JPH071449B2 - Fine positioning device - Google Patents

Fine positioning device

Info

Publication number
JPH071449B2
JPH071449B2 JP61283062A JP28306286A JPH071449B2 JP H071449 B2 JPH071449 B2 JP H071449B2 JP 61283062 A JP61283062 A JP 61283062A JP 28306286 A JP28306286 A JP 28306286A JP H071449 B2 JPH071449 B2 JP H071449B2
Authority
JP
Japan
Prior art keywords
axis
radial
beam displacement
rigid body
displacement mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61283062A
Other languages
Japanese (ja)
Other versions
JPS63137307A (en
Inventor
潔 長澤
耕三 小野
浩二郎 緒方
健 村山
▲吉▼弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP61283062A priority Critical patent/JPH071449B2/en
Priority to DE3788773T priority patent/DE3788773T2/en
Priority to EP87201701A priority patent/EP0264147B1/en
Publication of JPS63137307A publication Critical patent/JPS63137307A/en
Priority to US07/244,101 priority patent/US4991309A/en
Priority to US07/244,169 priority patent/US4920660A/en
Priority to US07/244,168 priority patent/US4888878A/en
Priority to US07/244,102 priority patent/US5005298A/en
Publication of JPH071449B2 publication Critical patent/JPH071449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • B23Q15/24Control or regulation of position of tool or workpiece of linear position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41133Compensation non linear transfer function
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41352Alternative clamping dilation of piezo, caterpillar motion, inchworm

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Control Of Position Or Direction (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造装置、電子顕微鏡等のサブμmオ
ーダの調節を必要とする装置に使用される微細位置決め
装置に関する。
Description: TECHNICAL FIELD The present invention relates to a fine positioning apparatus used for a semiconductor manufacturing apparatus, an electron microscope, or any other apparatus that requires adjustment on the order of sub-μm.

〔従来の技術〕[Conventional technology]

近年、各種技術分野においては、サブμmのオーダーの
微細な変位調節が可能である装置が要望されている。そ
の典型的な例がLSI(大規模集積回路)、超LSIの製造工
程において使用されるマスクアライナ、電子線描画装置
等の半導体製造装置である。これらの装置においては、
サブμmオーダーの微細な位置決めが必要であり、位置
決めの精度が向上するにしたがつてその集積度も増大
し、高性能の製品を製造することができる。このような
微細な位置決めは上記半導体装置に限らず、電子顕微鏡
をはじめとする各種の高倍率光学装置等においても必要
であり、その精度向上により、バイオテクノロジ、宇宙
開発等の先端技術においてもそれらの発展に大きく寄与
するものである。
In recent years, in various technical fields, a device capable of fine displacement adjustment on the order of sub-μm has been demanded. A typical example thereof is a semiconductor manufacturing apparatus such as an LSI (Large Scale Integrated Circuit), a mask aligner used in a manufacturing process of a VLSI, an electron beam drawing apparatus and the like. In these devices,
Submicron-order fine positioning is required, and as the positioning accuracy improves, the degree of integration increases, and high-performance products can be manufactured. Such fine positioning is necessary not only in the above-mentioned semiconductor device but also in various high-magnification optical devices such as electron microscopes, and by improving its precision, even in advanced technologies such as biotechnology and space development. Will greatly contribute to the development of.

ところで、上記位置決めにおいては、1つの平面に沿つ
て任意の方向に移動させる並進変位と、1つの軸まわり
に回動させる回転変位とが考えられる。このうち、回転
変位を行う微細位置決め装置として、特公昭57−50433
号公報に示される装置が提案されていた。これを図によ
り説明する。
By the way, in the above positioning, translational displacement of moving in one direction along one plane and rotational displacement of rotating about one axis are considered. Among these, as a fine positioning device for performing rotational displacement, Japanese Patent Publication No.
The device shown in Japanese Patent Publication has been proposed. This will be described with reference to the drawings.

第3図は微小回転変位を行う従来の微細位置決め装置の
一部破断斜視図である。図で、11は円柱状の中央固定
部、11a,11b,11cは中央固定部11の周面にその長手方向
に等間隔に形成された縦溝である。12は中央固定部11を
中心として可回動に設けられたリング状のステージ、12
a1〜12a3,12b1〜12b3,12c1〜12c3はそれぞれ縦溝11a,11
b,11cに対向してステージ12に固定されたU字状金具で
ある。13は各縦溝11a,11b,11cと各U字状金具12a1〜12c
3との間に装架されたバイモルフ形圧電素子、13Aはバイ
モルフ形圧電素子13のU字状金具と係合する部分に固定
された突起である。中央固定部11、ステージ12、各U字
状金具12a1〜12c3はいずれも剛体である。ここで、上記
バイモルフ形圧電素子13を第4図により簡単に説明す
る。
FIG. 3 is a partially cutaway perspective view of a conventional fine positioning device that performs fine rotational displacement. In the figure, 11 is a cylindrical central fixing portion, and 11a, 11b, 11c are vertical grooves formed on the circumferential surface of the central fixing portion 11 at equal intervals in the longitudinal direction. Reference numeral 12 denotes a ring-shaped stage that is rotatably provided around the central fixed portion 11.
a 1 to 12a 3 , 12b 1 to 12b 3 , 12c 1 to 12c 3 are vertical grooves 11a, 11 respectively.
The U-shaped metal fitting is fixed to the stage 12 so as to face b and 11c. 13 is each vertical groove 11a, 11b, 11c and each U-shaped metal fitting 12a 1 to 12c
A bimorph type piezoelectric element 13A mounted between the two and 3 is a projection fixed to a portion of the bimorph type piezoelectric element 13 that engages with the U-shaped metal fitting. The central fixed portion 11, the stage 12, the U-shaped bracket 12a 1 ~12c 3 is rigid both. Here, the bimorph type piezoelectric element 13 will be briefly described with reference to FIG.

