JPS6366613A - Fine positioning device - Google Patents
Fine positioning deviceInfo
- Publication number
- JPS6366613A JPS6366613A JP21061686A JP21061686A JPS6366613A JP S6366613 A JPS6366613 A JP S6366613A JP 21061686 A JP21061686 A JP 21061686A JP 21061686 A JP21061686 A JP 21061686A JP S6366613 A JPS6366613 A JP S6366613A
- Authority
- JP
- Japan
- Prior art keywords
- axis
- beam displacement
- parallel
- displacement
- radial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 200
- 230000007246 mechanism Effects 0.000 claims abstract description 110
- 238000005452 bending Methods 0.000 claims description 5
- 239000002184 metal Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 240000005523 Peganum harmala Species 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q1/00—Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
- B23Q1/25—Movable or adjustable work or tool supports
- B23Q1/26—Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
- B23Q1/34—Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
- B23Q1/36—Springs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/20—Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
- B23Q15/22—Control or regulation of position of tool or workpiece
- B23Q15/24—Control or regulation of position of tool or workpiece of linear position
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/19—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
- G05B19/21—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
- G05B19/23—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41133—Compensation non linear transfer function
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41352—Alternative clamping dilation of piezo, caterpillar motion, inchworm
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nanotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Human Computer Interaction (AREA)
- Control Of Position Or Direction (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、半導体製造装置、電子顕微鏡等のμmオーダ
の調節を必要とする装置に使用される微細位置決め装置
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fine positioning device used in devices that require adjustment on the μm order, such as semiconductor manufacturing equipment and electron microscopes.
近年、各種技術分野においては、μmのオーダーの微細
な変位調節が可能である装置が要望されている。その典
型的な例がLSI(大規模集積回路)、超LSIの製造
工程において使用されるマスクアライナ、電子線描画装
置等の半導体製造装置である。これらの装置においては
、μmオーダーの微細な位置決めが必要であり、位置決
めの精度が向上するにしたがってその集積度も増大し、
高性能の製品を製造することができる。このような微細
な位置決めは上記半導体装置に限らず、電子顕微鏡をは
じめとする各種の高倍率光学装置等においても必要であ
り、その精度向上により、バイオテクノロジ、宇宙開発
等の先端技術においてもそれらの発展に大きく寄与する
ものである。In recent years, in various technical fields, there has been a demand for devices capable of fine displacement adjustment on the order of μm. Typical examples are semiconductor manufacturing equipment such as mask aligners and electron beam lithography equipment used in the manufacturing process of LSIs (Large Scale Integrated Circuits) and VLSIs. These devices require fine positioning on the μm order, and as the positioning accuracy improves, the degree of integration also increases.
It is possible to manufacture high-performance products. Such fine positioning is necessary not only for the semiconductor devices mentioned above, but also for various high-magnification optical devices such as electron microscopes, and by improving its accuracy, it is also necessary for cutting-edge technologies such as biotechnology and space development. This will greatly contribute to the development of the world.
従来、このような微細位置決め装置は、例えば「機械設
計」誌、第27巻第1号(1983年1月号)の第32
頁乃至第36頁に示されるような種々の型のものが提案
されている。これらのうち、特に面倒な変位縮小機構が
不要であり、かつ、構成が簡単である点で、平行ばねと
微動アクチュエータを用いた型の微細位置決め装置が優
れていると考えられるので、以下、これを第4図に基づ
い説明する。Conventionally, such a fine positioning device has been described, for example, in "Mechanical Design" magazine, Vol. 27, No. 1 (January 1983 issue), No. 32.
Various types have been proposed as shown on pages 36 to 36. Among these, a type of fine positioning device using a parallel spring and a fine movement actuator is considered to be superior in that it does not require a particularly troublesome displacement reduction mechanism and has a simple configuration. will be explained based on FIG.
第4図は従来の微細位置決め装置の側面図である。図で
、lは支持台、2a、2bは支持台1上に互いに平行に
固定された板状の平行ばね、3は平行ばね2a、2b上
に固定された剛性の高い微動テーブルである。4は支持
台1と微動テーブル3との間に装架された微動アクチュ
エータである。FIG. 4 is a side view of a conventional fine positioning device. In the figure, 1 is a support base, 2a and 2b are plate-shaped parallel springs fixed parallel to each other on the support base 1, and 3 is a highly rigid fine movement table fixed on the parallel springs 2a and 2b. Reference numeral 4 denotes a fine movement actuator mounted between the support base 1 and the fine movement table 3.
この微動アクチュエータ4には、圧電電子、電磁ソレノ
イド等が用いられ、これを励起することにより、微動テ
ーブル3に図中に示す座標軸のX軸方向の力が加えられ
る。This fine movement actuator 4 uses a piezoelectric element, an electromagnetic solenoid, or the like, and by exciting it, a force is applied to the fine movement table 3 in the X-axis direction of the coordinate axes shown in the figure.
ここで、平行ばね2a、’lbはその構造上、X軸方向
の剛性は低く、これに対して2軸方向、y軸方向(紙面
に垂直な方向)の剛性が高いので、微動アクチュエータ
が励起されると、微動テーブル3はほぼX軸方向にのみ
変位し、他方向の変位はほとんど発生しない。Here, due to their structure, parallel springs 2a and 'lb have low rigidity in the Then, the fine movement table 3 is displaced almost only in the X-axis direction, and almost no displacement occurs in other directions.
第5図は前述の参考文献に開示された例から容易に考え
られる従来の他の微細位置決め装置の斜視図である。図
で、6は支持台、7a、7bは支持台6上に互いに固定
された板状の平行ばね、8は平行ばね7a、7bに固定
された剛性の高い中間テーブル、9a、9bは平行ばね
7a、7bと直交する方向において互いに平行に中間テ
ーブル8に固定された板状の平行ばね、10は平行ばね
9a、9b上に固定された剛性の高い微動テーブルであ
る。座標軸を図中に示すように定めると、平行ばね7a
、7bはX軸方向に沿って配置され、平行ばね9a、9
bはy軸方向に沿って配置されている。この構造は、基
本的には第4図に示す1軸(X軸方向の変位を生じる)
の場合の構造を2段に積層した構造である。矢印F、は
微動テーブル10に加えられるX軸方向の力、矢印F、
、は中間テーブル8に加えられるy軸方向の力を示し、
力F、、F、を加えることができる図示されていない微
動アクチュエータが支持台6と微動テープル10、支持
台6と中間テーブル8との間にそれぞれ設けられる。FIG. 5 is a perspective view of another conventional fine positioning device that can be easily considered from the example disclosed in the above-mentioned reference document. In the figure, 6 is a support base, 7a and 7b are plate-shaped parallel springs fixed to each other on the support base 6, 8 is a highly rigid intermediate table fixed to the parallel springs 7a and 7b, and 9a and 9b are parallel springs. A plate-shaped parallel spring is fixed to the intermediate table 8 in parallel with each other in a direction perpendicular to 7a and 7b, and 10 is a highly rigid fine movement table fixed on the parallel springs 9a and 9b. If the coordinate axes are set as shown in the figure, the parallel spring 7a
, 7b are arranged along the X-axis direction, and parallel springs 9a, 9
b is arranged along the y-axis direction. This structure basically consists of one axis (displacement in the X-axis direction) as shown in Figure 4.
This is a structure in which the structure in the case of 2 is stacked in two layers. Arrow F is a force applied to the fine movement table 10 in the X-axis direction;
, indicates the force in the y-axis direction applied to the intermediate table 8,
Fine movement actuators (not shown) capable of applying forces F, , F, are provided between the support base 6 and the fine movement table 10, and between the support base 6 and the intermediate table 8, respectively.
微動テーブル10に力F、が加えられると、平行ばね9
a、9bが変形し、一方、平行ばね7a。When a force F is applied to the fine movement table 10, the parallel spring 9
a, 9b are deformed, while parallel spring 7a.
