軸まわりおよびz軸まわりの回転
変位を生じさせる。
Three parallel flexible beam displacement mechanisms cause translational displacements in the x-axis, y-axis, and z-axis directions, and three radial flexible beam displacement mechanisms cause rotational displacements around the x-axis, y-axis, and z-axis. Cause

〔実施例〕〔Example〕

以下、本発明を図示の実施例に基づいて説明する。 Hereinafter, the present invention will be described based on the illustrated embodiments.

第1図は本発明の実施例に係る微細位置決め装置の分解
斜視図である。図で、x,y,zは互いに直交する座標軸を
示す。15は剛性の高い部材より成る中心剛体部、16aは
中心剛体部15からy軸方向に張出した張出し部、16bは
中心剛体部15から張出し部16aと反対向きに張出した張
出し部、17aは中心剛体部15からx軸方向に張出した張
出し部、17bは中心剛体部15から張出し部17aと反対向き
に張出した張出し部である。18a,18bはそれぞれ張出し
部16a,16bの端部下端に設けられた固定部、19a,19bはそ
れぞれ張出し部17a,17bの端部上端に設けられた連結部
である。張出し部16a,16b,17a,17b、固定部18a,18bおよ
び連結部19a,19bはそれぞれ中心剛体部15と同じ部材で
構成され、中心剛体部15とともに一体に加工成形され
る。
FIG. 1 is an exploded perspective view of a fine positioning device according to an embodiment of the present invention. In the figure, x, y, and z indicate coordinate axes that are orthogonal to each other. 15 is a central rigid body made of a highly rigid member, 16a is an overhanging portion that extends from the central rigid body portion 15 in the y-axis direction, 16b is an overhanging portion that extends from the central rigid body portion 15 in the opposite direction to the overhanging portion 16a, and 17a is the center. Reference numeral 17b denotes a projecting portion projecting from the rigid body portion 15 in the x-axis direction, and reference numeral 17b denotes a projecting portion projecting from the central rigid body portion 15 in the opposite direction to the projecting portion 17a. Reference numerals 18a and 18b denote fixing portions provided at lower ends of the protruding portions 16a and 16b, and 19a and 19b denote connecting portions provided at upper end portions of the protruding portions 17a and 17b, respectively. The overhanging portions 16a, 16b, 17a, 17b, the fixing portions 18a, 18b, and the connecting portions 19a, 19b are each made of the same member as the central rigid body portion 15, and are integrally machined together with the central rigid body portion 15.

16Fxa,16Fxbはそれぞれ張出し部16a,16bに構成された平
行たわみ梁変位機構であり、互いに中心剛体部15に対し
て対称的に構成されている。平行たわみ梁変位機構16Fx
a,16Fxbは共働してx軸方向の並進変位を発生する。S
は平行たわみ梁変位機構16Fxa,16Fxbに設けられたスト
レンゲージを示す(以下の各変位機構においてストレン
ゲージを符号Sで示す)。17Fya,17Fybはそれぞれ張出
し部17a,17bに構成された平行たわみ梁変位機構であ
り、互いに中心剛体部15に対して対称的に構成されてい
る。平行たわみ梁変位機構17Fya,17Fybは共働してy軸
方向の並進変位を発生する。平行たわみ梁変位機構16Fx
a,16Fxb,17Fya,17Fyb,は各張出し部16a,16b,17a,17bの
所定個所に所定の貫通孔を形成することにより構成され
る。なお、平行たわみ梁変位機構の構造については後述
する。以上の各部および各平行たわみ梁変位機構により
ブロツクB1が構成される。
16Fxa and 16Fxb are parallel flexural beam displacement mechanisms formed in the overhanging portions 16a and 16b, respectively, and are symmetrically configured with respect to the central rigid body portion 15. Parallel flexible beam displacement mechanism 16Fx
a, 16Fxb cooperate to generate translational displacement in the x-axis direction. S
Indicates a strain gauge provided on the parallel flexural beam displacement mechanism 16Fxa, 16Fxb (the strain gauge is indicated by symbol S in each displacement mechanism below). Reference numerals 17Fya and 17Fyb are parallel bending beam displacement mechanisms formed in the overhanging portions 17a and 17b, respectively, and are symmetrically configured with respect to the central rigid body portion 15. The parallel flexible beam displacement mechanisms 17Fya and 17Fyb cooperate to generate a translational displacement in the y-axis direction. Parallel flexible beam displacement mechanism 16Fx
The a, 16Fxb, 17Fya and 17Fyb are formed by forming a predetermined through hole at a predetermined position of each overhanging portion 16a, 16b, 17a, 17b. The structure of the parallel flexible beam displacement mechanism will be described later. The block B 1 is configured by the above-mentioned parts and the parallel flexible beam displacement mechanism.

次に、ブロツクB2の構成を説明する。21は剛性の高い部
材より成る中心剛性部、22aは中心剛体部21からx軸方
向に張出した張出し部、22bは中心剛体部21から張出し
部22aと反対向きに張出した張出し部である。23a,23bは
それぞれ張出し部22a,22bの端部下方から突出した連結
部であり、ブロツクB1の連結部19a,19bと結合される。
この結合が二点鎖線で示されている。中心剛体部21、各
張出し部22a,22b、および連結部23a,23bはそれぞれ1つ
の部材から一体に加工成形される。22Fza,22Fzbはそれ
ぞれ張出し部22a,22bに構成された平行たわみ梁変位機
構であり、互いに中心剛体部21に対して対称的に配置さ
れている。これら平行たわみ梁変位機構22Fza,22Fzbは
共働してz軸方向の並進変位を発生する。平行たわみ梁
変位機構22Fza,22Fzbは各張出し部22a,22bの所定個所に
所定の貫通孔を形成することにより形成される。
Next, the configuration of the block B 2 will be described. Reference numeral 21 is a central rigid portion made of a member having high rigidity, 22a is a projecting portion that projects from the central rigid body portion 21 in the x-axis direction, and 22b is a projecting portion that projects from the central rigid body portion 21 in the opposite direction to the projecting portion 22a. 23a, 23b is a linking protruding respectively overhang 22a, from the end lower 22b, connecting portions 19a of the block B 1, is coupled with 19b.
This bond is indicated by a chain double-dashed line. The central rigid body portion 21, the respective overhang portions 22a and 22b, and the connecting portions 23a and 23b are integrally machined from one member. 22Fza and 22Fzb are parallel flexural beam displacement mechanisms formed on the overhanging portions 22a and 22b, respectively, and are symmetrically arranged with respect to the central rigid body portion 21. These parallel flexible beam displacement mechanisms 22Fza and 22Fzb cooperate to generate translational displacement in the z-axis direction. The parallel flexural beam displacement mechanism 22Fza, 22Fzb is formed by forming a predetermined through hole at a predetermined position of each overhanging portion 22a, 22b.

