JPH071447B2 - Fine positioning device - Google Patents

Fine positioning device

Info

Publication number
JPH071447B2
JPH071447B2 JP61210618A JP21061886A JPH071447B2 JP H071447 B2 JPH071447 B2 JP H071447B2 JP 61210618 A JP61210618 A JP 61210618A JP 21061886 A JP21061886 A JP 21061886A JP H071447 B2 JPH071447 B2 JP H071447B2
Authority
JP
Japan
Prior art keywords
axis
radial
support plate
displacement mechanism
beam displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61210618A
Other languages
Japanese (ja)
Other versions
JPS6366614A (en
Inventor
潔 長澤
耕三 小野
浩二郎 緒方
健 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP61210618A priority Critical patent/JPH071447B2/en
Priority to DE3788773T priority patent/DE3788773T2/en
Priority to EP87201701A priority patent/EP0264147B1/en
Publication of JPS6366614A publication Critical patent/JPS6366614A/en
Priority to US07/244,101 priority patent/US4991309A/en
Priority to US07/244,169 priority patent/US4920660A/en
Priority to US07/244,168 priority patent/US4888878A/en
Priority to US07/244,102 priority patent/US5005298A/en
Publication of JPH071447B2 publication Critical patent/JPH071447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • B23Q15/24Control or regulation of position of tool or workpiece of linear position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41133Compensation non linear transfer function
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41352Alternative clamping dilation of piezo, caterpillar motion, inchworm

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Position Or Direction (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造装置、電子顕微鏡等のμmオーダ
の調節を必要とする装置に使用される微細位置決め装置
に関する。
Description: TECHNICAL FIELD The present invention relates to a fine positioning device used in a semiconductor manufacturing apparatus, an electron microscope, or any other apparatus requiring adjustment on the order of μm.

〔従来の技術〕[Conventional technology]

近年、各種技術分野においては、μmのオーダーの微細
な変位調節が可能である装置が要望されている。その典
型的な例がLSI(大規模集積回路)、超LSIの製造工程に
おいて使用されるマスクアライナ、電子線描画装置等の
半導体製造装置である。これらの装置においては、μm
オーダーの微細な位置決めが必要であり、位置決めの精
度が向上するにしたがつてその集積度も増大し、高性能
の製品を製造することができる。このような微細な位置
決めは上記半導体装置に限らず、電子顕微鏡をはじめと
する各種の高倍率光学装置等においても必要であり、そ
の精度向上により、バイオテクノロジ、宇宙開発等の先
端技術においてもそれらの発展に大きく寄与するもので
ある。
In recent years, in various technical fields, a device capable of fine displacement adjustment on the order of μm has been demanded. A typical example thereof is a semiconductor manufacturing apparatus such as an LSI (Large Scale Integrated Circuit), a mask aligner used in a manufacturing process of a VLSI, an electron beam drawing apparatus and the like. In these devices, μm
Fine positioning on the order is required, and as the positioning accuracy improves, the degree of integration increases, and high-performance products can be manufactured. Such fine positioning is necessary not only in the above-mentioned semiconductor device but also in various high-magnification optical devices such as electron microscopes, and by improving its precision, even in advanced technologies such as biotechnology and space development. Will greatly contribute to the development of.

ところで、上位位置決めにおいては、1つの平面に沿つ
て任意の方向に移動させる並進変位と、1つの軸まわり
に回動させる回転変位とが考えられる。このうち、回転
変位を行う微細位置決め装置として、特公昭57−50433
号公報に示される装置が提案されていた。これを図によ
り説明する。
By the way, in the higher-order positioning, translational displacement that moves in one direction along one plane and rotational displacement that rotates about one axis are considered. Among these, as a fine positioning device for performing rotational displacement, Japanese Patent Publication No.
The device shown in Japanese Patent Publication has been proposed. This will be described with reference to the drawings.