7bCtX軸方向の力F、に対しては高い剛性を有する
ので、微動テーブル10はほぼX軸方向にのみ変位する
。また、中間テーブル8に力F、が加えられると、平行
ばね7a、7bが変形し、激動テーブルIOは平行ばね
9a、9bを介してほぼy軸方向にのみ変位する。さら
に、両方の力F。Since it has high rigidity against the force F in the X-axis direction, the fine movement table 10 is displaced almost only in the X-axis direction. Further, when a force F is applied to the intermediate table 8, the parallel springs 7a and 7b are deformed, and the turbulent table IO is displaced approximately only in the y-axis direction via the parallel springs 9a and 9b. Furthermore, both forces F.
、Fyが同時に加えられると、各平行ばね7a。, Fy are applied simultaneously, each parallel spring 7a.
7b、9a、9bは同時に変形し、微動テーブル10は
これら応じて2次元的に変位する。7b, 9a, and 9b are deformed simultaneously, and the fine movement table 10 is two-dimensionally displaced accordingly.
このように、第5図に示す装置は、第4図に示す装置が
1軸方向のみの位置決め装置であるのに対して2軸方向
の位置決めを行うことができる。In this manner, the device shown in FIG. 5 can perform positioning in two axial directions, whereas the device shown in FIG. 4 is a positioning device in only one axial direction.
以上述べた第4図および第5図に示す装置は、微動テー
ブル10を定められた軸方向に直線的に変位させる装置
である。これに対して、微動テーブルをある軸のまわり
に微小回転変位させる微細位置決め装置が日本特許出願
公告公報、昭57−50433号に示されている。この
微細位置決め装置を第6図により説明する。The device shown in FIGS. 4 and 5 described above is a device that linearly displaces the fine movement table 10 in a predetermined axial direction. On the other hand, a fine positioning device for slightly rotationally displacing a fine movement table around a certain axis is disclosed in Japanese Patent Application Publication No. 57-50433. This fine positioning device will be explained with reference to FIG.
第6図は微小回転変位を行う従来の微細位置決め装置の
一部破断斜視図である。図で、1)は円柱状の中央固定
部、lla、llb、llcは中央固定部1)の周面に
その長手方向に等間隔に形成された縦溝である。12は
中央固定部1)を中心として可回動に設けられたリング
状のステージ、12a+ 〜12az 、12りt 〜
12by 、12C1〜12C3はそれぞれ縦溝1)a
、Ilb。FIG. 6 is a partially cutaway perspective view of a conventional fine positioning device that performs minute rotational displacement. In the figure, 1) is a cylindrical central fixing part, and lla, llb, and llc are vertical grooves formed on the circumferential surface of the central fixing part 1) at equal intervals in the longitudinal direction. 12 is a ring-shaped stage rotatably provided around the central fixed part 1), 12a+ to 12az, 12rit to
12by, 12C1 to 12C3 are each vertical groove 1)a
, Ilb.
1)Cに対向してステージ12に固定されたU字状金具
である。13は各縦溝1ia’、ilb。1) It is a U-shaped metal fitting fixed to the stage 12 facing C. 13 is each longitudinal groove 1ia', ilb.
1)Cと各U字状金具12a、〜12C,との間に装架
されたバイモルフ形圧電素子、13Aはバイモルフ形圧
電素子13のU字状金具と係合する部分に固定された突
起である。中央固定部1)、ステージ12)各U字状金
具12aI〜12C1はいずれも剛体である。ここで、
上記バイモルフ形圧電素子13を第7図面の簡単な説明
する。1) A bimorph piezoelectric element is mounted between C and each U-shaped metal fitting 12a, ~12C, and 13A is a protrusion fixed to a portion of the bimorph piezoelectric element 13 that engages with the U-shaped metal fitting. be. The central fixing portion 1) and the stage 12) each of the U-shaped fittings 12aI to 12C1 are rigid bodies. here,
The bimorph type piezoelectric element 13 will be briefly explained in the seventh drawing.
第7図はバイモルフ形圧電素子の斜視図である。FIG. 7 is a perspective view of a bimorph piezoelectric element.
図で、13a、13bは圧電素子、13cは圧電素子1
3a、13bの中間に設けられた共通電極である。圧電
素子13a、13bは共通電極工3Cを挟着した状態で
互いに密着されている。13d、13eはそれぞれ圧電
素子13a、13bに固着された表面電極である。この
状態において、表面電極13dと共通電極13cとの間
に圧電素子13aを縮ませる極性の電圧を印加し、同時
に、表面電極13eと共通電極13cとの間に圧電素子
13dを伸ばす極性の電圧を印加すると、各圧電素子1
3a、13bが矢印の方向に伸縮することにより、バイ
モルフ形圧電素子13全体は図のように変形する。この
ようなバイモルフ形圧電素子13により、圧電素子単体
に比べて大きな変位量を得ることができる。In the figure, 13a and 13b are piezoelectric elements, and 13c is piezoelectric element 1.
This is a common electrode provided between 3a and 13b. The piezoelectric elements 13a and 13b are closely attached to each other with the common electrode 3C sandwiched therebetween. 13d and 13e are surface electrodes fixed to piezoelectric elements 13a and 13b, respectively. In this state, a voltage with a polarity that shrinks the piezoelectric element 13a is applied between the surface electrode 13d and the common electrode 13c, and at the same time, a voltage with a polarity that stretches the piezoelectric element 13d is applied between the surface electrode 13e and the common electrode 13c. When applied, each piezoelectric element 1
By expanding and contracting 3a and 13b in the direction of the arrow, the entire bimorph piezoelectric element 13 is deformed as shown in the figure. With such a bimorph type piezoelectric element 13, a larger amount of displacement can be obtained than with a single piezoelectric element.
このようなバイモルフ形圧電素子13は、第6図に示す
装置において、一端が縦溝1)a、1)b、llcに固
定され、他端は自由端となって各対応するU字状金具に
突起13Aを介して接触している。今、各バイモルフ形
圧電素子13に適宜の電圧を印加し、第7図に示す変形
を生じさせると、ステージ12:よその変形に応じて中
央固定部1)を中心として回動変位する。そこで、ステ
ージ12上に微動テーブルを載置固定しておけば、微動
テーブルの微小回転変位を得ることができる。In the device shown in FIG. 6, such a bimorph piezoelectric element 13 has one end fixed to the vertical grooves 1) a, 1) b, and llc, and the other end is a free end and is attached to each corresponding U-shaped metal fitting. is in contact with via the protrusion 13A. Now, when an appropriate voltage is applied to each bimorph piezoelectric element 13 to cause the deformation shown in FIG. 7, the stage 12 rotates around the central fixed part 1) in accordance with the deformation of the other parts. Therefore, by placing and fixing the fine movement table on the stage 12, it is possible to obtain minute rotational displacement of the fine movement table.
上記従来の装置は、U字状金具とバイモルフ形圧電素子
13とにより両者を係合状態に保持し、これにより、バ
イモルフ形圧電素子13の自然変形のままでの装架を許
し、かつ、バイモルフ形圧電素子13をステージ12に
固定した場合に生じる変位の拘束(干渉)を防止してい
る。The above-mentioned conventional device holds the U-shaped metal fitting and the bimorph piezoelectric element 13 in an engaged state, thereby allowing the bimorph piezoelectric element 13 to be mounted while being naturally deformed, and This prevents displacement restriction (interference) that would occur when the shaped piezoelectric element 13 is fixed to the stage 12.
ところで、第4図および第5図に示す微細位置決め装置
は、1次元および2次元の位置決めができるのみであり
、z軸方向の変位や、X軸、y軸。By the way, the fine positioning devices shown in FIGS. 4 and 5 are only capable of one-dimensional and two-dimensional positioning, and are capable of displacement in the z-axis direction, X-axis, and y-axis.
