JPH01222310A - Fine device - Google Patents

Fine device

Info

Publication number
JPH01222310A
JPH01222310A JP4739088A JP4739088A JPH01222310A JP H01222310 A JPH01222310 A JP H01222310A JP 4739088 A JP4739088 A JP 4739088A JP 4739088 A JP4739088 A JP 4739088A JP H01222310 A JPH01222310 A JP H01222310A
Authority
JP
Japan
Prior art keywords
displacement
parallel
dimension
deflection
fine movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4739088A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nagasawa
潔 長澤
Kozo Ono
耕三 小野
Kojiro Ogata
緒方 浩二郎
Takeshi Murayama
健 村山
Yoshihiro Hoshino
星野 吉弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP4739088A priority Critical patent/JPH01222310A/en
Publication of JPH01222310A publication Critical patent/JPH01222310A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position Or Direction (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To prevent the warp of a table so as to attain precise displacement by making the dimension of parallel deflection beam displacement devices in a displacement direction almost equal to the dimension of a table more than the dimension of a member for displacement. CONSTITUTION:The dimension in the direction of an X-axis can considerably be increased without altering the dimension of the parallel beam in the direction of an Y-axis in displacement devices 22Fxa and 22Fxb including overhang parts 22a and 22b to which the table is fixed. Similarly, the dimension in the direction of the Y-axis can considerably be increased without altering the dimension in the direction of the X-axis in the parallel warp beam displacement devices 23Fya and 23Fyb including overhang parts 23a and 23b. Even if the dimension of the connection parts 25a and 25b connecting the table are considerably increased and the member for displacement, becomes large, the table mounting the member can be constituted in such a way that it will not considerably protrude from the connection parts 25a and 25b in the direction of the X-axis. Thus, the deflection of the table and furthermore, the warp of the member for displacement can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造装置、電子顕微鏡、軸合せ装置、
マスクパターンの検査装置等のサブμmオーダーの調節
を必要とする装置に使用される微動機構に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to semiconductor manufacturing equipment, electron microscopes, alignment devices,
The present invention relates to a fine movement mechanism used in a device that requires adjustment on the sub-μm order, such as a mask pattern inspection device.

〔従来の技術〕[Conventional technology]

近年、各種技術分野においては、サブμ組のオーダーの
微細な変位調節が可能である装置が要望されている。そ
の典型的な例がLSI(大規模集積回路)、超LSIの
製造工程において使用されるマスクアライナ、電子線描
画装置等の半導体製造装置である。これらの装置におい
ては、サブμmオーダーの微細な位置決めが必要であり
、位置決めの精度が向上するにしたがってその集積度も
増大し、高性能の製品を製造することができる。
In recent years, in various technical fields, there has been a demand for devices capable of fine displacement adjustment on the order of sub-μ groups. Typical examples are semiconductor manufacturing equipment such as mask aligners and electron beam lithography equipment used in the manufacturing process of LSIs (Large Scale Integrated Circuits) and VLSIs. These devices require fine positioning on the order of sub-μm, and as the positioning accuracy improves, the degree of integration also increases, making it possible to manufacture high-performance products.

このような微細な位置決めは上記半導体装置に限らず、
電子顕微鏡をはじめとする各種の高倍率光学装置、軸合
せ装置、マスクパターンの検査装置等においても必要で
あり、その精度向上により、バイオテクノロジ、宇宙開
発等の先端技術においてもそれらの発展に太き(寄与す
るものである。
Such fine positioning is not limited to the above semiconductor devices,
It is also necessary for various high-magnification optical devices such as electron microscopes, alignment devices, mask pattern inspection devices, etc., and improving its accuracy will contribute to the development of cutting-edge technologies such as biotechnology and space exploration. (contribute)