第3図は微小回転変位を行う従来の微細位置決め装置の
一部破断斜視図である。図で、11は円柱状の中央固定
部、11a,11b,11cは中央固定部11の周面にその長手方向
に等間隔に形成された縦溝である。12は中央固定部11を
中心として可回動に設けられたリング状のステージ、12
a1〜12a3,12b1〜12b3,12c1〜12c3はそれぞれ縦溝11a,11
b,11cに対向してステージ12に固定されたU字状金具で
ある。13は各縦溝11a,11b,11cと各U字状金具12a1〜12c
3との間に装架されたバイモルフ形圧電素子、13Aはバイ
モルフ形圧電素子13のU字状金具と係合する部分に固定
された突起である。中央固定部11、ステージ12、各U字
状金具12a1〜12c3はいずれも剛体である。ここで、上記
バイモルフ形圧電素子13を第4図により簡単に説明す
る。
FIG. 3 is a partially cutaway perspective view of a conventional fine positioning device that performs fine rotational displacement. In the figure, 11 is a cylindrical central fixing portion, and 11a, 11b, 11c are vertical grooves formed on the circumferential surface of the central fixing portion 11 at equal intervals in the longitudinal direction. Reference numeral 12 denotes a ring-shaped stage that is rotatably provided around the central fixed portion 11.
a 1 to 12a 3 , 12b 1 to 12b 3 , 12c 1 to 12c 3 are vertical grooves 11a, 11 respectively.
The U-shaped metal fitting is fixed to the stage 12 so as to face b and 11c. 13 is each vertical groove 11a, 11b, 11c and each U-shaped metal fitting 12a 1 to 12c
A bimorph type piezoelectric element 13A mounted between the two and 3 is a projection fixed to a portion of the bimorph type piezoelectric element 13 that engages with the U-shaped metal fitting. The central fixed portion 11, the stage 12, the U-shaped bracket 12a 1 ~12c 3 is rigid both. Here, the bimorph type piezoelectric element 13 will be briefly described with reference to FIG.

第4図はバイモルフ形圧電素子の斜視図である。図で、
13a,13bは圧電素子、13cは圧電素子13a,13bの中間に設
けられた共通電極である。圧電素子13a,13bは共通電極1
3cを挾着した状態で互いに密着されている。13d,13eは
それぞれ圧電素子13a,13bに固着された表面電極であ
る。この状態において、表面電極13dと共通電極13cとの
間に圧電素子13aを縮ませる極性の電圧を印加し、同時
に、表面電極13eと共通電極13cとの間に圧電素子13bを
伸ばす極性の電圧を印加すると、各圧電素子13a,13bが
矢印の方向に伸縮することにより、バイモルフ形圧電素
子13全体は図のように変形する。このようなバイモルフ
形圧電素子13により、圧電素子単体に比べて大きな変位
量を得ることができる。
FIG. 4 is a perspective view of a bimorph type piezoelectric element. In the figure,
Reference numerals 13a and 13b are piezoelectric elements, and 13c is a common electrode provided between the piezoelectric elements 13a and 13b. The piezoelectric elements 13a and 13b are the common electrode 1
They are closely attached to each other with 3c clinging together. Reference numerals 13d and 13e denote surface electrodes fixed to the piezoelectric elements 13a and 13b, respectively. In this state, a voltage with a polarity that contracts the piezoelectric element 13a is applied between the surface electrode 13d and the common electrode 13c, and at the same time, a voltage with a polarity that extends the piezoelectric element 13b between the surface electrode 13e and the common electrode 13c is applied. When applied, each piezoelectric element 13a, 13b expands and contracts in the direction of the arrow, so that the entire bimorph piezoelectric element 13 is deformed as shown in the figure. With such a bimorph piezoelectric element 13, it is possible to obtain a large displacement amount as compared with a single piezoelectric element.

このようなバイモルフ形圧電素子13は、第3図に示す装
置において、一端が縦溝11a,11b,11cに固定され、他端
は自由端となつて各対応するU字状金具に突起13Aを介
して接触している。今、各バイモルフ形圧電素子13に適
宜の電圧を印加し、第4図に示す変形を生じさせると、
ステージ12はその変形に応じて中央固定部11を中心とし
て回動変位する。そこで、ステージ12上に微動テーブル
を載置固定しておけば、微動テーブルの微小回転変位を
得ることができる。
Such a bimorph-type piezoelectric element 13 has the one end fixed to the longitudinal grooves 11a, 11b, 11c and the other end free end in the apparatus shown in FIG. 3, and the projection 13A is formed on each corresponding U-shaped metal fitting. Are in contact through. Now, when an appropriate voltage is applied to each bimorph type piezoelectric element 13 to cause the deformation shown in FIG. 4,
The stage 12 is rotationally displaced about the central fixed portion 11 according to the deformation. Therefore, if the fine movement table is placed and fixed on the stage 12, a fine rotational displacement of the fine movement table can be obtained.