2軸まわりの回転変位を与えることはできず、又、第6
図に示す微細位置決め装置については、X軸。It is not possible to give rotational displacement around two axes, and the sixth
For the fine positioning device shown in the figure, the X axis.
y軸、Z軸方向の変位と他の2・釣まわりの回転変位を
与えることはできない。そして、これら従来の微細位置
決め装置からは、第5図および第6図に示す装置を組合
わせてX軸、y軸方向の変位と2軸まわりの回転変位を
与える3軸の微細位置決め装置を想定し得るのみであり
、これらから4軸以上の微細位置決め装置を構成するの
は極めて困難である。Displacement in the y-axis and Z-axis directions and rotational displacement in the other two directions cannot be given. From these conventional fine positioning devices, we assume a three-axis fine positioning device that combines the devices shown in Figures 5 and 6 to provide displacement in the X-axis and y-axis directions and rotational displacement around two axes. However, it is extremely difficult to construct a fine positioning device with four or more axes from these.
本発明は、このような事情に鑑みてなされたものであり
、その目的は、従来技術の問題点を解決し、M単な構造
でX軸、y軸、z軸方向の変位、およびX軸、y軸、2
軸まわりの回転変位を行うことができる微細位置決め装
置を捉供するにある。The present invention has been made in view of the above circumstances, and its purpose is to solve the problems of the prior art and to provide displacement in the X-axis, y-axis, and z-axis directions, as well as displacement in the , y-axis, 2
The present invention provides a fine positioning device capable of performing rotational displacement around an axis.
上記の目的を達成するため、本発明は、中心剛体部から
、直交する3つの軸のうちの第1の軸方向に沿って張出
した1対の第1の張出し部と、第2の軸方向に沿って張
出した他の1対の第2の張出し部とを備え、第1の張出
し部の一方側の張り出し部および他方側の張出し部のそ
れぞれに平行たわみ梁変位機構および放射たわみ梁変位
機構を設け、両側の平行たわみ梁変位機構および放射た
わみ¥変位機構が互いに中心剛体部を中心に対称に配置
されており、かつ、平行たわみ梁変位機構は第2の軸方
向の並進変位を発生させ、放射たわみ梁変位機構は第3
の軸まわりの回転変位を発生させるようにし、又、第2
の張出し部の一方側の張出し部および他方側の張出し部
のそれぞれに2組の平行たわみ梁変位機構を各組の平行
たわみ梁変位機構が中心剛体部を中心に互いに対称とな
るように配置し、一方の組の平行たわみ梁変位機構は第
1の軸方向の並進変位を発生させ、他方の組の平行たわ
み梁変位機構は第3の軸方向の並進変位を発生させるよ
うにし、さらに別途、剛体の支持板を備え、この支持板
上に、第1の軸まわりに回転変位を発生させる放射たわ
み梁変位機構および第2の軸まわりに回転変位を発生さ
せる放射たわみ梁変位機構を設け、これら放射たわみ梁
変位機構のうちの一方のものの剛体部と、第1の組の張
出し部の端部又は第2の組の張り出し部の端部とを連結
したことを特徴とする。In order to achieve the above object, the present invention includes a pair of first overhanging parts that overhang from a central rigid body part along the first axial direction of three orthogonal axes, and and another pair of second overhangs extending along the first overhang. , the parallel deflection beam displacement mechanism and the radial deflection displacement mechanism on both sides are arranged symmetrically with respect to the central rigid body part, and the parallel deflection beam displacement mechanism generates a translational displacement in the second axial direction. , the radial deflection beam displacement mechanism is the third
The rotational displacement around the axis of the second
Two sets of parallel flexure beam displacement mechanisms are arranged on each of the overhang part on one side and the overhang part on the other side of the overhang part, so that each set of parallel flexure beam displacement mechanisms is symmetrical to each other about the central rigid body part. , one set of parallel flexure beam displacement mechanisms is configured to generate a first axial translational displacement, and the other set of parallel flexure beam displacement mechanisms are configured to generate a third axial translational displacement; A rigid support plate is provided, and a radial flexure beam displacement mechanism that generates a rotational displacement around a first axis and a radial flexure beam displacement mechanism that generates a rotational displacement around a second axis are provided on the support plate. It is characterized in that the rigid body part of one of the radial deflection beam displacement mechanisms is connected to the end of the first set of overhanging parts or the end of the second set of overhanging parts.
3つの平行たわみ梁変位機構によりX軸、y軸。 X-axis and y-axis by three parallel deflection beam displacement mechanisms.
z軸方向の並進変位を生じさせ、又、3つの放射たわみ
梁変位機構によりX軸、y軸方向の軸まわりおよび2軸
まわりの回転変位を生じさせる。Translational displacement in the z-axis direction is caused, and rotational displacement around the x-axis, y-axis direction, and two axes is caused by the three radial deflection beam displacement mechanisms.
以下、本発明を図示の実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on illustrated embodiments.
第1図は本発明の実施例に係る微細位置決め装置の分解
斜視図である。図で、X+3’+2は互いに直交する座
標軸を示す。15は剛性の高い部材より成る中心剛体部
、16aは中心剛体部31からy軸方向に張出した張出
し部、16bは中心剛体部15から張出し部16aと反
対向きに張出した張出し部、17aは中心剛体部15か
らX軸方向に張出した張出し部、17bは中心剛体部1
5から張出し部17aと反対向きに張出した張出し部で
ある。18a、18bはそれぞれ張出し部16a、16
bの端部下端に設けられた固定部、19a、19bはそ
れぞれ張出し部17a、17bの端部上端に設けられた
連結部である。張出し部16a、 16b、17a
、17bs固定部1)3a、isbおよび連結部19a
、19bはそれぞれ中心剛体部15と同じ部材で構成さ
れ、中心剛体部15とともに1つのブロックから加工成
形される。FIG. 1 is an exploded perspective view of a fine positioning device according to an embodiment of the present invention. In the figure, X+3'+2 indicates coordinate axes that are orthogonal to each other. Reference numeral 15 denotes a central rigid body part made of a highly rigid member, 16a an overhanging part extending from the central rigid body part 31 in the y-axis direction, 16b an overhanging part extending from the central rigid body part 15 in the opposite direction to the overhanging part 16a, and 17a a center An overhanging portion 17b extending from the rigid body portion 15 in the X-axis direction is the central rigid body portion 1
This is an overhang portion that overhangs from 5 in the opposite direction to the overhang portion 17a. 18a and 18b are projecting portions 16a and 16, respectively.
The fixed parts 19a and 19b provided at the lower ends of the ends of b are connecting parts provided at the upper ends of the overhanging parts 17a and 17b, respectively. Overhanging portions 16a, 16b, 17a
, 17bs fixing part 1) 3a, isb and connecting part 19a
, 19b are each made of the same material as the central rigid body part 15, and are processed and formed together with the central rigid body part 15 from one block.
16 M、、、 16 M、bはそれぞれ張出し部1
6a。16 M, , 16 M, b are respectively overhang parts 1
6a.
16bに構成された放射たわみ梁変位機構であり、互い
に中心剛体部15に対して対称的に構成されている。放
射たわみ梁変位機構16M2□16M、。16b, and are configured symmetrically with respect to the central rigid body portion 15. Radial deflection beam displacement mechanism 16M2□16M,.
は共働して2軸方向の軸まわりの回転変位を発生する。work together to generate rotational displacement about the axes in two axial directions.
なお、放射たわみ梁変位機構の構造については後述する
。16 F、、、 16 FX、はそれぞれ張出し部
16a、16bにおける放射たわみ梁変位機構16 M
2−、 16 Mzbの外方に構成された平行たわみ梁
変位機構であり、互いに中心剛体部15に対して対称的
に構成されている。平行たわみ梁変位機構16 F、、
、 16 FXbは共働してX軸方向の並進変位を発
生する。The structure of the radial deflection beam displacement mechanism will be described later. 16 F, , 16 FX are the radial deflection beam displacement mechanisms 16 M at the overhanging portions 16 a and 16 b, respectively.
2-, 16 Mzb are parallel flexible beam displacement mechanisms configured outwardly, and are configured symmetrically to each other with respect to the central rigid body portion 15. Parallel deflection beam displacement mechanism 16F,,
, 16 FXb work together to generate translational displacement in the X-axis direction.
17 F、、、 17 F、bはそれぞれ張出し部1
7a。17 F, , 17 F and b are respectively overhang parts 1
7a.