次に、ブロツクB3の構成を説明する。ブロツクB1がx軸
方向及びy軸方向の並進変位、ブロツクB2がz軸方向の
並進変位を行う構成となつているのに対して、ブロツク
B3はx軸,y軸及びz軸まわりの回転変位を行う構成とな
つている。即ち、24は剛体部材で作られた方形のリング
である。25Mya,25Mybはリング24上に対称的に配置され
た放射たわみ梁変位機構である。各放射たわみ梁変位機
構25Mya,25Mybはy軸方向に延びる共通の1つの軸のま
わりに回転変位を発生せしめる。25Mxa,25Mxbはリング2
4上に対称的に配置された放射たわみ梁変位機構であ
り、それぞれx軸方向に延びる共通の1つの軸のまわり
に回転変位を発生せしめる。各放射たわみ梁変位機構25
Mya,25Myb,25Mxa,25Mxbの構造については後述する。
Next, the configuration of the block B 3 will be described. The block B 1 is configured to perform translational displacement in the x-axis direction and the y-axis direction, and the block B 2 is configured to perform translational displacement in the z-axis direction.
B 3 is configured to perform rotational displacement around the x axis, the y axis, and the z axis. That is, 24 is a rectangular ring made of a rigid member. 25Mya and 25Myb are radial deflection beam displacement mechanisms symmetrically arranged on the ring 24. Each radial flexure beam displacement mechanism 25Mya, 25Myb causes a rotational displacement about a common axis extending in the y-axis direction. 25Mxa and 25Mxb are ring 2
Radial flexural beam displacement mechanisms symmetrically arranged on 4 and each of them generate a rotational displacement about a common axis extending in the x-axis direction. Radiant flexible beam displacement mechanism 25
The structures of Mya, 25Myb, 25Mxa and 25Mxb will be described later.

26a,26bはそれぞれ放射たわみ梁変位機構25Mya,25Mybを
構成する一方の剛体部(他方の剛体部はリング24)、27
a,27bはそれぞれ放射たわみ梁変位機構25Mxa,25Mxbを構
成する一方の剛体部(同じく他方の剛体部はリング24)
である。27a′,27b′はそれぞれ剛体部27a,27bに設けら
れた連結部である。
26a and 26b are one rigid body part (the other rigid body part is a ring 24), which constitutes the radial bending beam displacement mechanism 25Mya and 25Myb, 27
a and 27b are one rigid body part that constitutes the flexural beam displacement mechanism 25Mxa and 25Mxb, respectively (the other rigid body part is also the ring 24)
Is. 27a 'and 27b' are connecting portions provided on the rigid body portions 27a and 27b, respectively.

28は中心剛体部、29aは中心剛体部28からy軸方向に張
出した張出し部、29bは中心剛体部28から張出し部29aと
反対向きに張出した張出し部である。張出し部29aと放
射たわみ梁変位機構25Myaの剛体部26a、および張出し部
29bと放射たわみ梁変位機構25Mybの剛体部26bとはそれ
ぞれ連結されている。
Reference numeral 28 is a central rigid body portion, 29a is a projecting portion that projects from the central rigid body portion 28 in the y-axis direction, and 29b is a projecting portion that projects from the central rigid body portion 28 in the opposite direction to the projecting portion 29a. Overhang 29a, rigid flexure beam displacement mechanism 25Mya rigid body 26a, and overhang
29b and the rigid body portion 26b of the radial flexible beam displacement mechanism 25Myb are connected to each other.

29Mza,29Mzbはそれぞれ張出し部29a,29bに構成された放
射たわみ梁変位機構であり、互いに中心剛体部28に対し
て対称的に配置されている。これら平行たわみ梁変位機
構29Mza,29Mzbは共働してz軸まわりの回転変位を発生
する。これら放射たわみ梁変位機構29Mza,29Mzb、およ
び前記放射たわみ梁変位機構25Mxa,25Mxb,25Mya,25Myb
はそれぞれ所定個所に所定の貫通孔を形成することによ
り構成される。なお、放射たわみ梁変位機構の構造につ
いては後述する。
29Mza and 29Mzb are radial bending beam displacement mechanisms formed on the overhanging portions 29a and 29b, respectively, and are symmetrically arranged with respect to the central rigid body portion 28. These parallel flexural beam displacement mechanisms 29Mza and 29Mzb work together to generate rotational displacement about the z-axis. These radial flexible beam displacement mechanisms 29Mza, 29Mzb and the radial flexible beam displacement mechanisms 25Mxa, 25Mxb, 25Mya, 25Myb
Are each formed by forming a predetermined through hole at a predetermined position. The structure of the radial flexible beam displacement mechanism will be described later.

リング24、剛体部26a,26b,27a,27b、それらの間に構成
される各放射たわみ梁変位機構、中心剛体部28、張出し
部29a,29bは高い剛性を有する部材により一体に加工成
形される。
The ring 24, the rigid body portions 26a, 26b, 27a, 27b, the radial bending beam displacement mechanisms formed between them, the central rigid body portion 28, and the overhang portions 29a, 29b are integrally formed by a member having high rigidity. .

このようなブロツクB3は、その中心剛体部28によりブロ
ツクB2に結合される。即ち、ブロツクB3の中心剛体部28
をブロツクB2の中心剛体部21上に重ね、適宜の手段で連
結する(この連結の1つが図中2点鎖線で示されてい
る)。この状態で、ブロツクB2の相当部分がブロツクB3
の空間内に入ることになる。そして、放射たわみ梁変位
機構25Mxa,25Mxb,25Mya,25Mybはリング24とともに張出
し部29a,29bに吊下げられた状態となる。
Such a block B 3 is joined to the block B 2 by its central rigid part 28. That is, the central rigid body portion 28 of the block B 3
Are laid on the central rigid body portion 21 of the block B 2 and connected by an appropriate means (one of these connections is shown by a chain double-dashed line in the figure). In this state, a large part of block B 2 is blocked by block B 3
Will enter the space. Then, the radial flexible beam displacement mechanism 25Mxa, 25Mxb, 25Mya, 25Myb is suspended from the overhanging portions 29a, 29b together with the ring 24.

