JPS6366615A - Fine positioning device - Google Patents

Fine positioning device

Info

Publication number
JPS6366615A
JPS6366615A JP21061986A JP21061986A JPS6366615A JP S6366615 A JPS6366615 A JP S6366615A JP 21061986 A JP21061986 A JP 21061986A JP 21061986 A JP21061986 A JP 21061986A JP S6366615 A JPS6366615 A JP S6366615A
Authority
JP
Japan
Prior art keywords
parallel
axis
displacement
beam displacement
rigid body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21061986A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nagasawa
潔 長澤
Kozo Ono
耕三 小野
Kojiro Ogata
緒方 浩二郎
Takeshi Murayama
健 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP21061986A priority Critical patent/JPS6366615A/en
Priority to EP87201701A priority patent/EP0264147B1/en
Priority to DE3788773T priority patent/DE3788773T2/en
Publication of JPS6366615A publication Critical patent/JPS6366615A/en
Priority to US07/244,102 priority patent/US5005298A/en
Priority to US07/244,101 priority patent/US4991309A/en
Priority to US07/244,168 priority patent/US4888878A/en
Priority to US07/244,169 priority patent/US4920660A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • B23Q15/24Control or regulation of position of tool or workpiece of linear position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41133Compensation non linear transfer function
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41352Alternative clamping dilation of piezo, caterpillar motion, inchworm

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To perform displacements toward axes (x), (y) and (z) as well as a rotary displacement around the axis (z) in a simple structure, by combining the parallel and radial flexible beam displacement mechanisms. CONSTITUTION:The parallel flexible beam displacement mechanisms 16Fxa and 16Fxb which have parallel displacements toward an axis (x) and the radial flexure beam displacement mechanisms 16Mza and 16Mzb which have radial displacements around an axis (z) are provided to the projected parts 16a and 16b of a center rigid body 15 respectively. While the parallel flexible beam displacement mechanisms 17Fya and 17Fyb which have parallel displacements toward an axis (y) and the parallel flexible beam displacement mechanisms 17Fza and 17Fzb which have parallel displacements toward the axis (z) are provided to the projected parts 17a and 17b of the body 15 respectively. Then the end parts of both parts 16a and 16b are fixed and a fine adjustment table 20 is fixed at the end parts of both parts 17a and 17b. Thus it is possible to obtain the parallel displacements toward those three axes and a rotary displacement around a single axis in a simple constitution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造装置、電子顕微鏡等のμmオーダ
の調節を必要とする装置に使用される微細位置決め装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fine positioning device used in devices that require adjustment on the μm order, such as semiconductor manufacturing equipment and electron microscopes.

〔従来の技術〕[Conventional technology]

近年、各種技術分野においては、μmのオーダーの微細
な変位調節が可能である装置が要望されている。その典
型的な例がLSI(大規模集積回路)、超LSIの製造
工程において使用されるマスクアライナ、電子線描画装
置等の半導体製造装置である。これらの装置においては
、μmオーダーの微細な位置決めが必要であり、位置決
めの精度が向上するにしたがってその集積度も増大し、
高性能の製品を装造することができる。このような微細
な位置決めは上記半導体装置に限らず、電子顕微鏡をは
じめとする各種の高倍率光学装置等においても必要であ
り、その精度向上により、バイオテクノロジ、宇宙開発
等の先端技術においてもそれらの発展に大きく寄与する
ものである。
In recent years, in various technical fields, there has been a demand for devices capable of fine displacement adjustment on the order of μm. Typical examples are semiconductor manufacturing equipment such as mask aligners and electron beam lithography equipment used in the manufacturing process of LSIs (Large Scale Integrated Circuits) and VLSIs. These devices require fine positioning on the μm order, and as the positioning accuracy improves, the degree of integration also increases.
It is possible to manufacture high-performance products. Such fine positioning is necessary not only for the semiconductor devices mentioned above, but also for various high-magnification optical devices such as electron microscopes, and by improving its accuracy, it is also necessary for cutting-edge technologies such as biotechnology and space development. This will greatly contribute to the development of the world.

従来、このような微細位置決め装置は、例えば「機械設
計」誌、第27巻第1号(1983年1月号)の第32
頁乃至第36頁に示されるような種々の型のものが提案
されている。これらのうち、特に面倒な変位縮小機構が
不要であり、かつ、構成が簡単である点で、平行ばねと
微動アクチュエータを用いた型の微細位置決め装置が優
れていると考えられるので、以下、これを第4図に基づ
い説明する。
Conventionally, such a fine positioning device has been described, for example, in "Mechanical Design" magazine, Vol. 27, No. 1 (January 1983 issue), No. 32.
Various types have been proposed as shown on pages 36 to 36. Among these, a type of fine positioning device using a parallel spring and a fine movement actuator is considered to be superior in that it does not require a particularly troublesome displacement reduction mechanism and has a simple configuration. will be explained based on FIG.