このような微細な位置決めを行なうための優れた微動機
構が提案されている。この微動機構を図により説明する
。第3図は微動機構の斜視図である0図で、1は剛性の
高い部材より成る中心剛体部1.2aは中心剛体部1か
らY軸方向に張出した張出し部、2bは中心剛体部1か
ら張出し部2aと反対向きに張出した張出し部、3aは
中心剛体部lからX軸方向に張出した張出し部、3bは
中心剛体部1から張出し部3aと反対向きに張出した張
出し部である。4a、4bはそれぞれ張出し部2a、2
bの端部下端に設けられ適宜のベースに固定される固定
部、5a、5bはそれぞれ張出し部3a、3bの端部上
端に設けられテーブル6を連結するテーブル連結部であ
る。テーブル6には変位せしめられる部材(変位対象部
材)が載置される。張出し部2a、2b、3a、3b、
固定部4a、4 bsおよびテーブル連結部5a、5b
はそれぞれ中心剛体部lと同じ部材で構成され、中心剛
体部1とともに1つのブロックから加工成形される。
An excellent fine movement mechanism for performing such fine positioning has been proposed. This fine movement mechanism will be explained with reference to the drawings. FIG. 3 is a perspective view of the fine movement mechanism, in which 1 is a central rigid body part 1 made of a highly rigid member, 2a is an overhanging part extending from the central rigid body part 1 in the Y-axis direction, and 2b is a central rigid body part 1. 3a is an overhanging portion that overhangs in the direction opposite to the overhanging portion 2a, 3a is an overhanging portion that overhangs from the central rigid body portion 1 in the X-axis direction, and 3b is an overhanging portion that overhangs from the central rigid body portion 1 in the opposite direction to the overhanging portion 3a. 4a and 4b are the overhanging parts 2a and 2, respectively.
Fixing portions 5a and 5b provided at the lower end of the end portion b and fixed to a suitable base are table connecting portions provided at the upper end of the end portions of the overhang portions 3a and 3b and connecting the table 6, respectively. A member to be displaced (a member to be displaced) is placed on the table 6 . Overhanging parts 2a, 2b, 3a, 3b,
Fixed parts 4a, 4 bs and table connecting parts 5a, 5b
are each made of the same material as the central rigid body part 1, and are processed and formed together with the central rigid body part 1 from one block.

2F、、、2F、bはそれぞれ張出し部2a、2bに構
成された平行たわみ梁変位機構(平行たわみ梁変位機構
については後述する。)であり、互いに中心剛体部1に
対して対称的に構成されている。
2F, , 2F, b are parallel flexure beam displacement mechanisms (the parallel flexure beam displacement mechanisms will be described later) configured in the overhanging parts 2a and 2b, respectively, and are configured symmetrically with respect to the central rigid body part 1. has been done.

平行たわみ梁変位機構2F、、、2FXbは共働してX
軸方向の並進変位(中心剛体部lOX軸方向の変位)を
発生する。3F、□ 3F、bはそれぞれ張出し部3a
、3bに構成された平行たわみ梁変位機構であり、互い
に中心剛体部lに対して対称的に構成されている。平行
たわみ梁変位機構3F、□3F9.は共働してY軸方向
の並進変位(中心剛体部lのY軸方向の変位)を発生す
る。上記平行たわみ梁変位機構2FX、、2Fxb、3
Fy□ 3Fy&は各張出し部2a、2b、3a、3b
の所定個所に所定の貫通孔を形成することにより構成さ
れる。
The parallel deflection beam displacement mechanisms 2F, , 2FXb work together to
A translational displacement in the axial direction (displacement in the axial direction of the central rigid body portion lOX) is generated. 3F, □ 3F, b are respective overhanging parts 3a
, 3b, and are constructed symmetrically with respect to the central rigid body portion l. Parallel deflection beam displacement mechanism 3F, □3F9. work together to generate a translational displacement in the Y-axis direction (displacement of the central rigid body portion l in the Y-axis direction). The above parallel deflection beam displacement mechanism 2FX, 2Fxb, 3
Fy□ 3Fy& is each overhang 2a, 2b, 3a, 3b
It is constructed by forming a predetermined through hole at a predetermined location.