30は微動テーブルであり、ブロツクB3において張出し部
29a,29bが連結されていない側の剛体部、即ち、剛体部2
7a,27bの連結部27a′,27b′に連結される(この連結の
1つが図中2点鎖線で示されている)。なお、微動テー
ブル30の形状は図示のような長方形に限ることはなく、
例えばy軸方向の寸法をさらに大きくしたほぼ正方形
等、対称物体を載置固定し易い形状とされる。
30 is a fine-adjustment table, overhang the block B 3
Rigid body on the side where 29a and 29b are not connected, that is, rigid body 2
7a and 27b are connected to the connecting portions 27a 'and 27b' (one of these connections is shown by a chain double-dashed line in the figure). The shape of the fine movement table 30 is not limited to the rectangular shape shown in the figure,
For example, a substantially square shape having a larger dimension in the y-axis direction can be used to easily mount and fix a symmetrical object.

この状態において、各放射たわみ梁変位機構25Mxa,25Mx
b,25Mya,25Myb,29Mza,29Mzbの各たわみ梁(後述)の放
射角度を選定することにより、それらの各回転軸は微動
テーブル26の表面上の一点で直交せしめられる。
In this state, each radiating flexible beam displacement mechanism 25Mxa, 25Mx
By selecting the radiation angles of the bending beams (described later) of b, 25Mya, 25Myb, 29Mza, and 29Mzb, their respective rotation axes can be made orthogonal at one point on the surface of the fine movement table 26.

ここで、上記構造における平行たわみ梁変位機構および
放射たわみ梁変位機構の構造を図により説明する。第2
図(a),(b)は対称形の平行たわみ梁変位機構の側
面図である。
Here, the structures of the parallel flexible beam displacement mechanism and the radial flexible beam displacement mechanism in the above structure will be described with reference to the drawings. Second
(A), (b) is a side view of a symmetric parallel bending beam displacement mechanism.

図で、31a,31b,31cは剛体部、34a1,34a2は剛体部31c,31
a間に互いに平行に連結された平行たわみ梁である。平
行たわみ梁34a1,34a2は剛体部にあけた貫通孔32aにより
形成される。34b1,34b2は剛体部31c,31b間に互いに平行
に連結された平行たわみ梁であり、剛体部にあけられた
貫通孔32bにより形成される。36a,36bは圧電アクチユエ
ータであり、それぞれ貫通孔32a,32b内に突出した剛体
部からの突出部間に装着されている。剛体部31cの中心
から左方の構成により平行たわみ梁変位機構39aが、
又、右方の構成により平行たわみ梁変位機構39bが構成
される。Sは平行たわみ梁の適所に貼着されたストレン
ゲージであり、平行たわみ梁の変形量を検出するために
設けられている。
In the figure, 31a, 31b and 31c are rigid body parts, and 34a 1 and 34a 2 are rigid body parts 31c and 31c.
It is a parallel flexible beam connected in parallel to each other between a. The parallel flexible beams 34a 1 and 34a 2 are formed by through holes 32a formed in the rigid body portion. 34b 1 and 34b 2 are parallel flexible beams connected in parallel to each other between the rigid body portions 31c and 31b, and are formed by through holes 32b formed in the rigid body portions. Reference numerals 36a and 36b denote piezoelectric actuators, which are mounted between the projecting portions from the rigid body projecting into the through holes 32a and 32b, respectively. With the configuration on the left side from the center of the rigid body portion 31c, the parallel flexible beam displacement mechanism 39a is
Further, the parallel flexible beam displacement mechanism 39b is configured by the configuration on the right side. S is a strain gauge attached to the parallel flexible beam at a proper position, and is provided to detect the deformation amount of the parallel flexible beam.

ここで、座標軸を図示のように定める(y軸は紙面に垂
直な方向)。今、圧電アクチユエータ36a,36bに同時に
電圧を印加して同一大きさのZ軸方向の力fを発生させ
る。このとき、一方の平行たわみ梁変位機構、例えば平
行たわみ梁変位機構39aに生じる変位について考える。
圧電アクチユエータ36aに電圧が印加されることによ
り、剛体部31cは力fによりz軸方向に押圧されること
になる。このため、平行たわみ梁34a1,34a2は第4図に
示す平行ばね2a,2bと同じように曲げ変形を生じ、剛体
部31cは第2図(b)に示すようにz軸方向に変位す
る。このとき、仮に他方の平行たわみ梁変位機構39bが
存在しないとすると剛体部31cには極めて微小ではある
が横変位(x軸方向の変位)をも同時に生じるはずであ
る。
Here, the coordinate axes are defined as shown (the y axis is the direction perpendicular to the paper surface). Now, a voltage is applied to the piezoelectric actuators 36a and 36b at the same time to generate a force f in the Z-axis direction of the same magnitude. At this time, the displacement occurring in one of the parallel flexible beam displacement mechanisms, for example, the parallel flexible beam displacement mechanism 39a will be considered.
By applying a voltage to the piezoelectric actuator 36a, the rigid portion 31c is pressed in the z-axis direction by the force f. Therefore, the parallel flexible beams 34a 1 and 34a 2 undergo bending deformation similarly to the parallel springs 2a and 2b shown in FIG. 4, and the rigid body portion 31c is displaced in the z-axis direction as shown in FIG. 2 (b). To do. At this time, if the other parallel flexural beam displacement mechanism 39b does not exist, lateral displacement (displacement in the x-axis direction) should occur at the same time in the rigid portion 31c, although it is extremely small.