上記従来の装置は、U字状金具とバイモルフ形圧電素子
13とにより両者を係合状態に保持し、これにより、バイ
モルフ形圧電素子13の自然変形のままでの装架を許し、
かつ、バイモルフ形圧電素子13をステージ12に固定した
場合に生じる変位の拘束(干渉)を防止している。
The above-mentioned conventional device includes a U-shaped metal fitting and a bimorph piezoelectric element.
13 and both are held in an engaged state, which allows the bimorph type piezoelectric element 13 to be mounted while being naturally deformed,
In addition, displacement constraint (interference) that occurs when the bimorph piezoelectric element 13 is fixed to the stage 12 is prevented.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、第3図に示す従来の微細位置決め装置は次の
ような問題点を有している。即ち、当該装置の構成は、
構成自体が複雑であるばかりでなく、各バイモルフ形圧
電素子13の先端位置に合わせて各U字状金具の取付位置
を定めなければならず、その製造に極めて多くの手間と
時間を要する。しかも、バイモルフ形圧電素子13とU字
状金具との係合は、緩やかな係合は許されず、したがつ
て、バイモルフ形圧電素子13が変形したときのU字状金
具との摺動抵抗も大きく、依然として大きな干渉が存在
する。
By the way, the conventional fine positioning apparatus shown in FIG. 3 has the following problems. That is, the configuration of the device is
Not only is the configuration itself complicated, but the mounting position of each U-shaped metal fitting must be determined in accordance with the tip position of each bimorph-type piezoelectric element 13, which requires a great deal of labor and time to manufacture. In addition, the engagement between the bimorph-type piezoelectric element 13 and the U-shaped metal fitting is not allowed to be loose, and therefore the sliding resistance with the U-shaped metal fitting when the bimorph-shaped piezoelectric element 13 is deformed. There is a large and still large interference.

さらに、第3図に示す装置では、中央固定部11に沿う軸
のまわりの回転変位は得られるものの、他の軸まわりの
回転変位を得ることはできない。そして、このように2
つの軸まわりの回転変位を得るためには第3図に示す装
置を2つ組合わせることが考えられるが、この組合せを
構成するのは困難である。
Further, with the device shown in FIG. 3, although rotational displacement about the axis along the central fixed portion 11 can be obtained, rotational displacement about other axes cannot be obtained. And like this 2
It is possible to combine two devices shown in FIG. 3 in order to obtain rotational displacement about one axis, but it is difficult to construct this combination.

本発明の目的は、上記従来技術の問題点を解決し、極め
て簡単な構成で2つの軸まわりの回転変位を得ることが
できる微細位置決め装置を提供するにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a fine positioning device capable of obtaining rotational displacement about two axes with an extremely simple structure.

[課題を解決するための手段] 上記の目的を達成するため、本発明は、剛体の支持板
と、この支持板上に設けられ第1の軸まわりに回転変位
を発生させる少なくとも1つの放射たわみ梁変位機構
と、前記支持板上に設けられ前記第1の軸と直交する第
2の軸まわりに回転変位を発生させる少なくとも1つの
放射たわみ梁変位機構と、前記第1の軸まわりに回転変
位を発生させる放射たわみ梁変位機構の前記支持板と反
対側に連結された微動テーブルと、前記第2の軸まわり
に回転変位を発生させる放射たわみ梁変位機構の前記支
持板と反対側に一方が連結され、他方が固定端に連結さ
れた固定部とで微細位置決め装置を構成したことを特徴
とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a rigid support plate, and at least one radial flexure provided on the support plate and generating a rotational displacement about a first axis. A beam displacement mechanism, at least one radial flexural beam displacement mechanism provided on the support plate for generating a rotational displacement about a second axis orthogonal to the first axis, and a rotational displacement about the first axis A fine movement table connected to the side of the radial flexure beam displacement mechanism opposite to the support plate, and one side of the radial flexure beam displacement mechanism opposite to the support plate of the radial flexure beam displacement mechanism that generates rotational displacement about the second axis. It is characterized in that the fine positioning device is constituted by a fixed part connected to the other end and connected to the fixed end on the other side.

〔作用〕[Action]

第1の軸まわりに回転変位を発生させる放射たわみ梁変
位機構を駆動すると、この駆動による回転変位は当該放
射たわみ梁変位機構における支持板と反対側の微動テー
ブルに現れ、又、第2の軸まわりに回転変位を発生させ
る放射たわみ梁変位機構を駆動すると、この駆動による
回転変位は支持板および前記第1の軸まわりに回転変位
を発生させる放射たわみ梁変位機構を介して微動テーブ
ルに現れる。
When the radial flexible beam displacement mechanism that generates rotational displacement about the first axis is driven, the rotational displacement due to this drive appears on the fine movement table on the opposite side of the support plate in the radial flexible beam displacement mechanism, and also the second axis. When the radial flexure beam displacement mechanism that causes rotational displacement is driven, the rotational displacement caused by this drive appears on the fine movement table via the support plate and the radial flexure beam displacement mechanism that causes rotational displacement about the first axis.

〔実施例〕〔Example〕

以下、本発明を図示の実施例に基づいて説明する。 Hereinafter, the present invention will be described based on the illustrated embodiments.