平行たわみ梁変位機構2F、、は、貫通孔10を形成す
ることにより構成される2つの互いに平行な平板状のた
わみ梁11、および貫通孔10内に中心剛体部lと張出
し部2aから突出した突起間に装架された圧電アクチュ
エータ12、ならびにたわみ梁11の所定個所に貼着さ
れたひずみゲージGで構成される。他の平行たわみ梁変
位機構2F−b、  3 Fym、3 Fybも同様な
構成を有する。なお、平行たわみ梁変位機構の構成およ
び動作にっいては、例えば特開昭61−209846号
公報に提示されている。
The parallel flexible beam displacement mechanism 2F, includes two mutually parallel flat flexible beams 11 formed by forming a through hole 10, and protrudes from the central rigid body part l and the overhanging part 2a into the through hole 10. It is composed of a piezoelectric actuator 12 mounted between protrusions, and a strain gauge G attached to a predetermined location of a flexible beam 11. The other parallel deflection beam displacement mechanisms 2F-b, 3Fym, and 3Fyb have similar configurations. The configuration and operation of the parallel deflection beam displacement mechanism are disclosed in, for example, Japanese Patent Laid-Open No. 61-209846.

次に、この微動機構の動作を説明する。今、平行たわみ
梁変位機構2F、、、2F、bの各圧電アクチュエータ
12に等しい電圧を印加すると、その平行たわみ梁11
が印加電圧に応じて変形し、微動機構はX軸方向に並進
変位する。この変位は中心剛体部1、平行たわみ梁変位
機構3F□、3F、いおよびテーブル連結部5a、5b
を介してテーブル6に伝達され、テーブル6は同量だけ
X軸方向に並進変位する。同様に、平行たわみ梁変位機
構3Fy□ 3Fybの圧電アクチュエータ12に同一
電圧を印加した場合、テーブル6はY軸方向に並進変位
する。なお、これら各平行たわみ梁変位機構を同時に駆
動すると、合成された並進変位を得ることができる。上
記の変位作動中、各ひずみゲージGはたわみ梁11のた
わみを検出することにより微動機構の実際の変位量を検
出する。したがって、この検出された変位量に基づいて
フィードバック制御を行なえば、微動機構の正確な変位
を実施することができる。
Next, the operation of this fine movement mechanism will be explained. Now, when an equal voltage is applied to each piezoelectric actuator 12 of the parallel flexible beam displacement mechanism 2F, , 2F, b, the parallel flexible beam 11
is deformed according to the applied voltage, and the fine movement mechanism is translated in the X-axis direction. This displacement corresponds to the central rigid body part 1, the parallel flexible beam displacement mechanisms 3F□, 3F, and the table connecting parts 5a, 5b.
and the table 6 is translated by the same amount in the X-axis direction. Similarly, when the same voltage is applied to the piezoelectric actuators 12 of the parallel deflection beam displacement mechanisms 3Fy□ 3Fyb, the table 6 is translated in the Y-axis direction. Note that by driving these parallel deflection beam displacement mechanisms simultaneously, a combined translational displacement can be obtained. During the displacement operation described above, each strain gauge G detects the deflection of the deflection beam 11 to detect the actual displacement amount of the fine movement mechanism. Therefore, by performing feedback control based on the detected displacement amount, accurate displacement of the fine movement mechanism can be performed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の微動機構は、Y軸方向に張出した張出し部2a、
2bの端部をベースに固定し、X軸方向に張出した張出
し部3a、3bの端部にテーブル6を固定する構造とな
っている。したがって、微動機構の全体形状は十文字形
状となり、必然的にテーブル6自体は図示のように細長
い形状となる。
The above-mentioned fine movement mechanism includes an overhanging portion 2a extending in the Y-axis direction,
It has a structure in which the end portion of the table 6 is fixed to the base, and the table 6 is fixed to the end portions of the overhanging portions 3a and 3b extending in the X-axis direction. Therefore, the overall shape of the fine movement mechanism is a cross shape, and the table 6 itself necessarily has an elongated shape as shown in the figure.