17bに構成された平行たわみ梁変位機構であり、互い
に中心剛体部15に対して対称的に構成されている。平
行たわみ梁変位機構17 Fy−、17F ybは共働
してy軸方向の並進変位を発生する。17Fz、、17
Fzbはそれぞれ張出し部17a、17bにおける平行
たわみ梁変位機構17F、、、17Fybの外方に構成
された平行たわみ梁変位機構であり、互いに中心剛体部
15に対して対称的に構成されている。平行たわみ梁変
位機構17F!、。17b, and are configured symmetrically with respect to the central rigid body portion 15. The parallel deflection beam displacement mechanisms 17Fy- and 17Fyb work together to generate translational displacement in the y-axis direction. 17Fz,,17
Fzb is a parallel deflection beam displacement mechanism configured outwardly of the parallel deflection beam displacement mechanisms 17F, . Parallel deflection beam displacement mechanism 17F! ,.
17Fzbは共働して2軸方向の並進変位を発生する。17Fzb works together to generate translational displacement in two axial directions.
平行たわみ梁変位機構17F2□ 17Fzbが構成さ
れている部分はその上端部が他の部分に対して高くなる
ように形成されている。なお、平行たわみ梁変位機構の
構造については後述する。The portion where the parallel deflection beam displacement mechanism 17F2□ 17Fzb is constructed is formed such that its upper end is higher than the other portions. The structure of the parallel deflection beam displacement mechanism will be described later.
上記放射たわみ梁変位機構16M!、、16M2い平行
たわみ梁変位機構16F、、、16FXb、17F y
−、17F yb、17 F□、17Fzbは各張出し
部16a、16b、17a、17bの所定個所に所定の
貫通孔を形成することにより構成される。The above radial deflection beam displacement mechanism 16M! ,, 16M2 parallel deflection beam displacement mechanism 16F, , 16FXb, 17F y
-, 17Fyb, 17F□, and 17Fzb are constructed by forming predetermined through holes at predetermined locations of each of the overhang portions 16a, 16b, 17a, and 17b.
21は剛体部材で作られた支持板である。22M、□
22M、bは支持板21上に対称的に配置された放射た
わみ梁変位機構である。各放射たわみ梁変位機構22
My−、22Mybはy軸方向に延びる共通の1つの軸
のまわりに回転変位を発生せしめる。22M、、、22
MXbは支持板21上に対称的に配置された放射たわみ
梁変位機構であり、それぞれX軸方向に延びる共通の1
つの軸のまわりに回転変位を発生せしめる。各放射たわ
み梁変位機構16My−1)6M、b、16MX、、1
6M−bの構造については後述する。21 is a support plate made of a rigid member. 22M, □
22M, b are radial deflection beam displacement mechanisms symmetrically arranged on the support plate 21; Each radial deflection beam displacement mechanism 22
My- and 22Myb generate rotational displacement around one common axis extending in the y-axis direction. 22M,,,22
MXb is a radial deflection beam displacement mechanism arranged symmetrically on the support plate 21, each with a common one extending in the X-axis direction.
Generates rotational displacement around two axes. Each radial deflection beam displacement mechanism 16My-1) 6M, b, 16MX,, 1
The structure of 6M-b will be described later.
23a、23bはそれぞれ放射たわみ梁変位機構22
My−、22Mybを構成する一方の剛体部(他方の剛
体部は支持板21)、24a、24bはそれぞれ放射た
わみ梁変位機構22MX、、22M H%を構成する一
方の剛体部(同じく他方の剛体部は支持板21)である
。25a、25bはそれぞれ剛体部24a、24bに固
定されたL字形の連結部、26は剛体部23a、23b
に固定された微動テーブルである。この微動テーブル2
6上には微細位置決めされる対象物体が載置固定される
。23a and 23b are respectively radial deflection beam displacement mechanisms 22
One rigid body part (the other rigid body part is the support plate 21) constituting My-, 22Myb, and 24a, 24b are one rigid body part (the other rigid body The part is the support plate 21). 25a and 25b are L-shaped connecting parts fixed to the rigid body parts 24a and 24b, respectively, and 26 is the rigid body part 23a and 23b.
It is a fine movement table fixed to. This fine movement table 2
A target object to be finely positioned is placed and fixed on 6.
張出し部172.17bの連結部19a、19bとL字
形の連結部25a、25bとは図の2点鎖線に示すよう
に互いに連結される。この結果、支持板21とそれに支
持されている放射たわみ梁変位機構22M−= 22M
o、22My−922Mybおよび微動テーブル26は
、中心剛体部15の上部において連結部19 a、
19 b、 25 a、 25bにより吊下げられ
た状態となる。The connecting portions 19a, 19b of the overhanging portions 172.17b and the L-shaped connecting portions 25a, 25b are connected to each other as shown by the two-dot chain line in the figure. As a result, the support plate 21 and the radial deflection beam displacement mechanism 22M-=22M supported by the support plate 21
o, 22My-922Myb and the fine movement table 26 are connected to the connecting part 19 a, at the upper part of the central rigid body part 15.
It will be in a suspended state by 19 b, 25 a, and 25 b.
この状態において、各放射たわみ梁変位機構22Mx−
= 22M−b、22My−、22Myb、16M−
−,16M−bの各たわみ梁(後述)の放射角度を選定
することにより、それらの各回転軸は微動テーブル26
の表面上の一点で直交せしめられる。In this state, each radial deflection beam displacement mechanism 22Mx-
= 22M-b, 22My-, 22Myb, 16M-
By selecting the radiation angle of each flexible beam (described later) of -, 16M-b, each of their rotation axes can be adjusted to the fine movement table 26.
are perpendicular to each other at a point on the surface of
ここで、上記構造における平行たわみ梁変位機構および
放射たわみ梁変位機構の構造を図により説明する。第2
図(a)、 (b)は対称形の平行だわみ梁変位機構
の側面図である。Here, the structures of the parallel flexure beam displacement mechanism and the radial flexure beam displacement mechanism in the above structure will be explained with reference to the drawings. Second
Figures (a) and (b) are side views of a symmetrical parallel flexure beam displacement mechanism.
図で、31 a、 3 l b、 31 cは剛体
部、34a1,34azは剛体部31c、31a間に互
いに平行に連結された平行たわみ梁である。平行たわみ
梁34a+、34azは剛体部にあけた貫通孔32aに
より形成される。34 b+、34 btは剛体部31
c、31b間に互いに平行に連結された平行たわみ梁で
あり、剛体部にあけられた貫通孔32bにより形成され
る。36a、36bは圧電アクチュエータであり、それ
ぞれ貫通孔32a。In the figure, 31a, 3lb, and 31c are rigid parts, and 34a1 and 34az are parallel flexible beams connected in parallel between the rigid parts 31c and 31a. The parallel flexible beams 34a+ and 34az are formed by through holes 32a formed in the rigid body part. 34 b+, 34 bt are rigid body parts 31
It is a parallel flexible beam connected parallel to each other between c and 31b, and is formed by a through hole 32b drilled in the rigid body part. 36a and 36b are piezoelectric actuators, each having a through hole 32a.
32b内に突出した剛体部からの突出部間に装着されて
いる。剛体部31cの中心から左方の構成により平行た
わみ梁変位機構39aが、又、右方の構成により平行た
わみ梁変位i措39bが構成される。It is mounted between the protrusions from the rigid body part protruding into 32b. The configuration to the left of the center of the rigid body portion 31c constitutes a parallel deflection beam displacement mechanism 39a, and the configuration to the right constitutes a parallel deflection beam displacement mechanism 39b.