又、平行たわみ梁変位機構39aが存在しない場合、他方
の平行たわみ梁変位機構39bに生じる変位について考え
ると、平行たわみ梁変位機構39bは剛体部31cの中心を通
るy軸方向に沿う面(基準面)に対して平行たわみ梁変
位機構39aと面対称に構成されていることから、基準面
に関して面対称な力fを受けると上記と同様に、剛体部
31cにはz軸方向の変位と同時に上記横変位が生じ、そ
の大きさや方向は、平行たわみ梁変位機構39aのそれと
基準面に関して面対称となる。すなわち、上記横変位に
ついてみると、平行たわみ梁変位機構39bに生じる横変
位は、x軸方向の変位については図で左向き、y軸まわ
りの回転変位については図で反時計方向に生じ、一方、
平行たわみ梁変位機構39aに生じる横変位は、x軸方向
変位については図で右向き、y軸まわりの回転変位につ
いては図で時計方向に生じる。そして、それら各x軸方
向変位の大きさおよびy軸まわりの回転変位の大きさは
等しい。したがつて、両者に生じる横変位は互いにキヤ
ンセルされる。この結果、力fが加わつたことにより、
各平行たわみ梁34a1,34a2,34b1,34b2にその長手方向の
伸びによる僅かな内部応力の増大が生じるだけで、剛体
部31cはz軸方向のみの変位(主変位)εを生じる。
Further, when the parallel flexural beam displacement mechanism 39a does not exist, considering the displacement generated in the other parallel flexural beam displacement mechanism 39b, the parallel flexural beam displacement mechanism 39b is a surface along the y-axis direction passing through the center of the rigid portion 31c (reference Since it is configured to be plane-symmetric with the flexural beam displacement mechanism 39a parallel to the plane), when a force f that is plane-symmetric with respect to the reference plane is received, the rigid body portion is similar to the above.
The lateral displacement occurs in the 31c at the same time as the displacement in the z-axis direction, and its magnitude and direction are plane-symmetric with that of the parallel flexible beam displacement mechanism 39a with respect to the reference plane. That is, regarding the lateral displacement, the lateral displacement generated in the parallel flexible beam displacement mechanism 39b is leftward in the figure for displacement in the x-axis direction, and counterclockwise in the figure for rotational displacement around the y-axis.
The lateral displacement occurring in the parallel flexural beam displacement mechanism 39a occurs rightward in the figure for displacement in the x-axis direction, and occurs clockwise in the diagram for rotational displacement around the y-axis. The magnitude of each x-axis direction displacement and the magnitude of rotational displacement about the y-axis are equal. Therefore, the lateral displacements that occur on both sides cancel each other. As a result, the force f is applied,
Rigid body portion 31c produces a displacement (main displacement) ε only in the z-axis direction due to a slight increase in internal stress due to the extension in the longitudinal direction of each of the parallel flexible beams 34a 1 , 34a 2 , 34b 1 , 34b 2. .

圧電アクチユエータ36a,36bに印加されている電圧が除
かれると、各平行たわみ梁34a1,34a2,34b1,34b2は変形
前の状態に復帰し、平行たわみ梁変位機構39a,39bは第
2図(a)に示す状態に戻り、変位εは0となる。以上
の動作において、ストレンゲージSで検出された実際の
変位量を用いてフイードバツク制御を行うと、正確な微
細位置決めを実行することができる。
When the voltage applied to the piezoelectric actuators 36a, 36b is removed, each of the parallel flexible beams 34a 1 , 34a 2 , 34b 1 , 34b 2 returns to the state before deformation, and the parallel flexible beam displacement mechanisms 39a, 39b move to the first position. Returning to the state shown in FIG. 2 (a), the displacement ε becomes zero. In the above operation, if the feed back control is performed using the actual displacement amount detected by the strain gauge S, accurate fine positioning can be performed.

第3図(a),(b)は放射たわみ梁変位機構の側面図
である。図で、41a,41b,41cは剛体部、44a1,44a2,44b1,
44b2,は放射たわみ梁である。各放射たわみ梁44a1,44
a2,44b1,44b2は剛体部41cの中心を通る紙面に垂直な軸
Oに対して一点鎖線L1,L2に沿つて放射状に延びてお
り、それぞれ隣接する剛体部間を連結している。放射た
わみ梁44a1,44a2は貫通孔42aをあけることにより形成さ
れ、又、放射たわみ梁44b1,44b2は貫通孔42bをあけるこ
とにより形成される。46a,46bは圧電アクチユエータで
あり、それぞれ貫通孔42a,42bに剛体部から突出した突
出部間に装着されている。軸Oの左側の構成により放射
たわみ梁変位機構49aが、又、右側の構成により放射た
わみ梁変位機構49bが構成される。Sは放射たわみ梁の
適所に貼着されたストレンゲージであり、放射たわみ梁
の変形量を検出するために設けられている。
3 (a) and 3 (b) are side views of the radial flexible beam displacement mechanism. In the figure, 41a, 41b, 41c are rigid parts, 44a 1 , 44a 2 , 44b 1 ,
44b 2 is a radiating flexible beam. Radiant flexible beams 44a 1 , 44
a 2 , 44b 1 and 44b 2 extend radially along the alternate long and short dash lines L 1 and L 2 with respect to an axis O that is perpendicular to the plane of the paper passing through the center of the rigid body portion 41c and connects adjacent rigid body portions. ing. The radial flexible beams 44a 1 and 44a 2 are formed by forming the through holes 42a, and the radial flexible beams 44b 1 and 44b 2 are formed by forming the through holes 42b. Reference numerals 46a and 46b denote piezoelectric actuators, which are mounted in the through holes 42a and 42b between the protruding portions protruding from the rigid body portion. The configuration on the left side of the axis O constitutes the radial bending beam displacement mechanism 49a, and the configuration on the right side constitutes the radial bending beam displacement mechanism 49b. S is a strain gauge attached to an appropriate position of the radiating flexible beam, and is provided to detect the amount of deformation of the radiating flexible beam.