ところで、テーブル6に載置される変位対象部材は種々
の大きさ形状を有する。このため、例えば縦横の長さが
上記テーブル6のX軸方向の長さとほぼ等しい変位対象
部材の変位を行なう場合、テーブル6も変位対象部材を
i4I置するのに充分な大きさ、形状のものを用いる必
要がある。したがって、上記例の場合、テーブル6の形
状は張出し部3a、3bからY軸方向に張出した形状と
ならざるを得ない、そして、この張出す割合が太き(な
ると、テーブル6は、それ自体の重量および載置された
変位対象部材の重量により、当該張出した部分に下方へ
のたわみを生じる。勿論、テープル6は剛体で構成され
るので、このたわみは極めて小さい(例えば数μm)が
、サブμmオーダーの変位を実行する場合、このたわみ
は変位精度を著しく低下せしめる原因となる。
Incidentally, the members to be displaced placed on the table 6 have various sizes and shapes. For this reason, for example, when displacing a member whose length and width are approximately equal to the length of the table 6 in the X-axis direction, the table 6 must also be of sufficient size and shape to place the member to be displaced. It is necessary to use Therefore, in the case of the above example, the shape of the table 6 has to be such that it overhangs in the Y-axis direction from the overhanging parts 3a and 3b, and the proportion of this overhang is thick (in this case, the table 6 itself Due to the weight of the table 6 and the weight of the displaceable member placed thereon, the protruding portion causes a downward deflection.Of course, since the table 6 is made of a rigid body, this deflection is extremely small (for example, several μm), but When performing displacement on the order of sub-μm, this deflection causes a significant decrease in displacement accuracy.

これに対して、テーブル6の剛性を大にすれば(例えば
厚みを大きくすれば)上記のたわみを避けることができ
るが、このような手段を採用するとテーブル6の重量が
大となり、微動機構の固有振動数が低(なり、慣性が大
となって、微動機構を高速に駆動させたとき振動が発生
するので、上記手段は採用し得ない。
On the other hand, the above deflection can be avoided by increasing the rigidity of the table 6 (for example, by increasing its thickness), but if such a measure is adopted, the weight of the table 6 becomes large and the fine movement mechanism The above means cannot be adopted because the natural frequency is low, the inertia is large, and vibrations occur when the fine movement mechanism is driven at high speed.

本発明の目的は、上記従来技術の問題点を解決し、テー
ブルのたわみを防止することができる微動機構を提供す
るにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fine movement mechanism that can solve the problems of the prior art described above and prevent table deflection.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明は、中央剛体部に対
称配置された少なくとも1組の平行たわみ梁変位機構と
、変位対象部材を載置するテーブルとを備えた微動機構
において、前記テーブルの寸法を前記変位対象部材の寸
法以上とするとともに、前記テーブルが固定される側の
平行たわみ梁変位機構の変位方向の長さを当該方向にお
ける前記テーブルの長さとほぼ等しく、かつ、当該平行
たわみ梁変位機構を4つ以上の平行たわみ梁で構成した
ことを特徴とする。
In order to achieve the above object, the present invention provides a fine movement mechanism including at least one set of parallel deflection beam displacement mechanisms arranged symmetrically around a central rigid body part and a table on which a member to be displaced is placed. The dimensions of the parallel flexible beam are equal to or larger than those of the member to be displaced, and the length of the parallel flexible beam displacement mechanism on the side to which the table is fixed in the displacement direction is approximately equal to the length of the table in that direction; The displacement mechanism is characterized by comprising four or more parallel flexible beams.

〔作用〕[Effect]

変位対象部材はテーブル縁部から外へ突出しないように
テーブルに載置され、又、テーブルはそれが固定される
平行たわみ梁変位機構の変位方向の縁部から大きく突出
することはない。そして、平行たわみ梁変位機構が駆動
されると、テーブルはたわみを含まない平坦な状態のま
ま、駆動された平行たわみ梁変位機構の変位方向に変位
する。
The member to be displaced is placed on the table so as not to protrude outward from the edge of the table, and the table does not protrude significantly from the edge in the displacement direction of the parallel flexible beam displacement mechanism to which it is fixed. Then, when the parallel flexible beam displacement mechanism is driven, the table is displaced in the displacement direction of the driven parallel flexible beam displacement mechanism while remaining in a flat state with no deflection.