第1図は本発明の実施例に係る微細位置決め装置の斜視
図である。図で、x,y,zは座標軸を示す。15は剛体部材
で作られた支持板である。16Mya,16Mybは支持板15上に
対称的に配置された放射たわみ梁変位機構である。各放
射たわみ梁変位機構16Mya,16Mybはy軸方向に延びる共
通の1つの軸(y′軸)のまわりに回転変位を発生せし
める。16Mxa,16Mxbは支持板15上に対称的に配置された
放射たわみ梁変位機構であり、それぞれx軸方向に延び
る共通の1つの軸(x′軸)のまわりに回転変位を発生
せしめる。各放射たわみ梁変位機構16Mya,16Myb,16Mxa,
16Mxbの構造については後述する。
FIG. 1 is a perspective view of a fine positioning device according to an embodiment of the present invention. In the figure, x, y, and z indicate coordinate axes. Reference numeral 15 is a support plate made of a rigid member. 16Mya and 16Myb are radial bending beam displacement mechanisms symmetrically arranged on the support plate 15. The radial flexure beam displacement mechanisms 16Mya and 16Myb generate rotational displacements around a common axis (y 'axis) extending in the y-axis direction. 16Mxa and 16Mxb are radial bending beam displacement mechanisms symmetrically arranged on the support plate 15, and each generate a rotational displacement about a common axis (x 'axis) extending in the x-axis direction. Radial flexible beam displacement mechanism 16Mya, 16Myb, 16Mxa,
The structure of 16Mxb will be described later.

17a,17bはそれぞれ放射たわみ梁変位機構16Mya,16Mybを
構成する一方の剛体部(他方の剛体部は支持板15)、18
a,18bはそれぞれ放射たわみ梁変位機構16Mxa,16Mxbを構
成する一方の剛体部(同じく他方の剛体部は支持板15)
である。19a,19bはそれぞれ剛体部18a,18bに固定された
L字形の固定脚、20は剛体部17a,17bに固定された微動
テーブルである。この微動テーブル20上には微細位置決
めされる対象物体が載置固定される。
Reference numerals 17a and 17b are one rigid body portion (the other rigid body portion is a support plate 15) constituting the radial flexure beam displacement mechanism 16Mya, 16Myb, 18
a and 18b are the rigid body parts of the radiating flexible beam displacement mechanism 16Mxa and 16Mxb, respectively (the other rigid body part is also the support plate 15)
Is. Reference numerals 19a and 19b are L-shaped fixed legs fixed to the rigid body portions 18a and 18b, respectively, and 20 is a fine movement table fixed to the rigid body portions 17a and 17b. An object to be finely positioned is placed and fixed on the fine movement table 20.

ここで、放射たわみ梁変位機構を図により説明する。第
2図(a),(b)は放射たわみ梁変位機構の側面図で
ある。図で、25a,25bはそれぞれ、左右に存在する剛体
部である。26,26′はそれぞれ剛体部25a,25bの間にこれ
らと一体に形成され、かつ定点Oを中心として放射状に
配置された平板状の放射たわみ梁である。27は放射たわ
み梁26,26′と剛体部とを一体形成するために生じた貫
通孔である。28aは剛体部25aから貫通孔27に突出する突
出部、28bは剛体部25bから貫通孔27に突出する突出部で
あり、これら突出部28a,28bは互いに図の縦方向におい
て間隔を有して重なつている。29は突出部28aと突出部2
8bとの間に固定された圧電アクチユエータである。圧電
アクチユエータ29は、点Oを中心として圧電アクチユエ
ータ29を通る円を描いた場合、その円の接線方向の力f
(点Oに関するトルクに相当する)を発生し各放射たわ
み梁に曲げ変形を生ぜしめる。これら力の大きさは、圧
電アクチユエータ29に印加される電圧によつて制御され
る。30は剛体部25aを支持する剛体構造を示す。
Here, the radial flexible beam displacement mechanism will be described with reference to the drawings. 2 (a) and 2 (b) are side views of the radial flexible beam displacement mechanism. In the figure, 25a and 25b are rigid body portions existing on the left and right sides, respectively. Reference numerals 26 and 26 'denote flat-plate radiating flexible beams which are integrally formed between the rigid body portions 25a and 25b, respectively, and are arranged radially around the fixed point O. Reference numeral 27 is a through hole formed to integrally form the radial bending beams 26, 26 'and the rigid body portion. 28a is a protrusion protruding from the rigid body portion 25a into the through hole 27, 28b is a protrusion protruding from the rigid body portion 25b into the through hole 27, these protrusions 28a, 28b are spaced from each other in the vertical direction of the drawing. It overlaps. 29 is a protrusion 28a and a protrusion 2
It is a piezoelectric actuator fixed between 8b and. When a circle passing through the piezoelectric actuator 29 with the point O as the center is drawn, the piezoelectric actuator 29 draws a force f in the tangential direction of the circle.
(Corresponding to the torque related to the point O) is generated to cause bending deformation in each radial flexible beam. The magnitude of these forces is controlled by the voltage applied to the piezoelectric actuator 29. Reference numeral 30 denotes a rigid body structure that supports the rigid body portion 25a.