今、圧電アクチユエータ46a,46bに同時に所定の電圧を
印加して同一の大きさの、中心軸Oを中心とする円に対
する接線方向の力fを発生させる。そうすると、剛体部
41cの左方の突出部は圧電アクチユエータ46aに発生した
力により上記接線に沿つて上向きに押され、剛体部41c
の右方の突出部は圧電アクチユエータ46bに発生した力
により上記接線に沿つて下向きに押される。剛体部41c
は両剛体部41a,41bに放射たわみ梁44a1,44a2,44b1,44b2
で連結された形となつているので、上記の力を受けた結
果、第3図(b)に示すように放射たわみ梁44a1,44a2,
44b1,44b2の剛体部41a,41bに連結されている部分は点O
から放射状に延びる直線L1,L2上にあるが、剛体部41cに
連結されている部分は、上記直線L1,L2から僅かにずれ
た直線(この直線も点Oから放射状に延びる直線であ
る。)L1′,L2′上にずれる微小変位を生じる。このた
め、剛体部41cは図で時計方向に微小角度δだけ回動す
る。この回転変位δの大きさは、放射たわみ梁44a1,44a
2,44b1,44b2の曲げに対する剛性により定まるので、力
fを正確に制御すれば、回転変位δもそれと同じ精度で
制御できることになる。
Now, a predetermined voltage is applied to the piezoelectric actuators 46a and 46b at the same time to generate a force f of the same magnitude in a tangential direction to a circle centered on the central axis O. Then, the rigid body part
The left protrusion of 41c is pushed upward along the tangent line by the force generated in the piezoelectric actuator 46a, and the rigid body 41c
The right-hand protruding portion is pushed downward along the tangent line by the force generated in the piezoelectric actuator 46b. Rigid part 41c
Is a flexible beam radiated to both rigid body parts 41a and 41b 44a 1 , 44a 2 , 44b 1 , 44b 2
As a result of receiving the above-mentioned force, as shown in FIG. 3 (b), the radiating flexible beams 44a 1 , 44a 2 ,
The portion connected to the rigid body portions 41a and 41b of 44b 1 and 44b 2 is point O.
The straight lines L 1 and L 2 extending radially from the straight line L 1 and L 2 are connected to the rigid body portion 41c, and the straight lines are slightly deviated from the straight lines L 1 and L 2 (the straight lines also extend radially from the point O). A slight displacement that shifts on L 1 ′ and L 2 ′ is generated. Therefore, the rigid body portion 41c rotates clockwise by a minute angle δ in the figure. The magnitude of this rotational displacement δ is determined by the radial flexible beams 44a 1 and 44a.
Since it is determined by the rigidity of 2 , 44b 1 and 44b 2 against bending, if the force f is accurately controlled, the rotational displacement δ can be controlled with the same accuracy.

圧電アクチユエータ46a,46bに印加されている電圧が除
かれると、放射たわみ梁44a1,44a2,44b1,44b2は変形前
の状態に復帰し、回転変位機構は第3図(a)に示す状
態に戻り、変位δは0となる。以上の動作において、ス
トレンゲージSが正確な微細位置決めを行うために用い
られるのは平行たわみ梁変位機構の場合と同じである。
When the voltage applied to the piezoelectric actuators 46a, 46b is removed, the radiating flexible beams 44a 1 , 44a 2 , 44b 1 , 44b 2 return to the state before deformation, and the rotary displacement mechanism is shown in FIG. 3 (a). Returning to the state shown, the displacement δ becomes zero. In the above-described operation, the strain gauge S is used for performing accurate fine positioning as in the case of the parallel flexible beam displacement mechanism.

なお、第1図に示す放射たわみ梁変位機構25Mxa,25Mxb,
25Mya,25Mybが第3図(a)に示す一方の放射たわみ梁
変位機構49a(49b)に相当するのは明らかであり、その
動作も上記の動作に準じる。
In addition, the radial flexible beam displacement mechanism 25Mxa, 25Mxb, shown in FIG.
Obviously, 25Mya and 25Myb correspond to one of the radial bending beam displacement mechanisms 49a (49b) shown in FIG. 3 (a), and the operation thereof also conforms to the above operation.

次に、第1図に示す本実施例の動作を説明する。今、平
行たわみ梁変位機構16Fxa,16Fxbの各圧電アクチユエー
タに電圧を印加すると、その平行たわみ梁34a1,34a2,34
b1,34b2が印加電圧に応じて第1図のx軸方向に第2図
(b)に示ように変形し、並進変位する。この並進変位
は、中心剛体部15、平行たわみ梁変位機構17Fya,17Fyb,
22Fza,22Fzb、中心剛体部21,28、放射たわみ梁変位機構
29Mza,29Mzb、剛体部26a,26b、放射たわみ梁変位機構25
Mya,25Myb、リング24、放射たわみ梁変位機構25Mxa,25M
xbを経て剛体部27a,27bに固定された微動テーブル30に
伝達され、微動テーブル30は同量だけx軸方向に並進変
位する。
Next, the operation of this embodiment shown in FIG. 1 will be described. Now, when a voltage is applied to each piezoelectric actuator of the parallel flexible beam displacement mechanism 16Fxa, 16Fxb, the parallel flexible beam 34a 1 , 34a 2 , 34
b 1 and 34b 2 are deformed in the x-axis direction in FIG. 1 as shown in FIG. 2 (b) according to the applied voltage, and are displaced in translation. This translational displacement is caused by the central rigid body portion 15, the parallel flexible beam displacement mechanism 17Fya, 17Fyb,
22Fza, 22Fzb, central rigid body parts 21, 28, radial flexure beam displacement mechanism
29Mza, 29Mzb, rigid body parts 26a, 26b, radial flexible beam displacement mechanism 25
Mya, 25Myb, Ring 24, Radial flexible beam displacement mechanism 25Mxa, 25M
It is transmitted via xb to the fine movement table 30 fixed to the rigid body portions 27a, 27b, and the fine movement table 30 is translationally displaced in the x-axis direction by the same amount.

同様に、平行たわみ梁変位機構17Fya,17Fybの各圧電ア
クチユエータに電圧を印加した場合、微動テーブル30は
y軸方向に並進変位し、また、平行たわみ梁変位機構22
Fza,22Fzbの各圧電アクチユエータに電圧を印加すると
微動テーブル30はz軸方向に並進変位する。
Similarly, when a voltage is applied to each of the piezoelectric actuators of the parallel flexible beam displacement mechanisms 17Fya and 17Fyb, the fine motion table 30 is translationally displaced in the y-axis direction, and the parallel flexible beam displacement mechanism 22
When a voltage is applied to each of the Fza and 22Fzb piezoelectric actuators, the fine movement table 30 is translationally displaced in the z-axis direction.