第4図はバイモルフ形圧電素子の斜視図である。図で、
13a,13bは圧電素子、13cは圧電素子13a,13bの中間に設
けられた共通電極である。圧電素子13a,13bは共通電極1
3cを挾着した状態で互いに密着されている。13d,13eは
それぞれ圧電素子13a,13bに固着された表面電極であ
る。この状態において、表面電極13dと共通電極13cとの
間に圧電素子13aを縮ませる極性の電圧を印加し、同時
に、表面電極13eと共通電極13cとの間に圧電素子13bを
伸ばす極性の電圧を印加すると、各圧電素子13a,13bが
矢印の方向に伸縮することにより、バイモルフ形圧電素
子13全体は図のように変形する。このようなバイモルフ
形圧電素子13により、圧電素子単体に比べて大きな変位
量を得ることができる。
FIG. 4 is a perspective view of a bimorph type piezoelectric element. In the figure,
Reference numerals 13a and 13b are piezoelectric elements, and 13c is a common electrode provided between the piezoelectric elements 13a and 13b. The piezoelectric elements 13a and 13b are the common electrode 1
They are closely attached to each other with 3c clinging together. Reference numerals 13d and 13e denote surface electrodes fixed to the piezoelectric elements 13a and 13b, respectively. In this state, a voltage with a polarity that contracts the piezoelectric element 13a is applied between the surface electrode 13d and the common electrode 13c, and at the same time, a voltage with a polarity that extends the piezoelectric element 13b between the surface electrode 13e and the common electrode 13c is applied. When applied, each piezoelectric element 13a, 13b expands and contracts in the direction of the arrow, so that the entire bimorph piezoelectric element 13 is deformed as shown in the figure. With such a bimorph piezoelectric element 13, it is possible to obtain a large displacement amount as compared with a single piezoelectric element.

このようなバイモルフ形圧電素子13は、第3図に示す装
置において、一端が縦溝11a,11b,11cに固定され、他端
は自由端となつて各対応するU字状金具に突起13Aを介
して接触している。今、各バイモルフ形圧電素子13に適
宜の電圧を印加し、第4図に示す変形を生じさせると、
ステージ12はその変形に応じて中央固定部11を中心とし
て回動変位する。そこで、ステージ12上に微動テーブル
を載置固定しておけば、微動テーブルの微小回転変位を
得ることができる。
Such a bimorph-type piezoelectric element 13 has the one end fixed to the longitudinal grooves 11a, 11b, 11c and the other end free end in the apparatus shown in FIG. 3, and the projection 13A is formed on each corresponding U-shaped metal fitting. Are in contact through. Now, when an appropriate voltage is applied to each bimorph type piezoelectric element 13 to cause the deformation shown in FIG. 4,
The stage 12 is rotationally displaced about the central fixed portion 11 according to the deformation. Therefore, if the fine movement table is placed and fixed on the stage 12, a fine rotational displacement of the fine movement table can be obtained.

上記従来の装置は、U字状金具とバイモルフ形圧電素子
13とにより両者を係合状態に保持し、これにより、バイ
モルフ形圧電素子13の自然変形のままでの装架を許し、
かつ、バイモルフ形圧電素子13をステージ12に固定した
場合に生じる変位の拘束(干渉)を防止している。
The above-mentioned conventional device includes a U-shaped metal fitting and a bimorph piezoelectric element.
13 and both are held in an engaged state, which allows the bimorph type piezoelectric element 13 to be mounted while being naturally deformed,
In addition, displacement constraint (interference) that occurs when the bimorph piezoelectric element 13 is fixed to the stage 12 is prevented.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところで、第3図に示す従来の微細位置決め装置は次の
ような問題点を有している。即ち、当該装置の構成は、
構成自体が複雑であるばかりでなく、各バイモルフ形圧
電素子13の先端位置に合わせて各U字状金具の取付位置
を定めなければならず、その製造に極めて多くの手間と
時間を要する。しかも、バイモルフ形圧電素子13とU字
状金具との係合は、緩やかな係合は許されず、したがつ
て、バイモルフ形圧電素子13が変形したときのU字状金
具との摺動抵抗も大きく、依然として大きな干渉が存在
する。
By the way, the conventional fine positioning apparatus shown in FIG. 3 has the following problems. That is, the configuration of the device is
Not only is the configuration itself complicated, but the mounting position of each U-shaped metal fitting must be determined in accordance with the tip position of each bimorph-type piezoelectric element 13, which requires a great deal of labor and time to manufacture. In addition, the engagement between the bimorph-type piezoelectric element 13 and the U-shaped metal fitting is not allowed to be loose, and therefore the sliding resistance with the U-shaped metal fitting when the bimorph-shaped piezoelectric element 13 is deformed. There is a large and still large interference.

さらに、第3図に示す装置では、中央固定部11に沿う軸
のまわりの回転変位は得られるものの、他の2軸まわり
の回転変位を得ることはできない。そして、このように
3つの軸まわりの回転変位を得るためには第3図に示す
装置を3つ組合わせることが考えられるが、この組合せ
を構成するのはほとんど不可能である。
Further, with the device shown in FIG. 3, although rotational displacement about the axis along the central fixed portion 11 can be obtained, rotational displacement about the other two axes cannot be obtained. Then, in order to obtain the rotational displacements around the three axes as described above, it is conceivable to combine the three devices shown in FIG. 3, but it is almost impossible to construct this combination.

本発明の目的は、上記従来技術の問題点を解決し、極め
て簡単な構成で3つの軸まわりの回転変位を得ることが
できる微細位置決め装置を提供するにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a fine positioning device capable of obtaining rotational displacements about three axes with an extremely simple structure.