上記の構造において、剛体部25a,25b、放射たわみ梁26,
26′、突出部28a,28b、圧電アクチユエータ29により放
射たわみ梁変位機構32が構成されている。点Oを通る紙
面に垂直な線を、この放射たわみ梁変位機構32の位置と
設置方向を示す基準軸とする。
In the above structure, the rigid body portions 25a, 25b, the radial flexible beam 26,
26 ', the protrusions 28a, 28b, and the piezoelectric actuator 29 constitute a radial bending beam displacement mechanism 32. A line perpendicular to the paper surface passing through the point O is used as a reference axis indicating the position and installation direction of the radial flexible beam displacement mechanism 32.

次に、上記放射たわみ梁変位機構の動作を第2図(b)
を参照しながら説明する。第2図(b)は第2図(a)
に示す放射たわみ梁変位機構32の変形後の側面図であ
る。今、圧電アクチユエータ29に電圧を印加して上記接
触線方向の力fを発生させる。そうすると、突出部28b
は圧電アクチユエータ29に発生した力により上記接線に
沿つて上向きに押される。剛体部25bは剛体部25aに放射
たわみ梁26,26′で連結された形となつているので、上
記の力を受けた結果、放射たわみ梁26,26′の剛体部25a
に連結されている部分は点Oから放射状に延びる直線
L1,L2にあるが、剛体部25bに連結されている部分は、上
記直線L1,L2から僅かにずれた直線(この直線も点Oか
ら放射状に延びる直線である。)L1′,L2′上にずれる
微小変位を生じる。このため、剛体部25bは図で時計方
向に微小角度δだけ回動する。この回転変位δの大きさ
は、放射たわみ梁26,26′の曲げに対する剛性により定
まるので、力Fを正確に制御すれば、回転変位δもそれ
と同じ精度で制御できることになる。
Next, the operation of the radial bending beam displacement mechanism described above is shown in FIG. 2 (b).
Will be described with reference to. FIG. 2 (b) is FIG. 2 (a).
FIG. 9 is a side view after the deformation of the radial flexible beam displacement mechanism 32 shown in FIG. Now, a voltage is applied to the piezoelectric actuator 29 to generate the force f in the contact line direction. Then, the protrusion 28b
Is pushed upward along the tangent line by the force generated in the piezoelectric actuator 29. Since the rigid body portion 25b is connected to the rigid body portion 25a by the radiating flexible beams 26, 26 ', the rigid body portion 25a of the radiating flexible beam 26, 26' is subjected to the above force.
Is a straight line extending radially from the point O.
A portion of L 1 and L 2 which is connected to the rigid body portion 25b is a straight line slightly deviated from the straight lines L 1 and L 2 (this straight line is also a straight line extending radially from the point O.) L 1 There is a small displacement that shifts on ′, L 2 ′. Therefore, the rigid portion 25b rotates clockwise by a minute angle δ in the figure. Since the magnitude of this rotational displacement δ is determined by the bending rigidity of the radial bending beams 26, 26 ′, if the force F is accurately controlled, the rotational displacement δ can be controlled with the same accuracy.

圧電アクチユエータ29に印加されている電圧が除かれる
と、各放射たわみ梁26,26′は変形前の状態に復帰し、
放射たわみ梁変位機構32は第2図(a)に示す状態に戻
り、回転変位δは0になる。
When the voltage applied to the piezoelectric actuator 29 is removed, each radiating flexible beam 26, 26 'returns to the state before deformation,
The radial flexible beam displacement mechanism 32 returns to the state shown in FIG. 2 (a), and the rotational displacement δ becomes zero.

以上の放射たわみ梁変位機構の説明から、第1図に示す
放射たわみ梁変位機構16Mya,16Mybの基準軸はy′軸で
あり、放射たわみ梁変位機構16Mxa,16Mxbの基準軸は
x′軸であることが判る。又、第1図に示す支持板15が
剛体部25aに対応し、剛体部17a,17b,18a,18bが剛体部25
bに対応することも判る。ただし、放射たわみ梁変位機
構16Mxa,16Mxbにおいて、これらを支持する剛体構造は
剛体部18a,18b側にある。
From the above description of the radial flexible beam displacement mechanism, the reference axis of the radial flexible beam displacement mechanism 16Mya, 16Myb shown in FIG. 1 is the y ′ axis, and the reference axis of the radial flexible beam displacement mechanism 16Mxa, 16Mxb is the x ′ axis. I know there is. Further, the support plate 15 shown in FIG. 1 corresponds to the rigid body portion 25a, and the rigid body portions 17a, 17b, 18a, 18b are rigid body portions 25a.
We also know that it corresponds to b. However, in the radial flexible beam displacement mechanisms 16Mxa and 16Mxb, the rigid body structure supporting them is on the rigid body portions 18a and 18b side.