一方、放射たわみ梁変位機構25Mya,25Mybの各圧電アク
チユエータに電圧を印加すると、この電圧に応じてそれ
らの放射たわみ梁が第3図(b)に示すように変形す
る。この場合、剛体部26a,26bは中心剛体部28、放射た
わみ梁変位機構29Mza,29Mzbを介して固定状態にあるの
で、放射たわみ梁変位機構25Mya,25Mybはy軸方向の軸
まわりに回転変位を発生し、これにより微動テーブル30
はリング24、放射たわみ梁変位機構25Mxa,25Mxbを介し
て当該軸まわりに回転変位する。
On the other hand, when a voltage is applied to each piezoelectric actuator of the radiating flexible beam displacement mechanism 25Mya, 25Myb, the radiating flexible beam is deformed as shown in FIG. 3 (b) according to this voltage. In this case, since the rigid body portions 26a and 26b are in a fixed state via the central rigid body portion 28 and the radial flexible beam displacement mechanisms 29Mza and 29Mzb, the radial flexible beam displacement mechanisms 25Mya and 25Myb perform rotational displacement about the y-axis. Occurs and this causes the fine movement table 30
Is rotationally displaced around the axis through the ring 24 and the radial flexure beam displacement mechanism 25Mxa, 25Mxb.

又、放射たわみ梁変位機構25Mxa,25Mxbの各圧電アクチ
ユエータに電圧を印加すると、この電圧に応じてその放
射たわみ梁が変形しx軸方向の軸まわりに回転変位を発
生する。この回転変位は剛体部27a,27bを介して微動テ
ーブル30に伝達され、微動テーブル30は当該軸まわりに
回転変位する。
When a voltage is applied to each of the piezoelectric actuators of the radial flexure beam displacement mechanism 25Mxa, 25Mxb, the radial flexure beam is deformed according to this voltage, and rotational displacement is generated around the axis in the x-axis direction. This rotational displacement is transmitted to the fine movement table 30 via the rigid bodies 27a and 27b, and the fine movement table 30 is rotationally displaced about the axis.

さらに、放射たわみ梁変位機構29Mza,29Mzbの各圧電ア
クチユエータに電圧を印加すると、その放射たわみ梁44
a1,44a2,44b1,44b2は印加電圧に応じて第1図のz軸方
向の軸まわりに第3図(b)に示すように変形して回転
変位する。この回転変位は、剛体部26a,26b、平行たわ
み梁変位機構25Mya,25Fyb,リング24、放射たわみ梁変位
機構25Mxa,25Mxb、剛体部27a,27bを経て微動テーブル30
に伝えられ、微動テーブル30を当該軸まわりに回転変位
する。
Furthermore, when a voltage is applied to each piezoelectric actuator of the radiating flexible beam displacement mechanism 29Mza, 29Mzb, the radiating flexible beam 44
a 1 , 44a 2 , 44b 1 and 44b 2 are deformed and rotationally displaced around the axis in the z-axis direction in FIG. 1 as shown in FIG. 3B in accordance with the applied voltage. This rotational displacement is transmitted through the rigid body portions 26a, 26b, the parallel flexible beam displacement mechanism 25Mya, 25Fyb, the ring 24, the radial flexible beam displacement mechanism 25Mxa, 25Mxb, the rigid body portions 27a, 27b, and the fine movement table 30.
Then, the fine motion table 30 is rotationally displaced about the axis.

以上の説明は1つの軸についての並進変位および回転変
位の説明であるが、上記各平行たわみ梁変位機構および
各放射たわみ梁変位機構のうちの任意の複数を選択して
任意の電圧を印加することにより、微動テーブル26を任
意に変位させることができる。又、ストレンゲージSを
用いて変位量の正確な制御を行うことができる。
Although the above description is for translational displacement and rotational displacement about one axis, an arbitrary voltage is applied by selecting an arbitrary plurality of the parallel flexural beam displacement mechanism and the radial flexural beam displacement mechanism. As a result, the fine movement table 26 can be displaced arbitrarily. Further, the strain gauge S can be used to accurately control the displacement amount.

このように、本実施例では、第1のブロツクにx軸方向
およびy軸方向に並進変位する平行たわみ梁変位機構を
構成し、第1のブロツクに連結された第2のブロツクに
z軸方向に並進変位する平行たわみ梁変位機構を構成
し、第2のブロツクに連結された第3のブロツクに、x
軸,y軸,z軸まわりにそれぞれ回転変位する放射たわみ梁
変位機構を構成し、第3のブロツクに微動テーブルを固
定したので、極めて簡単かつ小形で、又、使用対象機器
への装着が容易で使い勝手のよい3軸の並進変位および
3軸の回転変位を得ることができる。又、各回転軸が微
動テーブルの表面上の一点で直交するので、回転変位の
回転中心は微動テーブル上に存在することになり、正確
な回転変位を行うことができる。
As described above, in the present embodiment, the parallel flexural beam displacement mechanism that performs translational displacement in the x-axis direction and the y-axis direction is configured in the first block, and the second block connected to the first block is in the z-axis direction. A parallel flexural beam displacement mechanism for translational displacement to the third block connected to the second block, x
A radial flexure beam displacement mechanism that rotationally displaces each of the axes, y-axis, and z-axis is configured, and the fine movement table is fixed to the third block, so it is extremely simple and compact, and easy to mount on the target device. It is possible to obtain a translational displacement of three axes and a rotational displacement of three axes which are easy to use. Further, since the respective rotation axes are orthogonal to each other at one point on the surface of the fine movement table, the rotation center of the rotational displacement exists on the fine movement table, and accurate rotational displacement can be performed.