[課題を解決するための手段] 上記の目的を達成するため、本発明は、剛体の支持部材
と、この支持部材上に設けられ第1の軸まわりに回転変
位を発生させる第1の放射たわみ梁変位機構の組と、前
記第1の軸と直交する第2の軸まわりに回転変位を発生
させる第2の放射たわみ梁変位機構の組と、固定端と連
結される中心剛体部から対称的に突出するとともに各突
出端が前記各放射たわみ梁変位機構の組の一方の組の各
剛体部に連結される各突出部分に設けられ、前記第1の
軸および前記第2の軸のいずれにも直交する第3の軸ま
わりに回転変位を発生させる第3の放射たわみ梁変位機
構の組と、前記第3の放射たわみ梁変位機構の組が連結
されていない前記放射たわみ梁変位機構の組の各剛体部
に連結された微動テーブルとで微細位置決め装置を構成
したことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a rigid support member and a first radial deflection that is provided on the support member and that causes a rotational displacement about a first axis. A set of beam displacement mechanisms, a set of second radial flexure beam displacement mechanisms that generate rotational displacement about a second axis orthogonal to the first axis, and a central rigid body portion that is connected to the fixed end are symmetrical. Is provided on each of the projecting portions projecting to and each projecting end connected to each rigid body part of one set of each set of the radial bending beam displacement mechanisms, and the projecting end is provided on each of the first shaft and the second shaft. Also, a set of third radial flexible beam displacement mechanisms that generate rotational displacement about a third axis that is also orthogonal to the third axis, and a set of radial flexible beam displacement mechanisms to which the third set of radial flexible beam displacement mechanisms are not connected Fine positioning with the fine movement table connected to each rigid body part of It is characterized in that the device is configured.

〔作用〕 第1又は第2の一方の放射たわみ梁変位機構を駆動する
と、この駆動による回転変位は当該放射たわみ梁変位機
構における支持部材と反対側に連結された微動テーブル
に現れ、又、他方の放射たわみ梁変位機構を駆動する
と、この駆動による回転変位は支持部材および前記一方
の放射たわみ梁変位機構を介して微動テーブルに現れ
る。さらに、第3の放射たわみ梁変位機構を駆動する
と、この駆動による回転変位は前記他方の放射たわみ梁
変位機構,支持部材,および前記一方の放射たわみ梁変
位機構を介して微動テーブルに現れる。
[Operation] When one of the first and second radial flexible beam displacement mechanisms is driven, the rotational displacement due to this drive appears on the fine movement table connected to the side opposite to the support member in the radial flexible beam displacement mechanism, and the other. When the radial flexural beam displacement mechanism is driven, the rotational displacement due to this drive appears on the fine movement table through the support member and the one radial flexural beam displacement mechanism. Further, when the third radial flexible beam displacement mechanism is driven, the rotational displacement due to this drive appears on the fine movement table via the other radial flexible beam displacement mechanism, the support member, and the one radial flexible beam displacement mechanism.

〔実施例〕〔Example〕

以下、本発明を図示の実施例に基づいて説明する。 Hereinafter, the present invention will be described based on the illustrated embodiments.

第1図は本発明の実施例に係る微細位置決め装置の斜視
図である。図で、x,y,zは座標軸を示す。15は剛体部材
で作られた方形のリングである。16Mya,16Mybはリング1
5上に対称的に配置された放射たわみ梁変位機構であ
る。各放射たわみ梁変位機構16Mya,16Mybはy軸のまわ
りに回転変位を発生せしめる。16Mxa,16Mxbはリング15
上に対称的に配置された放射たわみ梁変位機構であり、
それぞれx軸のまわりに回転変位を発生せしめる。各放
射たわみ梁変位機構16Mya,16Myb,16Mxa,16Mxbの構造に
ついては後述する。
FIG. 1 is a perspective view of a fine positioning device according to an embodiment of the present invention. In the figure, x, y, and z indicate coordinate axes. 15 is a rectangular ring made of a rigid member. 16Mya, 16Myb is ring 1
It is a radiating flexible beam displacement mechanism symmetrically arranged on the top of the dome. Each radial flexure beam displacement mechanism 16Mya, 16Myb causes a rotational displacement about the y-axis. 16Mxa, 16Mxb is ring 15
Is a radial flexible beam displacement mechanism symmetrically arranged above,
Each causes a rotational displacement about the x-axis. The structure of each radial flexural beam displacement mechanism 16Mya, 16Myb, 16Mxa, 16Mxb will be described later.

17a,17bはそれぞれ放射たわみ梁変位機構16Mya,16Mybを
構成する一方の剛体部(他方の剛体部はリング15)、18
a,18bはそれぞれ放射たわみ梁変位機構16Mxa,16Mxbを構
成する一方の剛体部(同じく他方の剛体部はリング15)
である。18a′,18b′は端部18a,18bの上面に設けられた
取付部である。
17a and 17b are one rigid body part (the other rigid body part is a ring 15) that constitutes the radial flexure beam displacement mechanism 16Mya and 16Myb, 18
a and 18b are the rigid body parts of the radial flexure beam displacement mechanism 16Mxa and 16Mxb, respectively (the other rigid body part is the ring 15)
Is. 18a 'and 18b' are mounting portions provided on the upper surfaces of the end portions 18a and 18b.