さらに、第1図に示す各放射たわみ梁変位機構16Mya,16
Myb,16Mxa,16Mxbの基準軸y′,x′は、それらの放射た
わみ梁26,26′の放射角度θを選定することにより、微
動テーブル20の表面上を通るようにされている。
Furthermore, each radial flexural beam displacement mechanism 16Mya, 16 shown in FIG.
The reference axes y ', x'of Myb, 16Mxa, 16Mxb are made to pass on the surface of the fine movement table 20 by selecting the radiation angle .theta. Of their radial bending beams 26, 26'.

ここで、本実施例の動作を説明する。放射たわみ梁16My
a,16Mybの圧電アクチユエータに同一電圧を印加する
と、この電圧に応じて放射たわみ梁が第2図(b)に示
すように変形する。この場合、支持板15は固定脚19a,19
b、放射たわみ梁変位機構16Mxa,16Mxbを介して固定状態
にあるので、放射たわみ梁変位機構16Mya,16Mybはy′
軸まわりに回転変位を発生し、これにより微動テーブル
20はy′軸まわりに回転変位する。
Here, the operation of this embodiment will be described. Radiant flexible beam 16My
When the same voltage is applied to the piezoelectric actuators a and 16 Myb, the radiating flexible beam is deformed as shown in FIG. 2 (b) according to this voltage. In this case, the support plate 15 is fixed to the fixed legs 19a, 19
b, Since the radial flexible beam displacement mechanism 16Mxa, 16Mxb is in a fixed state, the radial flexible beam displacement mechanism 16Mya, 16Myb is y ′
Rotational displacement is generated around the axis, which causes the fine movement table.
20 is rotationally displaced about the y'axis.

又、放射たわみ梁変位機構16Mxa,16Mxbの圧電アクチユ
エータに同一電圧を印加すると、この電圧に応じて放射
たわみ梁が変形してx′軸まわりの回転変位を発生す
る。この回転変位は支持板15、放射たわみ梁変位機構16
Mya,16Mybを介して微動テーブル20に電圧され、微動テ
ーブル20はx′軸まわりに回転変位する。
Further, when the same voltage is applied to the piezoelectric actuators of the radial flexure beam displacement mechanisms 16Mxa and 16Mxb, the radial flexure beam is deformed according to this voltage, and rotational displacement about the x'axis is generated. This rotational displacement is caused by the support plate 15 and the radial flexible beam displacement mechanism 16
A voltage is applied to the fine movement table 20 via Mya and 16Myb, and the fine movement table 20 is rotationally displaced about the x ′ axis.

さらに、放射たわみ梁変位機構16Mya,16Mybと放射たわ
み梁変位機構16Mxa,16Mxbとを同時に駆動すると、微動
テーブル20の回転変位は両者の回転変位を合成した回転
変位となる。
Further, when the radial flexible beam displacement mechanisms 16Mya, 16Myb and the radial flexible beam displacement mechanisms 16Mxa, 16Mxb are driven simultaneously, the rotational displacement of the fine movement table 20 becomes a rotational displacement that is a combination of the rotational displacements of the two.

このように、本実施例では、1つの支持板上にy′軸ま
わりの回転変位を生じる2つの放射たわみ梁変位機構を
対称的に設けるとともに、上記支持板上にy′軸と直交
するx′軸まわりの回転変位を生じる2つの放射たわみ
梁変位機構を対称的に設け、前の剛体部に微動テーブル
を固定し、後者の剛体部に固定脚を固定したので、簡
単、小形、かつ、使用対象機器への装着が容易で使い勝
手のよい構成で2軸まわりの回転変位を得ることができ
る。又、各放射たわみ梁変位機構の基準軸であるy′
軸,x′軸が微動テーブル上にあるようにしたので、回転
変位の回転中心も微動テーブル上となり、正確な回転変
位を行うことができる。
Thus, in this embodiment, two radial bending beam displacement mechanisms that cause rotational displacement about the y'axis are symmetrically provided on one support plate, and x that is orthogonal to the y'axis is provided on the support plate. 'Because two radial bending beam displacement mechanisms that generate rotational displacement around the axis are provided symmetrically, the fine movement table is fixed to the front rigid body part, and the fixing legs are fixed to the latter rigid body part, so it is simple, small, and It is possible to obtain rotational displacement about two axes with a configuration that is easy to mount on a device to be used and is easy to use. In addition, y ′, which is the reference axis of each radial flexible beam displacement mechanism,
Since the axis and the x'axis are on the fine movement table, the rotational center of the rotational displacement is also on the fine movement table, and accurate rotational displacement can be performed.