なお、上記実施例の説明では、ブロツクB1においてy軸
方向の張出し部の端部を固定し、x軸方向の張出し部の
端部に連結部を設けた例について説明したが、これとは
逆に、x軸方向の張出し部の端部を固定し、y軸方向の
張出し部の端部にブロツクB2を連結してもよいのは明ら
かである。又、各回転軸は必ずしも微動テーブルの表面
に存在する必要はなく、任意に選択することができる。
In addition, in the description of the above embodiment, an example in which the end portion of the overhang portion in the y-axis direction is fixed in the block B 1 and the connecting portion is provided at the end portion of the overhang portion in the x-axis direction has been described. On the contrary, it is obvious that the end of the overhang portion in the x-axis direction may be fixed and the block B 2 may be connected to the end of the overhang portion in the y-axis direction. Further, each rotary shaft does not necessarily have to be present on the surface of the fine movement table, and can be arbitrarily selected.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明では、第1のブロツクにx軸
方向およびy軸方向に並進変位する平行たわみ梁変位機
構を構成し、第1のブロツクに連結された第2のブロツ
クにz軸方向に並進変位する平行たわみ梁変位機構を構
成し、第2のブロツクに連結された第3のブロツクに、
x軸,y軸,z軸まわりにそれぞれ回転変位する放射たわみ
梁変位機構を構成し、第3のブロツクに微動テーブルを
連結したので、極めて簡単かつ小形で、又、使用対象機
器への装着が容易で使い勝手のよい3軸の並進変位およ
び3軸の回転変位を得ることができる。
As described above, in the present invention, the first block is provided with the parallel flexural beam displacement mechanism that is displaced in translation in the x-axis direction and the y-axis direction, and the second block connected to the first block is provided with the z-axis. To the third block connected to the second block, which constitutes a parallel flexural beam displacement mechanism for translational displacement in the direction
A radial flexure beam displacement mechanism that rotationally displaces around the x-axis, y-axis, and z-axis is configured, and a fine movement table is connected to the third block, so it is extremely simple and compact, and can be mounted on the target device. It is possible to obtain triaxial translational displacement and triaxial rotational displacement that are easy and convenient to use.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係る微細位置決め装置の分解
斜視図、第2図(a),(b)は第1図に示す放射たわ
み梁変位機構の側面図、第3図(a),(b)は第1図
に示す放射たわみ梁変位機構の側面図、第4図,第5図
および第6図は従来の微細位置決め装置の側面図および
斜視図、第7図は第6図に示す装置に用いられるバイモ
ルフ形圧電素子の斜視図である。 15,21,28……中心剛体部、16a,16b,17a,17b,22a,22b,29
a,29b……張出し部、16Fxa,16Fxb,16Fya,16Fyb,22Fza,2
2Fzb……平行たわみ梁変位機構、24……リング、25Mxa,
25Mxb,25Mya,25Myb,29Mza,29Mzb……放射たわみ梁変位
機構、30……微動テーブル、B1,B2,B3……ブロツク。
FIG. 1 is an exploded perspective view of a fine positioning apparatus according to an embodiment of the present invention, FIGS. 2 (a) and 2 (b) are side views of the radial bending beam displacement mechanism shown in FIG. 1, and FIG. 3 (a). , (B) are side views of the radial bending beam displacement mechanism shown in FIG. 1, FIGS. 4, 5 and 6 are side views and perspective views of a conventional fine positioning device, and FIG. 7 is FIG. 3 is a perspective view of a bimorph piezoelectric element used in the device shown in FIG. 15,21,28 …… Central rigid body part, 16a, 16b, 17a, 17b, 22a, 22b, 29
a, 29b …… Overhang part, 16Fxa, 16Fxb, 16Fya, 16Fyb, 22Fza, 2
2Fzb …… Parallel flexible beam displacement mechanism, 24 …… Ring, 25Mxa,
25Mxb, 25Mya, 25Myb, 29Mza, 29Mzb …… Radial flexural beam displacement mechanism, 30 …… Fine table, B 1 , B 2 , B 3 … Block.