〔実施例〕〔Example〕

以下、本発明を図示の実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on illustrated embodiments.

第1図は本発明の実施例に係る微動機構の平面図である
。図で、21は中心剛体部、22a、22bはY軸方向
に張出した張出し部、23a、23bはX軸方向に張出
した張出し部、24a、24bは固定部、25a、25
bはテーブル連結部である。又、22 F−922Fx
bは中心剛体部21に対して対称に配置されX軸方向の
変位を発生する平行たわみ梁変位機構、23F、□ 2
3Fybは中心剛体部21に対して対称に配置されY軸
方向の変位を発生する平行たわみ梁変位機構である。
FIG. 1 is a plan view of a fine movement mechanism according to an embodiment of the present invention. In the figure, 21 is a central rigid body part, 22a, 22b are overhanging parts extending in the Y-axis direction, 23a, 23b are overhanging parts extending in the X-axis direction, 24a, 24b are fixed parts, 25a, 25
b is a table connection part. Also, 22 F-922Fx
b is a parallel deflection beam displacement mechanism that is arranged symmetrically with respect to the central rigid body part 21 and generates displacement in the X-axis direction, 23F, □ 2
3Fyb is a parallel deflection beam displacement mechanism that is arranged symmetrically with respect to the central rigid body portion 21 and generates displacement in the Y-axis direction.

上記各部の機能は第3図に示す微動機構における同一名
称の各部の機能と同一であり、したがって、本実施例の
微動機構の動作も第3図に示す微動機構の動作と同じで
ある。
The functions of the above-mentioned parts are the same as those of the parts having the same names in the fine movement mechanism shown in FIG. 3, and therefore the operation of the fine movement mechanism of this embodiment is also the same as that of the fine movement mechanism shown in FIG.

本実施例の構成が第3図に示す微動機構の構成と異なる
のは、テーブルが固定される張出し部22a、22bを
含む平行たわみ梁変位機構22F、、。
The configuration of this embodiment differs from the configuration of the fine movement mechanism shown in FIG. 3 in the parallel deflection beam displacement mechanism 22F, which includes overhangs 22a and 22b to which the table is fixed.

22F−bOY軸方向の寸法をほとんど変更することな
くX軸方向の寸法を大幅に増大した点、およびこれに伴
って同様に、張出し部23a、23bを含む平行たわみ
梁変位機構23 Fy、、  23 v、bのX軸方向
の寸法をほとんど変更することなくY軸方向の寸法を大
幅に増大した点にある。
22F-b The dimension in the X-axis direction has been significantly increased without changing the dimension in the OY-axis direction, and accordingly, the parallel flexible beam displacement mechanism 23 Fy, 23 also includes the overhanging portions 23a and 23b. The point is that the dimensions in the Y-axis direction of v and b are significantly increased without changing the dimensions in the X-axis direction.

上記のような寸法の増大により、テーブルを連結する連
結部253.25bの寸法も大幅に増大し、したがって
、変位対象部材が大きくても、これを載置するテーブル
を、連結部25a、25bからX軸方向に大きく突出す
ることなく構成することができ、テーブルのたわみ、ひ
いては変位対象部材のたわみを防止することができる。
Due to the above-mentioned increase in dimensions, the dimensions of the connecting parts 253, 25b that connect the tables also increase significantly. Therefore, even if the member to be displaced is large, the table on which it is placed can be moved away from the connecting parts 25a, 25b. It can be constructed without significantly protruding in the X-axis direction, and it is possible to prevent deflection of the table and, by extension, deflection of the member to be displaced.