20は中心剛体部、21aは中心剛体部20からy軸方向に張
出した張出し部、21bは中心剛体部20から張出し部21aと
反対向きに張出した張出し部である。張出し部21aと放
射たわみ梁変位機構16Myaの剛体部17a、および張出し部
21bと放射たわみ梁変位機構16Mybの剛体部17bとはそれ
ぞれ連結されている。
Reference numeral 20 is a central rigid body portion, 21a is a projecting portion that projects from the central rigid body portion 20 in the y-axis direction, and 21b is a projecting portion that projects from the central rigid body portion 20 in the opposite direction to the projecting portion 21a. Overhang 21a, rigid body 17a of radial flexure beam displacement mechanism 16Mya, and overhang
21b and the rigid body portion 17b of the radial flexible beam displacement mechanism 16Myb are connected to each other.

21Mza,21Mzbはそれぞれ張出し部21a,21bに構成された放
射たわみ梁変位機構であり、互いに中心剛体部20に対し
て対称的に配置されている。これら平行たわみ梁変位機
構21Mza,21Mzbは共働してz軸まわりの回転変位を発生
する。これら放射たわみ梁変位機構21Mza,21Mzb、およ
び前記放射たわみ梁変位機構16Mxa,16Mxb,16Mya,16Myb
はそれぞれ所定個所に所定の貫通孔を形成することによ
り構成される。なお、放射たわみ梁変位機構21Mza,21Mz
bの構造についても後述する。
21Mza and 21Mzb are radial bending beam displacement mechanisms formed in the overhang portions 21a and 21b, respectively, and are symmetrically arranged with respect to the central rigid body portion 20. These parallel flexible beam displacement mechanisms 21Mza and 21Mzb cooperate to generate rotational displacement about the z axis. These radial flexible beam displacement mechanisms 21Mza, 21Mzb, and the radial flexible beam displacement mechanisms 16Mxa, 16Mxb, 16Mya, 16Myb
Are each formed by forming a predetermined through hole at a predetermined position. Radial flexural beam displacement mechanism 21Mza, 21Mz
The structure of b will also be described later.

リング15、剛体部17a,17b,18a,18b、それらの間に構成
される各放射たわみ梁変位機構、中心剛体部20、張出し
部21a,21bは高い剛性を有する部材により一体に加工成
形される。
The ring 15, the rigid body portions 17a, 17b, 18a, 18b, the radial bending beam displacement mechanism formed between them, the central rigid body portion 20, and the overhang portions 21a, 21b are integrally formed by a member having high rigidity. .

23は剛体部18a,18bの取付部18a′,18b′に取付られる微
動テーブルであり、この微動テーブル23上に微細位置決
めされる対象物体が載置固定される。微動テーブル23と
取付部18a′,18b′との取付態様が2点鎖線で1個所の
み図示されている。なお、微動テーブル23の形状は図示
のような長方形に限ることなく、例えばy軸方向の寸法
をさらに大きくしたほぼ正方形等、対象物体を載置固定
し易い形状とされる。
Reference numeral 23 denotes a fine movement table attached to the attachment portions 18a ', 18b' of the rigid body portions 18a, 18b, on which the finely positioned target object is fixed. The manner of attachment of the fine movement table 23 and the attachment portions 18a ', 18b' is shown by a two-dot chain line in only one place. The shape of the fine movement table 23 is not limited to the rectangular shape shown in the figure, and may be a shape such as a substantially square shape having a larger dimension in the y-axis direction for easily mounting and fixing the target object.

24は剛体より成る取付台であり、この取付台24は凹部24
c、その両側の凸部24a,24b、および凸部下端から突出し
ている取付部24d,24eで構成されている。凹部24cには中
心剛体部20が嵌合固定される。この固定の態様が2点鎖
線で1個所のみ図示されている。取付部24d,24eは固定
部に固定される。中心剛体部20を凹部24cに固定した状
態において、取付台24の相当部分がリング15で囲まれる
空間内に入ることになる。そして、放射たわみ梁変位機
構16Mxa,16Mxb,16Mya,16Mybはリング15とともに張出し
部21a,21bに吊下げられた状態となる。
24 is a rigid mount, and this mount 24 is a recess 24
c, convex portions 24a, 24b on both sides thereof, and mounting portions 24d, 24e projecting from the lower ends of the convex portions. The central rigid body portion 20 is fitted and fixed in the recess 24c. This fixing mode is shown only in one place by a chain double-dashed line. The mounting portions 24d and 24e are fixed to the fixed portion. In the state where the central rigid body portion 20 is fixed to the recess 24c, a considerable portion of the mounting base 24 enters the space surrounded by the ring 15. Then, the radial flexible beam displacement mechanisms 16Mxa, 16Mxb, 16Mya, 16Myb are suspended together with the ring 15 on the overhanging portions 21a, 21b.

なお、図中Sは各放射たわみ梁変位機構に設けられたス
トレンゲージを示す。
In the figure, S indicates a strain gauge provided in each radiating flexible beam displacement mechanism.