ここで、座標軸を図示のように定める(y軸は紙面に垂
直な方向)。今、圧電アクチュエータ36a、36bに
同時に電圧を印加して同一大きさのZ軸方向の力fを発
生させる。このとき、一方の平行たわみ梁変位機構、例
えば平行たわみ梁変位機構39aに生じる変位について
考える。圧電アクチュエータ36aに電圧が印加される
ことにより、剛体部31cは力fによりz軸方向に押圧
されることになる。このため、平行たわみ梁34a+、
34azは第4図に示す平行ばね2a。Here, coordinate axes are determined as shown in the figure (y-axis is perpendicular to the plane of the paper). Now, a voltage is simultaneously applied to the piezoelectric actuators 36a and 36b to generate the same force f in the Z-axis direction. At this time, consider the displacement that occurs in one parallel flexible beam displacement mechanism, for example, the parallel flexible beam displacement mechanism 39a. By applying a voltage to the piezoelectric actuator 36a, the rigid body portion 31c is pressed in the z-axis direction by a force f. For this reason, the parallel deflection beam 34a+,
34az is a parallel spring 2a shown in FIG.
2bと同じように曲げ変形を生じ、剛体部31cは第2
図(b)に示すように2軸方向に変位する。Similar to 2b, bending deformation occurs, and the rigid body part 31c
As shown in Figure (b), it is displaced in two axial directions.
このとき、仮に他方の平行たわみ梁変位機構39bが存
在しないとすると剛体部31Cには極めて微小ではある
が横変位(X軸方向の変位)をも同時に生じるはずであ
−る。At this time, if the other parallel deflection beam displacement mechanism 39b were not present, a very small lateral displacement (displacement in the X-axis direction) would also occur in the rigid portion 31C at the same time.
又、平行たわみ梁変位機構39aが存在しない場合、他
方の平行たわみ梁変位機構39bに生じる変位について
考えると、平行たわみ梁変位機構39bは剛体部31c
の中心を通るy軸方向に沿う面(基準面)に対して平行
たわみ梁変位機構39aと面対称に構成されていること
から、基準面に関して面対称な力fを受けると上記と同
様に、剛体部31cには2軸方向の変位と同時に上記横
変位が生じ、その大きさや方向は、平行たわみ梁変位機
構39aのそれと基準面に関して面対称となる。すなわ
ち、上記横変位についてみると、平行たわみ梁変位機構
39aに生じる横変位は、X軸方向の変位については図
で左向き、y軸まわりの回転変位については図で反時計
方向に生じ、一方、平行たわみ梁変位機構39aに生じ
る横変位は、X軸方向変位については図で右向き、y軸
まわりの回転変位については図で時計方向に生じる。Moreover, when considering the displacement that occurs in the other parallel flexible beam displacement mechanism 39b when the parallel flexible beam displacement mechanism 39a does not exist, the parallel flexible beam displacement mechanism 39b is the rigid body part 31c.
Since it is constructed in plane symmetry with the parallel deflection beam displacement mechanism 39a with respect to the plane (reference plane) along the y-axis direction passing through the center of The above-mentioned lateral displacement occurs in the rigid body portion 31c at the same time as the displacement in the biaxial directions, and its magnitude and direction are symmetrical with respect to the reference plane with respect to the parallel deflection beam displacement mechanism 39a. That is, regarding the above-mentioned lateral displacement, the lateral displacement that occurs in the parallel deflection beam displacement mechanism 39a occurs in the left direction in the figure for displacement in the X-axis direction, and counterclockwise in the figure for rotational displacement around the y-axis. The lateral displacement that occurs in the parallel deflection beam displacement mechanism 39a occurs in the right direction in the figure for displacement in the X-axis direction, and clockwise in the figure for rotational displacement around the y-axis.
そして、それら各X軸方向変位の大きさおよびy軸まわ
りの回転変位の大きさは等しい。したがって、両者に生
じる横変位は互いにキャンセルされる。この結果、力f
が加わったことにより、各平行たわみ梁34a+、34
az、34b+、34bzにその長手方向の伸びによる
僅かな内部応力の増大が生じるだけで、剛体部31cは
z軸方向のみの変位(主変位)εを生じる。The magnitude of each displacement in the X-axis direction and the magnitude of rotational displacement around the y-axis are equal. Therefore, the lateral displacements occurring in both cancel each other out. As a result, the force f
By adding , each parallel flexible beam 34a+, 34
When az, 34b+, and 34bz are only slightly increased in internal stress due to their longitudinal extension, the rigid body portion 31c produces a displacement (principal displacement) ε only in the z-axis direction.
圧電アクチュエータ36a、36bに印加されている電
圧が除かれると、各平行たわみ梁34a+、34az、
34J、34bzは変形前の状態に復帰し、平行たわみ
梁変位機構39a、39bは第2図(a)に示す状態に
戻り、変位εは0となる。When the voltage applied to piezoelectric actuators 36a, 36b is removed, each parallel flexible beam 34a+, 34az,
34J and 34bz return to the state before deformation, the parallel deflection beam displacement mechanisms 39a and 39b return to the state shown in FIG. 2(a), and the displacement ε becomes 0.
第3図(a)、 (b)は放射たわみ梁変位機構の側
面図である。図で、41a、41b、41cは剛体部、
44a+ 、44ag 、44b、、44bt。FIGS. 3(a) and 3(b) are side views of the radial deflection beam displacement mechanism. In the figure, 41a, 41b, 41c are rigid body parts,
44a+, 44ag, 44b, 44bt.
は放射たわみ梁である。各放射たわみ梁44a+。is a radial deflection beam. Each radial deflection beam 44a+.
44 az、44 bt、 44 bzは剛体部41c
の中心を通る紙面に垂直な軸Oに対して一点鎖線し+、
t、zに沿って放射状に延びており、それぞれ隣接する
剛体部間を連結している。放射たわみ梁44’a+。44 az, 44 bt, 44 bz are rigid body parts 41c
Draw a dashed line with respect to the axis O perpendicular to the paper plane passing through the center of +,
It extends radially along t and z, and connects adjacent rigid body parts. Radial deflection beam 44'a+.
44a2は貫通孔42aをあけることにより形成され、
又、放射たわみ梁44b+、44bzは貫通孔42bを
あけることにより形成される。46a。44a2 is formed by drilling a through hole 42a,
Further, the radial deflection beams 44b+, 44bz are formed by opening the through holes 42b. 46a.
46bは圧電アクチュエータであり、それぞれ貫通孔4
2a、42bに剛体部から突出した突出部間に装着され
ている。軸Oの左側の構成により放射たわみ梁変位機構
49aが、又、右側の構成により放射たわみ梁変位機構
49bが構成される。46b is a piezoelectric actuator, and each through hole 4
2a and 42b between the protruding parts protruding from the rigid body part. The configuration on the left side of the axis O constitutes a radial flexure beam displacement mechanism 49a, and the configuration on the right side constitutes a radial flexure beam displacement mechanism 49b.
今、圧電アクチュエータ46a、46bに同時に所定の
電圧を印加して同一の大きさの、中心軸0を中心とする
円に対する接線方向の力fを発生させる。そうすると、
剛体部41cの左方の突出部は圧電アクチュエータ46
aに発生した力により上記接線に沿って上向きに押され
、剛体部41Cの右方の突出部は圧電アクチュエータ4
6bに発生した力により上記接線に沿って下向きに押さ
れる。剛体部41cは両開体部41a、41bに放射た
わみ梁44a+、44az、441)+、44bzで連
結された形となっているので、上記の力を受けた結果、
第3図(b)に示すように放射たわみff144a+、
44az、44b+、44bzの剛体部41a、41b
に連結されている部分は点0から放射状に延びる直線L
r、Lz上にあるが、剛体部41cに連結されている部
分は、上記直線L+、Lxから僅かにずれた直線(この
直線も点Oから放射状に延びる直線である。)L、゛、
L2 ′上にずれる微小変位を生じる。このため、剛体
部41cは図で時計方向に微小角度δだけ回動する。こ
の回転変位δの大きさは、放射たわみ梁44a、。Now, a predetermined voltage is simultaneously applied to the piezoelectric actuators 46a and 46b to generate a force f of the same magnitude in a tangential direction to a circle centered on the central axis 0. Then,
The left protrusion of the rigid body part 41c is a piezoelectric actuator 46.
a is pushed upward along the tangent line, and the right protrusion of the rigid body part 41C is pushed upward by the piezoelectric actuator 4.