本実施例の微動機構は上記の構成であるので、テーブル
に載置される変位対象部材は大形であることが多い。こ
のため、テーブルと変位対象部材との合計重量は大きく
なることが多く、従来の微動機構の平行たわみ梁変位機
構のように平行たわみ梁11を2つ設けただけでは、こ
れら平行たわみ梁11で上記合計重量を支持するのに耐
え得ない場合が生じるおそれがある。このため、本実施
例の平行たわみ梁は従来の平行たわみ梁11よりも厚さ
を増大する必要があるが、厚さを増大するとたわみ量が
減少することとなる。これを第2図により説明する。
Since the fine movement mechanism of this embodiment has the above-described configuration, the member to be displaced placed on the table is often large in size. For this reason, the total weight of the table and the member to be displaced is often large, and if only two parallel deflection beams 11 are provided as in the parallel deflection beam displacement mechanism of the conventional fine movement mechanism, these parallel deflection beams 11 cannot be used. There is a possibility that a case may arise where it cannot bear to support the above-mentioned total weight. Therefore, the parallel flexible beam of this embodiment needs to be thicker than the conventional parallel flexible beam 11, but increasing the thickness will reduce the amount of deflection. This will be explained with reference to FIG.

第2図は平板状たわみ梁の斜視図である。このたわみ梁
は一端が固定され、他端が自由端となつている。今、こ
のたわみ梁の寸法を図示のように定める。図で、 1:たわみ梁の長さ b:たわみ梁の幅 h:たわみ梁の厚み P:たわみ梁に作用する力 である。そうすると、たわみ梁のたわみ量δは、ヤング
率をEとすると次式で表わされる。
FIG. 2 is a perspective view of a flat flexible beam. This flexible beam is fixed at one end and free at the other end. Now, determine the dimensions of this flexible beam as shown. In the figure, 1: Length of the flexible beam b: Width of the flexible beam h: Thickness of the flexible beam P: Force acting on the flexible beam. Then, the amount of deflection δ of the flexible beam is expressed by the following equation, where E is Young's modulus.

(11式から明らかなようにたわみ梁の厚みhを大きく
するとたわみ量δは大きく減少する。これは平行たわみ
梁においても同じである。そして、たわみ量δの減少は
平行たわみ梁変位機構の変位性能を劣化させる。
(As is clear from Equation 11, when the thickness h of the flexible beam is increased, the amount of deflection δ is greatly reduced. This is the same for parallel flexible beams.The decrease in the amount of deflection δ is due to the displacement of the parallel flexible beam displacement mechanism. degrade performance.

本実施例は、上記の欠点を解消するため、各平行たわみ
梁変位機構に、既設の平行たわみ梁11以外の他の平行
たわみ梁11°を設けた構成とされる。即ち、各平行た
わみ梁変位機構の変位方向の長さを増大することによっ
て大きくなった圧電アクチュエータ12と平行たわみ梁
11との間に、新たな平行たわみ梁11’ が設けられ
る。これら平行たわみ梁11”の厚さは平行たわみ梁t
iの厚さとほぼ同一とされる。これにより、テーブルの
重量とその上に載置された変位対象部材の重量とは、各
平行たわみ梁変位機構22 FX、、 22FXb。
In this embodiment, in order to eliminate the above-mentioned drawbacks, each parallel deflection beam displacement mechanism is provided with a parallel deflection beam 11° other than the existing parallel deflection beam 11. That is, a new parallel flexible beam 11' is provided between the parallel flexible beam 11 and the piezoelectric actuator 12, which has become larger by increasing the length of each parallel flexible beam displacement mechanism in the displacement direction. The thickness of these parallel flexible beams 11" is t
It is assumed that the thickness is almost the same as that of i. As a result, the weight of the table and the weight of the member to be displaced placed on it are equal to each other of the parallel deflection beam displacement mechanisms 22FX, 22FXb.

23 Fy123 Fybの平行たわみ梁11.11’
に分散して分担され、それら平行たわみ梁の厚みを増加
することなくテーブルおよび変位対象部材の合計重量を
支えるこ、とができる。
23 Fy123 Fyb parallel flexible beam 11.11'
It is possible to support the total weight of the table and the member to be displaced without increasing the thickness of the parallel flexible beams.