ここで、放射たわみ梁変位機構の構造を図により説明す
る。第2図(a),(b)は放射たわみ梁変位機構の側
面図である。図で、25a,25bはそれぞれ、左右に存在す
る剛体部である。26,26′はそれぞれ剛体部25a,25bの間
にこれらと一体に形成され、かつ定点Oを中心として放
射状に配置された平板状の放射たわみ梁である。27は放
射たわみ梁26,26′と剛体部とを一体形成するために生
じた貫通孔である。28aは剛体部25aから貫通孔27に突出
する突出部、28bは剛体部25bから貫通孔27に突出する突
出部であり、これら突出部28a,28bは互いに図の縦方向
において間隔を有して重なつている。29は突出部28aと
突出部28bとの間に固定された圧電アクチユエータであ
る。圧電アクチユエータ29は、点Oを中心として圧電ア
クチユエータ29を通る円を描いた場合、その円の接線方
向の力f(点Oに関するトルクに相当する)を発生し各
放射たわみ梁に曲げ変形を生ぜしめる。これら力の大き
さは、圧電アクチユエータ29に印加される電圧によつて
制御される。30は剛体部25aを支持する剛体構造を示
す。Sは放射たわみ梁の適所に貼着されたストレンゲー
ジであり、放射たわみ梁の変形量を検出するために設け
られている。
Here, the structure of the radial flexible beam displacement mechanism will be described with reference to the drawings. 2 (a) and 2 (b) are side views of the radial flexible beam displacement mechanism. In the figure, 25a and 25b are rigid body portions existing on the left and right sides, respectively. Reference numerals 26 and 26 'denote flat-plate radiating flexible beams which are integrally formed between the rigid body portions 25a and 25b, respectively, and are arranged radially around the fixed point O. Reference numeral 27 is a through hole formed to integrally form the radial bending beams 26, 26 'and the rigid body portion. 28a is a protrusion protruding from the rigid body portion 25a into the through hole 27, 28b is a protrusion protruding from the rigid body portion 25b into the through hole 27, these protrusions 28a, 28b are spaced from each other in the vertical direction of the drawing. It overlaps. Reference numeral 29 is a piezoelectric actuator fixed between the protruding portion 28a and the protruding portion 28b. When a circle passing through the piezoelectric actuator 29 with the point O as the center is drawn, the piezoelectric actuator 29 generates a force f (corresponding to a torque relating to the point O) in the tangential direction of the circle and causes bending deformation in each radiating flexible beam. Close. The magnitude of these forces is controlled by the voltage applied to the piezoelectric actuator 29. Reference numeral 30 denotes a rigid body structure that supports the rigid body portion 25a. S is a strain gauge attached to an appropriate position of the radiating flexible beam, and is provided to detect the amount of deformation of the radiating flexible beam.

上記の構造において、剛体部25a,25b、放射たわみ梁26,
26′、突出部28a,28b、圧電アクチユエータ29により放
射たわみ梁変位機構32が構成されている。点Oを通る紙
面に垂直な線を、この放射たわみ梁変位機構32の位置と
設置方向を示す基準軸とする。
In the above structure, the rigid body portions 25a, 25b, the radial flexible beam 26,
26 ', the protrusions 28a, 28b, and the piezoelectric actuator 29 constitute a radial bending beam displacement mechanism 32. A line perpendicular to the paper surface passing through the point O is used as a reference axis indicating the position and installation direction of the radial flexible beam displacement mechanism 32.

次に、上記放射たわみ梁変位機構の動作を第2図(b)
を参照しながら説明する。第2図(b)は第2図(a)
に示す放射たわみ梁変位機構32の変形後の側面図であ
る。今、圧電アクチユエータ29に電圧を印加して上記接
触線方向の力fを発生させる。そうすると、突出部28b
は圧電アクチユエータ29に発生した力により上記接線に
沿つて上向きに押される。剛体部25bは剛体部25aに放射
たわみ梁26,26′で連結された形となつているので、上
記の力を受けた結果、放射たわみ梁26,26′の剛体部25a
に連結されている部分は点Oから放射状に延びる直線
L1,L2にあるが、剛体部25bに連結されている部分は、上
記直線L1,L2から僅かにずれた直線(この直線も点Oか
ら放射状に延びる直線である。)L1′,L2′上にずれる
微小変位を生じる。このため、剛体部25bは図で時計方
向に微小角度δだけ回動する。この回転変位δの大きさ
は、放射たわみ梁26,26′の曲げに対する剛性により定
まるので、力Fを正確に制御すれば、回転変位δもそれ
と同じ精度で制御できることになる。
Next, the operation of the radial bending beam displacement mechanism described above is shown in FIG. 2 (b).
Will be described with reference to. FIG. 2 (b) is FIG. 2 (a).
FIG. 9 is a side view after the deformation of the radial flexible beam displacement mechanism 32 shown in FIG. Now, a voltage is applied to the piezoelectric actuator 29 to generate the force f in the contact line direction. Then, the protrusion 28b
Is pushed upward along the tangent line by the force generated in the piezoelectric actuator 29. Since the rigid body portion 25b is connected to the rigid body portion 25a by the radiating flexible beams 26, 26 ', the rigid body portion 25a of the radiating flexible beam 26, 26' is subjected to the above force.
Is a straight line extending radially from the point O.
A portion of L 1 and L 2 which is connected to the rigid body portion 25b is a straight line slightly deviated from the straight lines L 1 and L 2 (this straight line is also a straight line extending radially from the point O.) L 1 There is a small displacement that shifts on ′, L 2 ′. Therefore, the rigid portion 25b rotates clockwise by a minute angle δ in the figure. Since the magnitude of this rotational displacement δ is determined by the bending rigidity of the radial bending beams 26, 26 ′, if the force F is accurately controlled, the rotational displacement δ can be controlled with the same accuracy.

圧電アクチユエータ29に印加されている電圧が除かれる
と、各放射たわみ梁26,26′は変形前の状態に復帰し、
放射たわみ梁変位機構32は第2図(a)に示す状態に戻
り、回転変位δは0になる。上記動作において、ストレ
ンゲージSの検出値に基づいてフイードバツク制御を行
えば、正確な回転変位を実施することができる。
When the voltage applied to the piezoelectric actuator 29 is removed, each radiating flexible beam 26, 26 'returns to the state before deformation,
The radial flexible beam displacement mechanism 32 returns to the state shown in FIG. 2 (a), and the rotational displacement δ becomes zero. In the above operation, if the feedback control is performed based on the detected value of the strain gauge S, the accurate rotational displacement can be implemented.