なお、上記実施例の説明では、各軸の放射たわみ梁変位
機構を対称的に2つづつ設ける例について説明したが、
これに限ることはなく、一方を1つとして中央に設ける
こともできる。この場合、中央に設けられた1つの放射
たわみ梁変位機構が固定部を固定するものではない場合
には、その剛体部が微動テーブルとなる。又、y′軸,
x′軸は必ずしも微動テーブルの表面に存在する必要は
なく、任意に選択することができる。
In the description of the above embodiment, an example in which two radial bending beam displacement mechanisms of each axis are symmetrically provided is described.
The invention is not limited to this, and one of them may be provided in the center. In this case, when one radial flexible beam displacement mechanism provided at the center does not fix the fixed portion, the rigid body portion serves as a fine movement table. Also, the y'axis,
The x'axis does not necessarily have to be present on the surface of the fine movement table and can be arbitrarily selected.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明では、剛体の支持板上に1つ
の軸まわりの回転変位を発生させる放射たわみ梁変位機
構と、当該軸と直交する軸まわりの回転変位を発生させ
る放射たわみ梁変位機構とを設けたので、簡単、小形、
かつ、使用対象機器への装着が容易で使い勝手のよい構
成で2つの軸まわりの回転変位を得ることができる。
As described above, according to the present invention, a radial flexible beam displacement mechanism for generating a rotational displacement about one axis on a rigid support plate, and a radial flexible beam displacement for generating a rotational displacement about an axis orthogonal to the axis. Since it has a mechanism, it is simple, compact,
In addition, it is possible to obtain the rotational displacement about the two axes with a configuration that is easy to mount on the target device and is easy to use.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係る微細位置決め装置の斜視
図、第2図(a),(b)は第1図に示す放射たわみ梁
変位機構の側面図、第3図は従来の微細位置決め装置の
一部破断斜視図、第4図は第3図に示すバイモルフ形圧
電素子の斜視図である。 15……支持板、16Mya,16Myb,16Mxa,16Mxb……放射たわ
み梁変機構、17a,17b,18a,18b……剛体部、19a,19b……
固定脚、20……微動テーブル。
FIG. 1 is a perspective view of a fine positioning device according to an embodiment of the present invention, FIGS. 2 (a) and 2 (b) are side views of the radial bending beam displacement mechanism shown in FIG. 1, and FIG. FIG. 4 is a partially cutaway perspective view of the positioning device, and FIG. 4 is a perspective view of the bimorph piezoelectric element shown in FIG. 15 …… Support plate, 16Mya, 16Myb, 16Mxa, 16Mxb …… Radial flexural beam transformation mechanism, 17a, 17b, 18a, 18b …… Rigid body, 19a, 19b ……
Fixed legs, 20 ... Fine movement table.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村山 健 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 (56)参考文献 特開 昭61−209846(JP,A) 特開 昭61−243511(JP,A) 特開 昭62−187912(JP,A) 特開 昭60−25284(JP,A) 米国特許3786332(US,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ken Murayama 650 Jinrachi-cho, Tsuchiura City, Ibaraki Prefecture Tsuchiura Plant, Hitachi Construction Machinery Co., Ltd. (56) References JP-A 61-209846 (JP, A) JP-A Sho 61-243511 (JP, A) JP-A-62-187912 (JP, A) JP-A-60-25284 (JP, A) US Patent 3786332 (US, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】剛体の支持板と、この支持板上に設けられ
第1の軸まわりに回転変位を発生させる少なくとも1つ
の放射たわみ梁変位機構と、前記支持板上に設けられ前
記第1の軸と直交する第2の軸まわりに回転変位を発生
させる少なくとも1つの放射たわみ梁変位機構と、前記
第1の軸まわりに回転変位を発生させる放射たわみ梁変
位機構の前記支持板と反対側に連結された微動テーブル
と、前記第2の軸まわりに回転変位を発生させる放射た
わみ梁変位機構の前記支持板と反対側に一方が連結さ
れ、他方が固定端に連結された固定部とを備えているこ
とを特徴とする微細位置決め装置。
1. A rigid support plate, at least one radial bending beam displacement mechanism provided on the support plate for generating rotational displacement about a first axis, and the first support beam provided on the support plate. At least one radial flexible beam displacement mechanism for generating rotational displacement about a second axis orthogonal to the axis, and on the opposite side of the support plate of the radial flexible beam displacement mechanism for generating rotational displacement about the first axis; A fine movement table connected thereto; and a fixed portion connected to the opposite side of the radial bending beam displacement mechanism for generating rotational displacement about the second axis from the support plate and the other connected to a fixed end. A fine positioning device characterized in that
【請求項2】特許請求の範囲第(1)項において、前記
各放射たわみ梁変位機構は、前記第1の軸又は前記第2
の軸に関して互いに放射状に延びる複数のたわみ梁と、
これらたわみ梁に当該軸まわりのモーメントによる曲げ
変形を発生させるアクチュエータとにより構成されてい
ることを特徴とする微細位置決め装置。
2. The radiating flexible beam displacement mechanism according to claim 1, wherein the radial bending beam displacement mechanism is the first shaft or the second shaft.
A plurality of flexible beams extending radially with respect to the axis of
A fine positioning device comprising: an actuator that causes the bending beam to generate bending deformation due to a moment about the axis.
【請求項3】特許請求の範囲第(2)項において、前記
アクチュエータは、圧電アクチュエータであることを特
徴とする微細位置決め装置。
3. The fine positioning device according to claim (2), wherein the actuator is a piezoelectric actuator.
【請求項4】特許請求の範囲第(1)項において、前記
第1の軸まわりに回転変位を発生する放射たわみ梁変位
機構は、前記支持板上に対向して2つ設けられているこ
とを特徴とする微細位置決め装置。
4. The radial flexure beam displacement mechanism according to claim (1), which is provided on the support plate so as to face each other, so that the radial deflection beam displacement mechanism generates a rotational displacement about the first axis. A fine positioning device.
【請求項5】特許請求の範囲第(1)項において、前記
第2の軸まわりに回転変位を発生する放射たわみ梁変位
機構は、前記支持板上に対向して2つ設けられているこ
とを特徴とする微細位置決め装置。
5. The radial flexure beam displacement mechanism according to claim (1), wherein two radial deflection beam displacement mechanisms that generate rotational displacement about the second axis are provided facing each other on the support plate. A fine positioning device.
JP61210618A 1986-09-09 1986-09-09 Fine positioning device Expired - Lifetime JPH071447B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61210618A JPH071447B2 (en) 1986-09-09 1986-09-09 Fine positioning device
DE3788773T DE3788773T2 (en) 1986-09-09 1987-09-08 Device for fine adjustment and device for controlling these adjustments.
EP87201701A EP0264147B1 (en) 1986-09-09 1987-09-08 Fine positioning device and displacement controller therefor
US07/244,101 US4991309A (en) 1986-09-09 1988-09-14 Fine positioning device and displacement controller therefor
US07/244,169 US4920660A (en) 1986-09-09 1988-09-14 Fine positioning device and displacement controller therefor
US07/244,168 US4888878A (en) 1986-09-09 1988-09-14 Fine positioning device
US07/244,102 US5005298A (en) 1986-09-09 1988-09-14 Displacement controller for fine positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61210618A JPH071447B2 (en) 1986-09-09 1986-09-09 Fine positioning device