なお、平行たわみ梁が2倍に増加することにより各平行
たわみ梁変位機構22 F、、、  22 FXb+2
3F、□ 23Fybを駆動するために必要な力も増大
するが、これは各圧電アクチュエータ12の駆動力を増
大させることにより解決し得る。この場合、各圧電アク
チュエータ12の寸法は増大するが、各平行たわみ梁変
位機構の変位方向の寸法も増大しているので、何等の問
題も生じない。
In addition, by doubling the number of parallel deflection beams, each parallel deflection beam displacement mechanism 22 F,..., 22 FXb+2
The force required to drive 3F, □ 23Fyb also increases, but this can be solved by increasing the driving force of each piezoelectric actuator 12. In this case, although the dimensions of each piezoelectric actuator 12 increase, no problem arises because the dimensions of each parallel deflection beam displacement mechanism in the displacement direction also increase.

このように、本実施例では、平行たわみ梁変位機構の変
位方向の寸法を増大させてテーブルの寸法とほぼ等しい
寸法としたので、大型の変位対象部材を載置するため大
形のテーブルを使用しても、テーブルにたわみを生じる
ことはなく、ひいては大型の変位対象部材に対して精度
の高い変位を行なうことができる。又、テーブルのたわ
みを防止するためテーブルの厚みを増大させる必要がな
いので、テーブルの重量を小さくすることができ、これ
により微動機構の固有振動数の低下を防止してこれを高
速駆動することができる。さらに、寸法が増大した平行
たわみ梁変位機構の平行たわみ梁の数を2倍としたので
、テーブルおよび変位対象部材の重量を、平行たわみ梁
変位機構の機能に支障を生じることなく支持することが
できる。
In this way, in this example, the dimension of the parallel deflection beam displacement mechanism in the displacement direction is increased to be approximately equal to the dimension of the table, so a large table is used to place a large member to be displaced. Even if the table is bent, the table will not be bent, and a large member to be displaced can be displaced with high precision. In addition, since there is no need to increase the thickness of the table to prevent table deflection, the weight of the table can be reduced, thereby preventing a drop in the natural frequency of the fine movement mechanism and allowing it to be driven at high speed. Can be done. Furthermore, since the number of parallel flexure beams in the parallel flexure beam displacement mechanism has been doubled, the weight of the table and the members to be displaced can be supported without hindering the function of the parallel flexure beam displacement mechanism. can.

なお、上記実施例の説明では、X軸およびY軸の2軸の
微動機構を例示して説明したが、1軸の微動機構にも適
用可能であるのは明らかである。
In the description of the above embodiment, a two-axis fine movement mechanism of the X and Y axes was exemplified, but it is obvious that the present invention is also applicable to a single-axis fine movement mechanism.

又、平行たわみ梁変位機構における平行たわみ梁を4つ
設ける例について説明したが、変位対象部材やテーブル
の重量に応じて平行たわみ梁の数を4つ以上とすること
もできる。
Further, although an example in which four parallel flexible beams are provided in the parallel flexible beam displacement mechanism has been described, the number of parallel flexible beams may be four or more depending on the weight of the member to be displaced or the table.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明では、平行たわみ梁変位機構
の変位方向の寸法を、変位対象部材の寸法以上のテーブ
ルの寸法とほぼ等しくしたので、テーブルのたわみを防
止し高精度の変位を行なうことができる。又、テーブル
の厚みを増大させる必要がないので、テーブルの重量増
大を抑制して微動機構の高速駆動を可能とすることがで
きる。
As described above, in the present invention, the dimension in the displacement direction of the parallel deflection beam displacement mechanism is made almost equal to the dimension of the table, which is larger than the dimension of the member to be displaced, so that deflection of the table is prevented and highly accurate displacement is performed. be able to. Furthermore, since there is no need to increase the thickness of the table, it is possible to suppress an increase in the weight of the table and enable high-speed drive of the fine movement mechanism.