The force generated at 6b pushes it downward along the tangent line. Since the rigid body part 41c is connected to both open body parts 41a and 41b by radial bending beams 44a+, 44az, 441)+, and 44bz, as a result of receiving the above force,
As shown in FIG. 3(b), the radiation deflection ff144a+,
44az, 44b+, 44bz rigid body parts 41a, 41b
The part connected to is a straight line L extending radially from point 0.
The portions located on r and Lz but connected to the rigid body portion 41c are straight lines slightly deviated from the straight lines L+ and Lx (this straight line is also a straight line extending radially from point O) L, ゛,
A minute displacement is caused on L2'. Therefore, the rigid body portion 41c rotates by a small angle δ clockwise in the figure. The magnitude of this rotational displacement δ is the radial deflection beam 44a.
443z、44b+、44bzの曲げに対する剛性によ
り定まるので、力fを正確に制御すれば、回転変位δも
それと同じ精度で制御できることになる。Since it is determined by the bending rigidity of 443z, 44b+, and 44bz, if the force f is accurately controlled, the rotational displacement δ can also be controlled with the same accuracy.
圧電アクチュエータ46a、46bに印加されている電
圧が除かれると、放射たわみ梁44a+。When the voltage applied to the piezoelectric actuators 46a, 46b is removed, the radiating deflection beam 44a+.
44az、44b+、44bzは変形前の状態に復帰し
、回転変位機構は第3図(a)に示す状態に戻り、変位
δは0となる。44az, 44b+, and 44bz return to the state before deformation, the rotational displacement mechanism returns to the state shown in FIG. 3(a), and the displacement δ becomes 0.
なお、第1図に示す放射たわみ梁変位機構22MX−,
22M、Ib、 22 My−、22Mybが第3図
(a)に示す一方の放射たわみ梁変位機構49a(49
b)に相当するのは明らかであり、その動作も上記の動
作に準じる。In addition, the radial deflection beam displacement mechanism 22MX-, shown in FIG.
22M, Ib, 22 My-, 22Myb are one of the radial deflection beam displacement mechanisms 49a (49
It is obvious that this corresponds to b), and its operation is also similar to the above operation.
次に、本実施例の動作を説明する。今、平行たわみ梁変
位機構16 F、、、 16 F、bの圧電アクチュ
エータに等しい電圧を印加すると、その平行たわみ梁3
4at、’34ai、34b+、34bzが印加電圧に
応じて第1図のX軸方向に第2図(b)に示ように変形
し、並進変位する。この並進変位は、放射たわみ梁変位
機構16M、、、16M、b、中心剛体部15、平行た
わみ梁変位機構17 F、、。Next, the operation of this embodiment will be explained. Now, when an equal voltage is applied to the piezoelectric actuators of the parallel flexible beam displacement mechanisms 16 F, , 16 F, b, the parallel flexible beam 3
4at, '34ai, 34b+, and 34bz are deformed and translated in the X-axis direction of FIG. 1 as shown in FIG. 2(b) according to the applied voltage. This translational displacement is caused by the radial flexure beam displacement mechanisms 16M, , 16M,b, the central rigid body portion 15, and the parallel flexure beam displacement mechanisms 17F, .
17 Fyb、 17 F、、、 17 F、、、
連結部19a。17 Fyb, 17 F,, 17 F,...
Connecting portion 19a.
19 b、 25 a、 25 b、放射たわみ梁
変位機構M Xa+ M、、、、支持板21、放射たわ
み梁変位機構22 My−、22Mybを経て剛体部2
3a、23bに固定された微動テーブル26に伝達され
、微動テーブル26は同量だけX軸方向に並進変位する
。19 b, 25 a, 25 b, radial flexure beam displacement mechanism M
3a and 23b, and the fine movement table 26 is translated by the same amount in the X-axis direction.
又、放射たわみ梁16 Mz−、16Mzbの圧電アク
チュエータに等しい電圧を印加すると、その放射たわみ
梁44a+、44az、44b+、44bzは印加電圧
に応じて第1図の2軸方向の軸まわりに第3図(b)に
示ように変形して回転変位する。Furthermore, when an equal voltage is applied to the piezoelectric actuators of the radial flexure beams 16 Mz- and 16Mzb, the radial flexure beams 44a+, 44az, 44b+, and 44bz move in the third direction around the two axes in FIG. 1 according to the applied voltage. It deforms and rotates as shown in Figure (b).
この回転変位は、中心剛体部15.平行たわみ梁変位機
構17F□、 17 F、b、 17 F、、、 17
F、、。This rotational displacement is caused by the central rigid body portion 15. Parallel deflection beam displacement mechanism 17F□, 17 F, b, 17 F,,, 17
F...
連結部19a、19b、25a、25b、放射たわみ梁
変位機構22MX、、22M、、、支持板21、放射た
わみ梁変位機構22 My−、22Mybを経て微動テ
ーブル26に伝えられ、微動テーブル26を当該軸まわ
りに回転変位する。It is transmitted to the fine movement table 26 through the connecting parts 19a, 19b, 25a, 25b, the radial flexure beam displacement mechanisms 22MX, 22M, . Rotational displacement around the axis.
同様に、平行たわみ梁変位機構17F、、、17Fyb
の圧電アクチュエータに同一電圧を印加した場合、微動
テーブル26はy軸方向に並進変位し、また、平行たわ
み梁変位機構17 F、、、 17 Fzbの圧電ア
クチュエータに同一電圧を印加すると微動テーブル26
はX軸方向に並進変位する。Similarly, parallel deflection beam displacement mechanism 17F, , 17Fyb
When the same voltage is applied to the piezoelectric actuators of , the fine movement table 26 is translated in the y-axis direction, and when the same voltage is applied to the piezoelectric actuators of the parallel deflection beam displacement mechanism 17F, 17Fzb, the fine movement table 26
is translated in the X-axis direction.
一方、放射たわみ梁22M、、、22M、、の圧電アク
チュエータに同一電圧を印加すると、この電圧に応じて
それらの放射たわみ梁が第3図(b)に示すように変形
する。この場合、支持板15は連結部25 a、 2
5 b、放射たわみ梁変位機構22MX、、22M、b
を介して固定状態にあるので、放射たわみ梁変位機構2
2M、、、22M、bはy軸方向の軸まわりに回転変位
を発生し、これにより微動テーブル26は当該軸まわり
に回転変位する。On the other hand, when the same voltage is applied to the piezoelectric actuators of the radial deflection beams 22M, . In this case, the support plate 15 has connecting portions 25 a, 2
5 b, radial deflection beam displacement mechanism 22MX,, 22M, b
Since it is in a fixed state via , the radial deflection beam displacement mechanism 2
2M, , 22M, b generate a rotational displacement around an axis in the y-axis direction, and thereby the fine movement table 26 is rotationally displaced around the axis.
又、放射たわみ梁変位機構22 M、、、 22 M
、bの圧電アクチュエータに同一電圧を印加すると、こ
の電圧に応じてその放射たわみ梁が変形しX軸方向の軸
まわりに回転変位を発生する。この回転変位は支持板2
1、放射たわみ梁変位機横22M、、、 22 My
bを介して微動テーブル26に伝達され、微動テーブル
26は当該軸まわりに回転変位する。In addition, radial deflection beam displacement mechanism 22 M, 22 M
, b, when the same voltage is applied to the piezoelectric actuators, the radial deflection beams are deformed in accordance with this voltage and generate rotational displacement around the X-axis direction. This rotational displacement is caused by the support plate 2
1. Radiation deflection beam displacement machine horizontal 22M... 22 My
b to the fine movement table 26, and the fine movement table 26 is rotationally displaced around the axis.
以上の説明は1つの軸についての並進変位および回転変
位の説明であるが、上記各平行たわみ梁変位機構および
各放射たわみ梁変位機構のうちの任意の複数を選択して
任意の電圧を印加することにより、微動テーブル26を
任意に変位させることができる。The above explanation is about translational displacement and rotational displacement about one axis, but any plurality of the above-mentioned parallel flexure beam displacement mechanisms and radial flexure beam displacement mechanisms can be selected and an arbitrary voltage applied. By doing so, the fine movement table 26 can be arbitrarily displaced.