フロントページの続き (72)発明者 村山 健 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 (72)発明者 星野 ▲吉▼弘 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 (56)参考文献 特開 昭61−209846(JP,A) 特開 昭61−243511(JP,A) 特開 昭62−187912(JP,A) 特開 昭60−25284(JP,A) 米国特許3786332(US,A)Front page continued (72) Inventor Ken Murayama 650 Jinrachi-cho, Tsuchiura-shi, Ibaraki Hitachi Construction Machinery Co., Ltd. Tsuchiura factory (72) Inventor Hoshino ▲ Yoshi ▼ 650 Kintate-cho, Tsuchiura-shi, Ibaraki Hitachi Construction Machinery Co., Ltd. Ceremony Company Tsuchiura Factory (56) Reference JP 61-209846 (JP, A) JP 61-243511 (JP, A) JP 62-187912 (JP, A) JP 60-25284 ( JP, A) US Patent 3786332 (US, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】第1の中心剛体部から第1の軸方向に対称
的に突出し各突出部分に前記第1の軸方向と直交する第
2の軸方向に並進変位を発生させる平行たわみ梁変位機
構を備えるとともに前記各突出部分の端が固定部に連結
された第1の組の張出し部、および前記第1の中心剛体
部から第2の軸方向に対称的に突出した各突出部分に前
記第1の軸方向に並進変位を発生させる平行たわみ梁変
機構を備えた第2の組の張出し部を有する第1のブロッ
クと、第2の中心剛体部から前記第2の軸方向に対称的
に突出し各突出部分に前記第1の軸方向および前記第2
の軸方向と直交する第3の軸方向に並進変位を発生させ
る平行たわみ梁変位機構を備えるとともに前記第2の軸
方向の各突出部の端が前記第2の組の各張出し部の端部
に連結される第2のブロックと、剛体のリング上に設け
られ前記第1の軸まわりに回転変位を発生させる第1の
放射たわみ梁変位機構の組および前記第2の軸まわりに
回転変位を発生させる第2の放射たわみ梁変位機構の
組、ならびに前記リングで囲まれる空間を通って前記第
2の中心剛体部と連結される第3の中心剛体部から対称
的に突出し各突出部分に前記第3の軸まわりに回転変位
を発生させる第3の放射たわみ梁変位機構を備えるとと
もに前記第3の中心剛体部から突出する前記各突出部分
の端部と前記放射たわみ梁変位機構の一方の組の各剛体
部とが結合された第3のブロックと、前記第3のブロッ
クの前記第3の放射たわみ梁変位機構が連結されていな
い前記放射たわみ梁変位機構の各剛体部に連結された微
動テーブルとで構成されていることを特徴とする微細位
置決め装置。
1. A parallel flexural beam displacement that symmetrically projects from a first central rigid body portion in a first axial direction and causes translational displacement in each projecting portion in a second axial direction orthogonal to the first axial direction. A first set of overhanging parts that includes a mechanism and has ends of each of the projecting parts connected to a fixing part, and the projecting parts that symmetrically project from the first central rigid body part in the second axial direction. A first block having a second set of overhangs provided with a parallel flexural beam displacement mechanism for generating a translational displacement in a first axial direction, and a second central rigid body portion symmetrical in the second axial direction To the first axial direction and the second axial direction at each projecting portion.
Is provided with a parallel flexural beam displacement mechanism for generating a translational displacement in a third axial direction orthogonal to the axial direction of the second axial direction, and the ends of the respective projecting portions in the second axial direction are end portions of the respective projecting portions of the second set A second block coupled to the first block, a first radial flexural beam displacement mechanism set on the ring of the rigid body for generating rotational displacement about the first axis, and rotational displacement about the second axis. A second set of radial flexural beam displacement mechanisms to be generated, as well as symmetrically projecting from a third central rigid body part connected to the second central rigid body part through a space surrounded by the ring, and at each of the projecting parts. A third radial flexible beam displacement mechanism for generating rotational displacement about a third axis is provided, and one set of the end portion of each of the projecting portions projecting from the third central rigid body portion and the radial flexible beam displacement mechanism. Of the rigid body parts of And a fine movement table connected to each rigid body portion of the radial bending beam displacement mechanism to which the third radial bending beam displacement mechanism of the third block is not connected, Fine positioning device.
【請求項2】特許請求の範囲第(1)項において、前記
各平行たわみ梁変位機構は、前記中央剛体部と対応する
前記張出し部とを連結する互いに平行な複数のたわみ梁
と、これらたわみ梁に前記軸方向の力による曲げ変形を
発生させるアクチュエータとにより構成されていること
を特徴とする微細位置決め装置。
2. The parallel flexural beam displacement mechanism according to claim 1, wherein the parallel flexural beam displacement mechanism includes a plurality of flexural beams which are parallel to each other and which connect the central rigid body part and the corresponding overhanging part. A fine positioning device comprising: an actuator that causes a beam to be bent and deformed by the force in the axial direction.
【請求項3】特許請求の範囲第(1)項において、前記
各放射たわみ梁変位機構は、前記第1の軸又は前記第2
の軸に関して互いに放射状に延びる複数のたわみ梁と、
これらたわみ梁に当該軸まわりのモーメントによる曲げ
変形を発生させるアクチュエータとにより構成されてい
ることを特徴とする微細位置決め装置。
3. The radiating flexible beam displacement mechanism according to claim 1, wherein the radial bending beam displacement mechanism is the first shaft or the second shaft.
A plurality of flexible beams extending radially with respect to the axis of
A fine positioning device comprising: an actuator that causes the bending beam to generate bending deformation due to a moment about the axis.
【請求項4】特許請求の範囲第(2)項又は第(3)項
において、前記アクチュエータは、圧電アクチュエータ
であることを特徴とする微細位置決め装置。
4. A fine positioning device according to claim 2 or 3, wherein the actuator is a piezoelectric actuator.
JP61283061A 1986-09-09 1986-11-29 Fine positioning device Expired - Lifetime JPH071448B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61283061A JPH071448B2 (en) 1986-11-29 1986-11-29 Fine positioning device
EP87201701A EP0264147B1 (en) 1986-09-09 1987-09-08 Fine positioning device and displacement controller therefor
DE3788773T DE3788773T2 (en) 1986-09-09 1987-09-08 Device for fine adjustment and device for controlling these adjustments.
US07/244,168 US4888878A (en) 1986-09-09 1988-09-14 Fine positioning device
US07/244,102 US5005298A (en) 1986-09-09 1988-09-14 Displacement controller for fine positioning device
US07/244,169 US4920660A (en) 1986-09-09 1988-09-14 Fine positioning device and displacement controller therefor
US07/244,101 US4991309A (en) 1986-09-09 1988-09-14 Fine positioning device and displacement controller therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61283061A JPH071448B2 (en) 1986-11-29 1986-11-29 Fine positioning device

Publications (2)

Publication Number Publication Date
JPS63137306A JPS63137306A (en) 1988-06-09
JPH071448B2 true JPH071448B2 (en) 1995-01-11

Family

ID=17660696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61283061A Expired - Lifetime JPH071448B2 (en) 1986-09-09 1986-11-29 Fine positioning device

Country Status (1)

Country Link
JP (1) JPH071448B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4398990B2 (en) 2007-03-28 2010-01-13 株式会社東芝 Drive mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786332A (en) 1969-03-19 1974-01-15 Thomson Houston Comp Francaise Micro positioning apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996880A (en) * 1982-11-19 1984-06-04 Nec Corp Electromechanical transducer
JPS5994103A (en) * 1982-11-19 1984-05-30 Nec Corp Controller of electromechanical transducer
JPS6025284A (en) * 1983-07-22 1985-02-08 Hitachi Ltd Positioning device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786332A (en) 1969-03-19 1974-01-15 Thomson Houston Comp Francaise Micro positioning apparatus

Also Published As

Publication number Publication date
JPS63137306A (en) 1988-06-09

Similar Documents

Publication Publication Date Title
US8179621B2 (en) Apparatus for manipulation of an optical element
EP0264147B1 (en) Fine positioning device and displacement controller therefor
JP4268333B2 (en) Balanced positioning system for use in a lithographic projection apparatus
US7113688B2 (en) Base, payload and connecting structure and methods of making the same
US7451596B2 (en) Multiple degree of freedom micro electro-mechanical system positioner and actuator
US6867534B2 (en) Low-mass and compact stage devices exhibiting six degrees of freedom of fine motion, and microlithography systems comprising same
JPH071448B2 (en) Fine positioning device
JPH07109566B2 (en) Fine positioning device
EP2132600B1 (en) Split axes stage design for semiconductor applications
JPH0555263B2 (en)
JPS6366613A (en) Fine positioning device
JP3255707B2 (en) Fine positioning device
JPH071450B2 (en) Fine positioning device
JPS6366615A (en) Fine positioning device
JP2849158B2 (en) Fine movement mechanism
JPS62214413A (en) Fine positioning device
JP2614662B2 (en) Fine movement mechanism
JPS62214412A (en) Fine positioning device
JPH07109567B2 (en) Fine positioning device
JPH071451B2 (en) Displacement control device for fine positioning device
JPH03115892A (en) Micromotion mechanism
JPH071449B2 (en) Fine positioning device
JPH071452B2 (en) Fine positioning device
JP2760404B2 (en) Fine movement mechanism
JPH071447B2 (en) Fine positioning device