さらに、寸法が増加した平行たわみ梁変位機構Gこおけ
る平行たわみ梁の数を増加させて4つ以上としたので、
テーブルおよび変位機構の重量を、平行たわみ梁変位機
構の機能に支障を生じるqとなく支持することができる
Furthermore, since the number of parallel flexure beams in the parallel flexure beam displacement mechanism G with increased dimensions has been increased to four or more,
The weight of the table and the displacement mechanism can be supported without causing a hindrance to the function of the parallel beam displacement mechanism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る微動機構の平面図、第2
図はたわみ梁の斜視図、第3図は従来の微動機構の斜視
図である。 11.11°−−−−−−一平行たわみ梁、12・・−
−−−一圧電アクチュエータ、21・・−・・−沖心剛
体部、22 F、、。 22 FXb、23 Fya、23 Fyb−・−・・
−平行たわみ梁変位機構、25a、25b−・−・−・
テーブル連結部。 第1図
FIG. 1 is a plan view of a fine movement mechanism according to an embodiment of the present invention, and FIG.
The figure is a perspective view of a flexible beam, and FIG. 3 is a perspective view of a conventional fine movement mechanism. 11.11°----parallel flexible beam, 12...-
---One piezoelectric actuator, 21...-Okishin rigid body part, 22 F, . 22 FXb, 23 Fya, 23 Fyb--...
-Parallel deflection beam displacement mechanism, 25a, 25b-・-・-・
Table connection part. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 中央剛体部に対称配置された少なくとも1組の平行たわ
み梁変位機構と変位対象部材を載置するテーブルとを備
えた微動機構において、前記テーブルの寸法を前記変位
対象部材の寸法以上とするとともに、前記テーブルが固
定される側の前記平行たわみ梁変位機構の変位方向の長
さを当該方向における前記テーブルの長さとほぼ等しく
し、かつ、当該平行たわみ梁変位機構を4つ以上の平行
たわみ梁で構成したことを特徴とする微動機構。
In a fine movement mechanism comprising at least one set of parallel deflection beam displacement mechanisms arranged symmetrically around a central rigid body portion and a table on which a member to be displaced is placed, the dimensions of the table are greater than or equal to the dimensions of the member to be displaced; The length of the parallel flexible beam displacement mechanism on the side to which the table is fixed in the displacement direction is approximately equal to the length of the table in that direction, and the parallel flexible beam displacement mechanism is composed of four or more parallel flexible beams. A fine movement mechanism characterized by the following structure.
JP4739088A 1988-03-02 1988-03-02 Fine device Pending JPH01222310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4739088A JPH01222310A (en) 1988-03-02 1988-03-02 Fine device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4739088A JPH01222310A (en) 1988-03-02 1988-03-02 Fine device

Publications (1)

Publication Number Publication Date
JPH01222310A true JPH01222310A (en) 1989-09-05

Family

ID=12773782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4739088A Pending JPH01222310A (en) 1988-03-02 1988-03-02 Fine device

Country Status (1)

Country Link
JP (1) JPH01222310A (en)

Similar Documents

Publication Publication Date Title
US6467761B1 (en) Positioning stage
US7348709B2 (en) Heavy-load nanopositioner with dual-parallel flexure design
US4694477A (en) Flexure stage alignment apparatus
US6484602B1 (en) Six-degree of freedom micro-positioner
JPH0722104B2 (en) Work piece positioning device
US6860020B2 (en) Ultra-precision feeding apparatus
US20030051331A1 (en) Positioning stage actuation
JPH01222310A (en) Fine device
JP2803440B2 (en) XY fine movement stage
JPH07109566B2 (en) Fine positioning device
US20030033703A1 (en) Positioning stage
JP3255707B2 (en) Fine positioning device
JPH0555263B2 (en)
JP2614662B2 (en) Fine movement mechanism
JP2780335B2 (en) XY stage support structure
EP1549458B1 (en) Two-dimensional displacement apparatus
JP2760404B2 (en) Fine movement mechanism
JPH0449675B2 (en)
JP2773781B2 (en) Precision fine movement stage device
JPH071451B2 (en) Displacement control device for fine positioning device
JPH0360937A (en) Fine adjustment stage device
JP2849158B2 (en) Fine movement mechanism
JPH07104723B2 (en) Fine positioning device
JPH01238759A (en) Precisely fine movement base with six degrees of freedom
JPH01246609A (en) Fine adjustment mechanism