以上の放射たわみ梁変位機構の説明から、第1図に示す
放射たわみ梁変位機構16Mya,16Mybの基準軸はy軸であ
り、放射たわみ梁変位機構16Mxa,16Mxbの基準軸はx軸
であることが判る。又、第1図に示すリング15が剛体部
25bに対応し、剛体部17a,17b,18a,18bが剛体部25aに対
応することも判る。さらに、第1図に示す放射たわみ梁
変位機構21Mza,21Mzbは剛体部25aを共通とし、これを中
心剛体部20として対称形の放射たわみ梁変位機構を構成
するものであることが判る。この構成においては、第2
図に示す構成とは逆に、剛体部25b側が固定されること
になる。
From the above description of the radial flexible beam displacement mechanism, the reference axis of the radial flexible beam displacement mechanism 16Mya, 16Myb shown in FIG. 1 is the y axis, and the reference axis of the radial flexible beam displacement mechanism 16Mxa, 16Mxb is the x axis. I understand. Further, the ring 15 shown in FIG.
It can also be seen that the rigid portions 17a, 17b, 18a, 18b correspond to the rigid portion 25a, corresponding to 25b. Further, it is understood that the radial bending beam displacement mechanisms 21Mza and 21Mzb shown in FIG. 1 have a rigid body portion 25a in common, and the rigid body portion 20 is used as the central rigid body portion 20 to constitute a symmetrical radial bending beam displacement mechanism. In this configuration, the second
Contrary to the configuration shown in the figure, the rigid body portion 25b side is fixed.

さらに又、第1図に示す各放射たわみ梁変位機構16Mya,
16Myb,16Mxa,16Mxbの基準軸y,xは、それらの放射たわみ
梁26,26′の放射角度θを選定することにより、微動テ
ーブル23の表面上を通るようにされている。
Furthermore, each radiating flexible beam displacement mechanism 16Mya, shown in FIG.
The reference axes y and x of 16Myb, 16Mxa and 16Mxb are designed to pass on the surface of the fine movement table 23 by selecting the radiation angle θ of the radial bending beams 26 and 26 '.

ここで、第1図に示す本実施例の動作を説明する。放射
たわみ梁16Mya,16Mybの各圧電アクチユエータに電圧を
印加すると、この電圧に応じて放射たわみ梁が第2図
(b)に示すように変形する。この場合、剛体部17aは
中心剛体部20、放射たわみ梁変位機構21Mza,21Mzbを介
して固定状態にあるので、放射たわみ梁変位機構16Mya,
16Mybはy軸まわりに回転変位を発生し、これにより微
動テーブル23はy軸まわりに回転変位する。
Here, the operation of this embodiment shown in FIG. 1 will be described. When a voltage is applied to each of the piezoelectric actuators of the radiating flexible beams 16Mya and 16Myb, the radiating flexible beam is deformed as shown in FIG. 2B according to this voltage. In this case, since the rigid body portion 17a is in the fixed state via the central rigid body portion 20 and the radial flexible beam displacement mechanism 21Mza, 21Mzb, the radial flexible beam displacement mechanism 16Mya,
16Myb generates rotational displacement about the y-axis, which causes the fine movement table 23 to rotationally displace about the y-axis.

又、放射たわみ梁変位機構16Mxa,16Mxbの各圧電アクチ
ユエータに電圧を印加すると、この電圧に応じて放射た
わみ梁が変形してx軸まわりの回転変位を発生する。こ
の回転変位は、リング15が放射たわみ梁変位機構16Mya,
16Myb,21Mza,21Mzbを介して固定状態にあるので、剛体
部18a,18bに伝達され、微動テーブル23はx軸まわりに
回転変位する。
When a voltage is applied to each of the piezoelectric actuators of the radiating flexure beam displacement mechanism 16Mxa, 16Mxb, the radiating flexure beam is deformed according to this voltage, and rotational displacement about the x axis is generated. This rotational displacement is caused by the flexural beam displacement mechanism 16Mya,
Since it is in a fixed state via 16Myb, 21Mza, 21Mzb, it is transmitted to the rigid bodies 18a, 18b, and the fine movement table 23 is rotationally displaced about the x axis.

又、放射たわみ梁変位機構21Mza,21Mzbの各圧電アクチ
ユエータに電圧を印加すると、この電圧に応じて放射た
わみ梁が変形してz軸まわりの回転変位を発生する。こ
の回転変位は、剛体部17a,17b放射たわみ梁変位機構16M
ya,16Myb、リング15、放射たわみ梁変位機構16Mxa,16Mx
b、剛体部18a,18bを介して微動テーブル23に伝達され、
これにより微動テーブル23はz軸まわりに回転変位す
る。
Further, when a voltage is applied to each piezoelectric actuator of the radiating flexible beam displacement mechanism 21Mza, 21Mzb, the radiating flexible beam is deformed according to this voltage, and rotational displacement about the z axis is generated. This rotational displacement is caused by the rigid beam parts 17a, 17b radial flexible beam displacement mechanism 16M.
ya, 16Myb, ring 15, radial flexible beam displacement mechanism 16Mxa, 16Mx
b, transmitted to the fine movement table 23 via the rigid body portions 18a, 18b,
As a result, the fine movement table 23 is rotationally displaced about the z axis.

さらに、放射たわみ梁変位機構16Mya,16Myb,放射たわみ
梁変位機構16Mxa,16Mxbおよび放射たわみ梁変位機構21M
za,21Mzbのうちの任意のものを選択しこれらを同時に駆
動すると、微動テーブル23の回転変位はそれらの回転変
位を合成した回転変位となる。
Furthermore, the radial flexible beam displacement mechanism 16Mya, 16Myb, the radial flexible beam displacement mechanism 16Mxa, 16Mxb and the radial flexible beam displacement mechanism 21M
If any one of za and 21Mzb is selected and these are driven at the same time, the rotational displacement of the fine motion table 23 becomes a rotational displacement that is a combination of those rotational displacements.