このように、本実施例では、一方の張出し部にX軸方向
に並進変位する平行たわみ梁変位機構およびX軸方向の
軸まわりに回転変位する放射だわみ梁変位機構を設け、
他方の張出し部にy軸方向に並進変位する平行たわみ梁
変位機購およびX軸方向に並進変位する平行たわみ梁変
位機構を設け、一方の張出し部の端部を固定し、他方の
張出し部の端部に、支持板に設けられたX軸方向の軸ま
わりに回転変位する放射だわみ梁変位機構の剛体部を連
結し、同じく支持板に設りられたy軸方向の軸まわりに
回転変位する放射たわみ梁変位機構の剛体部に微動テー
ブルを固定したので、極めて簡単かつ小形の構成で3軸
の並進変位および3軸の回転変位を得ることができる。As described above, in this embodiment, a parallel flexure beam displacement mechanism for translational displacement in the X-axis direction and a radial flexure beam displacement mechanism for rotational displacement around an axis in the X-axis direction are provided on one of the overhangs,
A parallel flexible beam displacement mechanism that translates in the y-axis direction and a parallel flexible beam displacement mechanism that translates in the x-axis direction are installed on the other overhang, and the end of one overhang is fixed, and the The rigid body part of the radial deflection beam displacement mechanism that rotates around the axis in the X-axis direction provided on the support plate is connected to the end, and the rigid body part rotates around the axis in the y-axis direction also provided on the support plate. Since the fine movement table is fixed to the rigid part of the displacing radial beam displacement mechanism, three-axis translational displacement and three-axis rotational displacement can be obtained with an extremely simple and compact configuration.
又、各回転軸が微動テーブルの表面上の一点で直交する
ので、回転変位の回転中心は微動テーブル上に存在する
ことになり、正確な回転変位を行うことができる。Furthermore, since the respective rotational axes are orthogonal to each other at one point on the surface of the fine movement table, the center of rotation for rotational displacement is located on the fine movement table, and accurate rotational displacement can be performed.
なお、上記実施例の説明では、y軸方向の張出し部の端
部を固定し、X軸方向の張出し部の端部に連結部を設け
た例について説明したが、これとは逆に、X軸方向の張
出し部の端部を固定し、y軸方向の張出し部の脚部に連
結部を設けてもよいのは明らかである。又、支持板上の
各軸の放射たわみ梁変位機構を対称的に2つづつ設けた
例について説明したが、これに限ることはなく、一方を
1つとして中央に設けることもできる。この場合、中央
に設けられた1つの放射たわみ梁変位機構が連結部に連
結されるものでない場合には、その剛体部が微動テーブ
ルとなる。又、各回転軸は必ずしも微動テーブルの表面
に存在する必要はなく、任意に選択することができる。In the above embodiment, an example was explained in which the end of the overhang in the y-axis direction was fixed and a connecting part was provided at the end of the overhang in the X-axis direction. It is clear that the ends of the axial extensions may be fixed and the legs of the y-axis extensions provided with connections. Although an example has been described in which two radial deflection beam displacement mechanisms for each axis on the support plate are provided symmetrically, the present invention is not limited to this, and one may be provided in the center. In this case, if the single radial deflection beam displacement mechanism provided at the center is not connected to the connecting portion, the rigid body portion serves as the fine movement table. Further, each rotation axis does not necessarily have to be present on the surface of the fine movement table, and can be arbitrarily selected.
以上述べたように、本発明では、一方向の張出し部に並
進方向が異なる2つの平行たわみ梁変位機格を構成し、
他方向の張出し部に前記2つの平行たわみ梁変位機構の
並進方向とは異なる並進方向の平行たわみ梁変位機構お
よび放射たわみ梁変位機構を構成し、一方の張出し部の
端部に支持板に設けられた放射たわみ梁変位機構の剛体
部を連結し、当該支持板に他の放射たわみ梁変位機構を
設け、上記3つの放射たわみ梁変位機構の各回転軸の軸
方向が互いに直交するようにしたので、極めて簡単かつ
小形の構成で3軸の並進変位および3軸の回転変位を得
ることができる。As described above, in the present invention, two parallel deflection beam displacement machines with different translation directions are configured on an overhang in one direction,
A parallel flexure beam displacement mechanism and a radial flexure beam displacement mechanism in a translational direction different from the translation direction of the two parallel flexure beam displacement mechanisms are configured on an overhang in the other direction, and a radial flexure beam displacement mechanism is provided on the support plate at the end of one overhang. The rigid body parts of the radial flexure beam displacement mechanisms were connected, and another radial flexure beam displacement mechanism was provided on the support plate, so that the axial directions of the rotation axes of the three radial flexure beam displacement mechanisms were orthogonal to each other. Therefore, three-axis translational displacement and three-axis rotational displacement can be obtained with an extremely simple and compact configuration.
第1図は本発明の実施例に係る微細位置決め装置の分解
斜視図、第2図(a) 、(b)は第1図に示す放射た
わみ梁変位機構の側面図、第3図(a)。
(b)は第1図に示す放射たわみ梁変位機構の側面図、
第4図、第5図および第6図は従来の微細位置決め装置
の側面図および斜視図、第7図は第6図に示す装置に用
いられるバイモルフ形圧電素子の斜視図である。
15・・・・・・中心剛体部、16a、16b、17a
。
17b・・・・・・張出し部、16F、、、 16
Fxb+ 16F□、 16Fyb、 17F−
、17F−b・・・・・・平行たわみ梁変位機構、16
Mza、 16 Mzb、 22 M、、。
22 Mxb、 22 My−、22Myb・・・・
・・放射たわみ梁変位機構、19a、19b、25a、
25b−・−・一連結部、21・・・・・・支持板、2
6・・・・・・微動テーブル。
第1図
第2図
(a)
(b)
第3図
第6図
/2c3
第7図Figure 1 is an exploded perspective view of a fine positioning device according to an embodiment of the present invention, Figures 2 (a) and (b) are side views of the radial deflection beam displacement mechanism shown in Figure 1, and Figure 3 (a). . (b) is a side view of the radial deflection beam displacement mechanism shown in Fig. 1;
4, 5, and 6 are a side view and a perspective view of a conventional fine positioning device, and FIG. 7 is a perspective view of a bimorph type piezoelectric element used in the device shown in FIG. 6. 15... Central rigid body part, 16a, 16b, 17a
. 17b... Overhang, 16F... 16
Fxb+ 16F□, 16Fyb, 17F-
, 17F-b...Parallel flexible beam displacement mechanism, 16
Mza, 16 Mzb, 22 M,. 22 Mxb, 22 My-, 22 Myb...
...radial deflection beam displacement mechanism, 19a, 19b, 25a,
25b---Series connection part, 21---Support plate, 2
6...Fine movement table. Figure 1 Figure 2 (a) (b) Figure 3 Figure 6/2c3 Figure 7
Claims (7)
に対称的に突出する第1の組の張出し部と、前記中心剛
体部から前記第1の軸と直交する第2の軸方向に対称的
に突出する第2の組の張出し部と、前記第1の組の張出
し部にそれぞれ対称的に設けられた前記第1の軸ならび
に前記第2の軸に直交する第3の軸まわりに回転変位を
発生させる放射たわみ梁変位機構および前記第2の軸方
向の並進変位を発生させる平行たわみ梁変位機構の組と
、前記第2の組の張出し部にそれぞれ対称的に設けられ
た前記第1の軸方向の並進変位を発生させる平行たわみ
梁変位機構の組および前記第3の軸方向の並進変位を発
生させる平行たわみ梁変位機構の組と、剛体の支持板と
、この支持板上に設けられ前記第1の軸まわりに回転変
位を発生させる放射たわみ梁変位機構および前記第2の
軸まわりに回転変位を発生させる放射たわみ梁変位機構
と、前記支持板上の一方の放射たわみ梁変位機構の剛体
部と前記各組の張出し部の一方の組の端部とを連結する
連結部とを備えていることを特徴とする微細位置決め装
置。(1) a central rigid body part, a first set of overhanging parts symmetrically protruding from the central rigid body part in a first axis direction, and a second axis extending from the central rigid body part and perpendicular to the first axis; a second set of overhangs protruding symmetrically in the direction; and a third axis perpendicular to the first axis and the second axis, each symmetrically provided on the first set of overhangs. A set of a radial flexure beam displacement mechanism that generates a rotational displacement around the radial flexure beam displacement mechanism and a parallel flexure beam displacement mechanism that generates a translational displacement in the second axial direction, and a radial flexure beam displacement mechanism that is symmetrically provided on the overhang of the second set, respectively. A set of parallel flexible beam displacement mechanisms that generate the first translational displacement in the axial direction, a set of parallel flexible beam displacement mechanisms that generate the third translational displacement in the axial direction, a rigid support plate, and the support plate. a radial flexure beam displacement mechanism that is provided on the top and generates a rotational displacement around the first axis; a radial flexure beam displacement mechanism that generates a rotational displacement around the second axis; and one radial flexure on the support plate. A fine positioning device comprising: a connecting portion that connects the rigid body portion of the beam displacement mechanism and the end portion of one of the sets of overhang portions.