Publications (2)

Publication Number Publication Date
JPS6366614A JPS6366614A (en) 1988-03-25
JPH071447B2 true JPH071447B2 (en) 1995-01-11

Family

ID=16592307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61210618A Expired - Lifetime JPH071447B2 (en) 1986-09-09 1986-09-09 Fine positioning device

Country Status (1)

Country Link
JP (1) JPH071447B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786332A (en) 1969-03-19 1974-01-15 Thomson Houston Comp Francaise Micro positioning apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996880A (en) * 1982-11-19 1984-06-04 Nec Corp Electromechanical transducer
JPS5994103A (en) * 1982-11-19 1984-05-30 Nec Corp Controller of electromechanical transducer
JPS6025284A (en) * 1983-07-22 1985-02-08 Hitachi Ltd Positioning device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786332A (en) 1969-03-19 1974-01-15 Thomson Houston Comp Francaise Micro positioning apparatus

Also Published As

Publication number Publication date
JPS6366614A (en) 1988-03-25

Similar Documents

Publication Publication Date Title
US7451596B2 (en) Multiple degree of freedom micro electro-mechanical system positioner and actuator
JPH0212381B2 (en)
JPS62229853A (en) Warped mount for planar microlithography reticle
JP2006049879A (en) Ultraprecision position-control system
US7243571B2 (en) Ultra-precision positioning system
Polit et al. Design of high-bandwidth high-precision flexure-based nanopositioning modules
KR100396021B1 (en) Ultra-precision moving apparatus
JPH071447B2 (en) Fine positioning device
JP3255707B2 (en) Fine positioning device
JPH071449B2 (en) Fine positioning device
JPH07109566B2 (en) Fine positioning device
JP2000009867A (en) Stage moving device
JPH0527034Y2 (en)
JP2614662B2 (en) Fine movement mechanism
JPH07109567B2 (en) Fine positioning device
JPH071451B2 (en) Displacement control device for fine positioning device
JPH0543439Y2 (en)
JPH071448B2 (en) Fine positioning device
JPS63226710A (en) Fine positioning device
JPH0360937A (en) Fine adjustment stage device
JPH071452B2 (en) Fine positioning device
JPS6366613A (en) Fine positioning device
JPS62214414A (en) Fine positioning device
JPH01178801A (en) Fine displacement mechanism
JPH0412838B2 (en)