このように、本実施例では、1つのリング上にy軸まわ
りの回転変位を生じる2つの放射たわみ梁変位機構を対
称的に設けるとともに、上記リング上にy軸と直交する
x軸まわりの回転変位を生じる2つの放射たわみ梁変位
機構を対称的に設け、前者の剛体部に微動テーブルを固
定し、後者の剛体部にx軸,y軸と直交するz軸まわりの
回転変位を生じる対称形の放射たわみ梁変位機構を固定
したので、簡単かつ小形で、又、使用対象機器への装着
が容易で使い勝手のよい3軸まわりの回転変位を得るこ
とができる。又、各放射たわみ梁変位機構の基準軸であ
るy軸,x軸が微動テーブル上にあるようにしたので、回
転変位の回転中心も微動テーブル上となり、正確な回転
変位を行うことができる。
As described above, in this embodiment, two radial bending beam displacement mechanisms that generate rotational displacement about the y axis are symmetrically provided on one ring, and rotation about the x axis orthogonal to the y axis is performed on the ring. Two radiating flexural beam displacement mechanisms that cause displacement are provided symmetrically, a fine movement table is fixed to the rigid body of the former, and a rotational displacement around the z axis orthogonal to the x and y axes is generated in the rigid body of the latter. Since the radiating flexible beam displacement mechanism is fixed, it is possible to obtain a rotational displacement around the three axes that is simple and compact, and that is easy to attach to the target device and convenient to use. Further, since the y-axis and the x-axis, which are the reference axes of the radial bending beam displacement mechanism, are on the fine movement table, the rotation center of the rotational displacement is also on the fine movement table, and the accurate rotational displacement can be performed.

なお、上記実施例の説明では、x軸,y軸,z軸の交点が微
動テーブルの表面に存在する例について説明したが、こ
れは必ずしも微動テーブルの表面に存在する必要はな
く、任意に選択することができる。
In the description of the above embodiment, an example in which the intersection of the x-axis, the y-axis, and the z-axis is on the surface of the fine movement table has been described, but this does not necessarily have to be on the surface of the fine movement table, and can be arbitrarily selected. can do.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明では、剛体の支持部材上に1
つの軸まわりの回転変位を発生させる放射たわみ梁変位
機構と、当該軸と直交する軸まわりの回転変位を発生さ
せる放射たわみ梁変位機構とを設け、さらにそれらの一
方の剛体部に上記2つの軸と直交する軸まわりの回転変
位を発生させる放射たわみ梁変位機構を設けたので、簡
単かつ小形で、又、使用対象機器への装着が容易で使い
勝手のよい3つの軸まわりの回転変位を得ることができ
る。
As described above, according to the present invention, 1 is provided on the rigid support member.
A radial flexible beam displacement mechanism for generating a rotational displacement about one axis and a radial flexible beam displacement mechanism for generating a rotational displacement about an axis orthogonal to the axis are provided, and the rigid body portion of one of them has the above two axes. Since a radial bending beam displacement mechanism that generates a rotational displacement around an axis orthogonal to the axis is provided, it is easy and compact to obtain a rotational displacement around three axes that is easy to install and easy to attach to the target device. You can