たわみ梁変位機構は、それぞれの変位発生方向の力によ
り曲げ変形を生じる互いに平行な複数のたわみ梁と、こ
れらたわみ梁に前記力を作用させるアクチュエータとに
より構成されていることを特徴とする微細位置決め装置
。(2) In claim (1), each of the parallel flexible beam displacement mechanisms includes a plurality of mutually parallel flexible beams that undergo bending deformation due to forces in respective displacement generating directions, and A fine positioning device characterized by comprising: an actuator that acts.
たわみ梁変位機構は、それぞれの回転変位発生軸まわり
のモーメントにより曲げ変形を生じ、前記軸上の定めら
れた点に関して互いに放射状に延びる複数のたわみ梁と
、これらたわみ梁に前記モーメントを作用させるアクチ
ュエータとにより構成されていることを特徴とする微細
位置決め装置。(3) In claim (1), each of the radial deflection beam displacement mechanisms causes bending deformation due to a moment around the respective rotational displacement generating axis, and radially displaces each other with respect to a predetermined point on the axis. A fine positioning device comprising a plurality of extending flexible beams and an actuator that applies the moment to the flexible beams.
いて、前記アクチュエータは圧電アクチュエータである
ことを特徴とする微細位置決め装置。(4) A fine positioning device according to claim (2) or (3), wherein the actuator is a piezoelectric actuator.
体部、前記第3の軸まわりに回転変位を発生させる放射
たわみ梁変位機構、および前記各平行たわみ梁変位機構
は1つの剛体ブロックから加工成形されることを特徴と
する微細位置決め装置。(5) In claim (1), the central rigid body part, the radial flexure beam displacement mechanism that generates rotational displacement around the third axis, and each of the parallel flexure beam displacement mechanisms are one rigid block. A fine positioning device characterized by being processed and formed from.
組の張出し部および前記第2の組の張り出し部は、一方
の組の張出し部の各端部が固定され、かつ、他方の組の
張出し部の各端部が前記連結部を構成していることを特
徴とする微細位置決め装置。(6) In claim (1), the first set of overhanging parts and the second set of overhanging parts are such that each end of one set of overhanging parts is fixed, and the other set of overhanging parts is fixed. A fine positioning device characterized in that each end of the set of overhanging portions constitutes the connecting portion.
に設けられた前記各放射たわみ梁変位機構の前記支持板
と対向する各剛体部は、それらの一方が前記連結部を構
成し他方に微動テーブルが設けられていることを特徴と
する微細位置決め装置。(7) In claim (1), each of the rigid body portions of each of the radial deflection beam displacement mechanisms provided on the support plate and facing the support plate, one of which constitutes the connection portion. A fine positioning device characterized in that a fine movement table is provided on the other side.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21061686A JPS6366613A (en) | 1986-09-09 | 1986-09-09 | Fine positioning device |
EP87201701A EP0264147B1 (en) | 1986-09-09 | 1987-09-08 | Fine positioning device and displacement controller therefor |
DE3788773T DE3788773T2 (en) | 1986-09-09 | 1987-09-08 | Device for fine adjustment and device for controlling these adjustments. |
US07/244,102 US5005298A (en) | 1986-09-09 | 1988-09-14 | Displacement controller for fine positioning device |
US07/244,168 US4888878A (en) | 1986-09-09 | 1988-09-14 | Fine positioning device |
US07/244,169 US4920660A (en) | 1986-09-09 | 1988-09-14 | Fine positioning device and displacement controller therefor |
US07/244,101 US4991309A (en) | 1986-09-09 | 1988-09-14 | Fine positioning device and displacement controller therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21061686A JPS6366613A (en) | 1986-09-09 | 1986-09-09 | Fine positioning device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6366613A true JPS6366613A (en) | 1988-03-25 |
Family
ID=16592274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21061686A Pending JPS6366613A (en) | 1986-09-09 | 1986-09-09 | Fine positioning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6366613A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0577988A (en) * | 1991-09-19 | 1993-03-30 | Aida Eng Ltd | Leveler feeder |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3786332A (en) * | 1969-03-19 | 1974-01-15 | Thomson Houston Comp Francaise | Micro positioning apparatus |
JPS5994103A (en) * | 1982-11-19 | 1984-05-30 | Nec Corp | Controller of electromechanical transducer |
JPS5996880A (en) * | 1982-11-19 | 1984-06-04 | Nec Corp | Electromechanical transducer |
JPS6025284A (en) * | 1983-07-22 | 1985-02-08 | Hitachi Ltd | Positioning device |
-
1986
- 1986-09-09 JP JP21061686A patent/JPS6366613A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3786332A (en) * | 1969-03-19 | 1974-01-15 | Thomson Houston Comp Francaise | Micro positioning apparatus |
JPS5994103A (en) * | 1982-11-19 | 1984-05-30 | Nec Corp | Controller of electromechanical transducer |
JPS5996880A (en) * | 1982-11-19 | 1984-06-04 | Nec Corp | Electromechanical transducer |
JPS6025284A (en) * | 1983-07-22 | 1985-02-08 | Hitachi Ltd | Positioning device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0577988A (en) * | 1991-09-19 | 1993-03-30 | Aida Eng Ltd | Leveler feeder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0264147B1 (en) | Fine positioning device and displacement controller therefor | |
US8179621B2 (en) | Apparatus for manipulation of an optical element | |
JP2002015985A (en) | Balanced positioning system for use in lithographic projection apparatus | |
US20080024749A1 (en) | Low mass six degree of freedom stage for lithography tools | |
JP2001351839A (en) | Charged particle beam exposure device and manufacturing method of semiconductor device | |
JPS6366613A (en) | Fine positioning device | |
JPH07109566B2 (en) | Fine positioning device | |
JPS63137306A (en) | Fine positioning device | |
JP2010522981A (en) | Split axis stage design for semiconductor applications | |
JPH0555263B2 (en) | ||
Al-Jodah et al. | Development and analysis of a novel large range voice coil motor-driven 3-DOF XYΘ micro-positioning mechanism | |
Li et al. | A compliance-based compensation approach for designing high-precision flexure mechanism | |
JPS6366615A (en) | Fine positioning device | |
JPS63137308A (en) | Fine positioning device | |
JP2849158B2 (en) | Fine movement mechanism | |
JP2614662B2 (en) | Fine movement mechanism | |
JPH05335199A (en) | Fine positioning device | |
JPS62214413A (en) | Fine positioning device | |
JPS62214412A (en) | Fine positioning device | |
JPS62174811A (en) | Finely positioning device | |
JPH0253544A (en) | Fine adjustment mechanism | |
JPH07109567B2 (en) | Fine positioning device | |
JP2773781B2 (en) | Precision fine movement stage device | |
JPH071451B2 (en) | Displacement control device for fine positioning device | |
JPS62214414A (en) | Fine positioning device |