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例に係る微細位置決め装置の斜視
図、第2図(a),(b)は第1図に示す放射たわみ梁
変位機構の側面図、第3図は従来の微細位置決め装置の
一部破断斜視図、第4図は第3図に示すバイモルフ形圧
電素子の斜視図である。 15……リング、16Mya,16Myb,16Mxa,16Mxb,21Mza,21Mzb
……放射たわみ梁変機構、17a,17b,18a,18b……剛体
部、20……中心剛体部、23……微動テーブル、24……取
付台。
FIG. 1 is a perspective view of a fine positioning device according to an embodiment of the present invention, FIGS. 2 (a) and 2 (b) are side views of the radial bending beam displacement mechanism shown in FIG. 1, and FIG. FIG. 4 is a partially cutaway perspective view of the positioning device, and FIG. 4 is a perspective view of the bimorph piezoelectric element shown in FIG. 15 …… Ring, 16Mya, 16Myb, 16Mxa, 16Mxb, 21Mza, 21Mzb
...... Radial flexible beam transformation mechanism, 17a, 17b, 18a, 18b ...... Rigid body part, 20 ...... Central rigid body part, 23 ...... Fine movement table, 24 ...... Mounting base.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村山 健 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 (72)発明者 星野 ▲吉▼弘 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 (56)参考文献 特開 昭61−209846(JP,A) 特開 昭61−243511(JP,A) 特開 昭62−187912(JP,A) 特開 昭60−25284(JP,A) 米国特許3786332(US,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ken Murayama, 650 Jinrachicho, Tsuchiura, Ibaraki Prefecture Tsuchiura Plant, Hitachi Construction Machinery Co., Ltd. Construction Machinery Co., Ltd. Tsuchiura Factory (56) Reference JP-A-61-209846 (JP, A) JP-A-61-243511 (JP, A) JP-A-62-187912 (JP, A) JP-A-60 -25284 (JP, A) US Patent 3786332 (US, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】剛体の支持部材と、この支持部材上に設け
られ第1の軸まわりに回転変位を発生させる第1の放射
たわみ梁変位機構の組と、前記第1の軸と直交する第2
の軸まわりに回転変位を発生させる第2の放射たわみ梁
変位機構の組と、固定端と連結される中心剛体部から対
称的に突出するとともに各突出端が前記各放射たわみ梁
変位機構の組の一方の組の各剛体部に連結される各突出
部分に設けられ、前記第1の軸および前記第2の軸のい
ずれにも直交する第3の軸まわりに回転変位を発生させ
る第3の放射たわみ梁変位機構の組と、前記第3の放射
たわみ梁変位機構の組が連結されていない前記放射たわ
み梁変位機構の組の各剛体部に連結された微動テーブル
とで構成されていることを特徴とする微細位置決め装
置。
1. A set of a rigid support member, a first radial bending beam displacement mechanism provided on the support member for generating rotational displacement about a first axis, and a first set orthogonal to the first axis. Two
A set of second radial flexible beam displacement mechanisms for generating rotational displacement about the axis of the pair, and a set of the radial flexible beam displacement mechanisms that project symmetrically from the central rigid body portion connected to the fixed end and each projecting end. A third portion provided on each projecting portion connected to each rigid body portion of one set and configured to generate rotational displacement about a third axis orthogonal to both the first axis and the second axis. It is composed of a set of radial flexure beam displacement mechanisms and a fine movement table connected to each rigid body part of the set of radial flexure beam displacement mechanisms to which the third set of radial flexure beam displacement mechanisms is not connected. A fine positioning device.
【請求項2】特許請求の範囲第(1)項において、前記
各放射たわみ梁変位機構は、前記第1の軸又は前記第2
の軸又は前記第3の軸に関して互いに放射状に延びる複
数のたわみ梁と、これらたわみ梁に当該軸まわりのモー
メントによる曲げ変形を発生させるアクチュエータとに
より構成されていることを特徴とする微細位置決め装
置。
2. The radiating flexible beam displacement mechanism according to claim 1, wherein the radial bending beam displacement mechanism is the first shaft or the second shaft.
The micropositioning device is configured by a plurality of flexible beams that extend radially with respect to the axis or the third axis, and an actuator that causes the flexible beams to cause bending deformation due to a moment about the axis.
【請求項3】特許請求の範囲第(2)項において、前記
アクチュエータは、圧電アクチュエータであることを特
徴とする微細位置決め装置。
3. The fine positioning device according to claim (2), wherein the actuator is a piezoelectric actuator.
【請求項4】特許請求の範囲第(1)項において、前記
支持部材は、リング形状に構成されていることを特徴と
する微細位置決め装置。
4. A fine positioning device according to claim 1, wherein the support member is formed in a ring shape.
JP61283062A 1986-09-09 1986-11-29 Fine positioning device Expired - Lifetime JPH071449B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61283062A JPH071449B2 (en) 1986-11-29 1986-11-29 Fine positioning device
DE3788773T DE3788773T2 (en) 1986-09-09 1987-09-08 Device for fine adjustment and device for controlling these adjustments.
EP87201701A EP0264147B1 (en) 1986-09-09 1987-09-08 Fine positioning device and displacement controller therefor
US07/244,101 US4991309A (en) 1986-09-09 1988-09-14 Fine positioning device and displacement controller therefor
US07/244,169 US4920660A (en) 1986-09-09 1988-09-14 Fine positioning device and displacement controller therefor
US07/244,168 US4888878A (en) 1986-09-09 1988-09-14 Fine positioning device
US07/244,102 US5005298A (en) 1986-09-09 1988-09-14 Displacement controller for fine positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61283062A JPH071449B2 (en) 1986-11-29 1986-11-29 Fine positioning device

Publications (2)

Publication Number Publication Date
JPS63137307A JPS63137307A (en) 1988-06-09
JPH071449B2 true JPH071449B2 (en) 1995-01-11

Family

ID=17660709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61283062A Expired - Lifetime JPH071449B2 (en) 1986-09-09 1986-11-29 Fine positioning device

Country Status (1)

Country Link
JP (1) JPH071449B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786332A (en) 1969-03-19 1974-01-15 Thomson Houston Comp Francaise Micro positioning apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996880A (en) * 1982-11-19 1984-06-04 Nec Corp Electromechanical transducer
JPS5994103A (en) * 1982-11-19 1984-05-30 Nec Corp Controller of electromechanical transducer
JPS6025284A (en) * 1983-07-22 1985-02-08 Hitachi Ltd Positioning device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786332A (en) 1969-03-19 1974-01-15 Thomson Houston Comp Francaise Micro positioning apparatus

Also Published As

Publication number Publication date
JPS63137307A (en) 1988-06-09

Similar Documents

Publication Publication Date Title
US7218032B2 (en) Micro position-control system
US7451596B2 (en) Multiple degree of freedom micro electro-mechanical system positioner and actuator
US7243571B2 (en) Ultra-precision positioning system
JPS62229853A (en) Warped mount for planar microlithography reticle
TWI293182B (en) Method, system, and apparatus for management of reaction loads in a lithography system
Polit et al. Design of high-bandwidth high-precision flexure-based nanopositioning modules
KR100396021B1 (en) Ultra-precision moving apparatus
JPH071449B2 (en) Fine positioning device
JP2780817B2 (en) Precision stage equipment
JPH07109566B2 (en) Fine positioning device
KR101443055B1 (en) Flexure hinge-based monolithic piezo-driven stage and the method of manufacturing
JPH071447B2 (en) Fine positioning device
WO2003040780A2 (en) Multiple degree of freedom compliant mechanism
JP2614662B2 (en) Fine movement mechanism
JPH071451B2 (en) Displacement control device for fine positioning device
JPH071448B2 (en) Fine positioning device
JPS62214413A (en) Fine positioning device
JPH0543439Y2 (en)
JPS62214414A (en) Fine positioning device
JPH07109567B2 (en) Fine positioning device
JPH071452B2 (en) Fine positioning device
JPH01222310A (en) Fine device
Lai et al. Design and analysis of a spatial Remote center of compliance mechanism
JPS6366613A (en) Fine positioning device
JPH0716840B2 (en) Fine movement mechanism