第4図は従来の微細位置決め装置の側面図である。図で
、1は支持台、2a、2bは支持台1上に互いに平行に
固定された板状の平行ばね、3は平行ばね2a、  2
b上に固定された剛性の高い微動テーブルである。4は
支持台1と微動テーブル3との巻に装架された微動アク
チュエータである。
FIG. 4 is a side view of a conventional fine positioning device. In the figure, 1 is a support stand, 2a and 2b are plate-shaped parallel springs fixed parallel to each other on the support stand 1, and 3 are parallel springs 2a, 2.
This is a highly rigid fine movement table fixed on the top. Reference numeral 4 denotes a fine movement actuator mounted on the support base 1 and the fine movement table 3.

この微動アクチュエータ4には、圧電電子、電磁ソレノ
イド等が用いられ、これを励起することにより、微動テ
ーブル3に図中に示す座標軸のX軸方向の力が加えられ
る。
This fine movement actuator 4 uses a piezoelectric element, an electromagnetic solenoid, or the like, and by exciting it, a force is applied to the fine movement table 3 in the X-axis direction of the coordinate axes shown in the figure.

ここで、平行ばね2a、  2bはその構造上、X軸方
向の剛性は低く、これに対して2軸方向、y軸方向(紙
面に垂直な方向)の剛性が高いので、微動アクチュエー
タが励起されると、微動テーブル3はほぼX軸方向にの
み変位し、他方向の変位はほとんど発生しない。
Here, the parallel springs 2a and 2b have low rigidity in the X-axis direction due to their structure, but have high rigidity in the biaxial directions and the y-axis direction (direction perpendicular to the paper), so the fine movement actuator is excited. Then, the fine movement table 3 is displaced almost only in the X-axis direction, and almost no displacement occurs in other directions.

第5図は前述の参考文献に開示された例から容易に考え
られる従来の他の微細位置決め装置の斜視図である。図
で、6は支持台、?a、7bは支持台6上に互いに固定
された板状の平行ばね、8は平行ばね7a、7bに固定
された剛性の高い中間テーブル、9a、9bは平行ばね
7a、7bと直交する方向において互いに平行に中間テ
ーブル8に固定された板状の平行ばね、10は平行ばね
9a、9b上に固定された剛性の高い微動テーブルであ
る。座標軸を図中に示すように定めると、平行ばね7a
、7bはX軸方向に沿って配置され、平行ばね9a、9
bはy軸方向に沿って配置されている。この構造は、基
本的には第4図に示す1軸(X軸方向の変位を生じる)
の場合の構造を2段に積層した構造である。矢印F、は
微動テーブル10に加えられるX軸方向の力、矢印Fy
は中間テーブル10に加えられるy軸方向の力を示し、
力F、、F、を加えることができる図示されていない微
動アクチュエータが支持台6と微動テーブル10、支持
台6と中間テーブル8との間にそれぞれ設けられる。
FIG. 5 is a perspective view of another conventional fine positioning device that can be easily considered from the example disclosed in the above-mentioned reference document. In the figure, 6 is the support stand, ? a and 7b are plate-shaped parallel springs fixed to each other on the support base 6; 8 is a highly rigid intermediate table fixed to the parallel springs 7a and 7b; and 9a and 9b are parallel springs in a direction orthogonal to the parallel springs 7a and 7b. Plate-shaped parallel springs are fixed to the intermediate table 8 in parallel with each other, and reference numeral 10 is a highly rigid fine movement table fixed on the parallel springs 9a and 9b. If the coordinate axes are set as shown in the figure, the parallel spring 7a
, 7b are arranged along the X-axis direction, and parallel springs 9a, 9
b is arranged along the y-axis direction. This structure basically consists of one axis (displacement in the X-axis direction) as shown in Figure 4.
This is a structure in which the structure in the case of 2 is stacked in two layers. Arrow F is a force applied to the fine movement table 10 in the X-axis direction, arrow Fy
indicates the force in the y-axis direction applied to the intermediate table 10,
Fine movement actuators (not shown) capable of applying forces F, , F, are provided between the support base 6 and the fine movement table 10, and between the support base 6 and the intermediate table 8, respectively.

微動テーブル10に力FXが加えられると、平行ばね9
a、9bが変形し、一方、平行ばね7a。
When the force FX is applied to the fine movement table 10, the parallel spring 9
a, 9b are deformed, while parallel spring 7a.

7bはX軸方向の力FXに対しては高い剛性有するので
、微動テーブル10はほぼX軸方向のみ変位する。また
、中間テーブル8に力F、が加えられると、平行ばね7
a、7bが変形し、微動テーブル10は平行ばね9a、
9bを介してほぼy軸方向にのみ変位する。さらに、両
方の力FX+F、が同時に加えられると、各平行ばね7
a、7b、9a、9bは同時に変形し、微動テーブル1
0はこれに応じて2次元的に変位する。
Since 7b has high rigidity against the force FX in the X-axis direction, the fine movement table 10 is displaced almost only in the X-axis direction. Furthermore, when a force F is applied to the intermediate table 8, the parallel spring 7
a, 7b are deformed, and the fine movement table 10 has parallel springs 9a,
9b, it is displaced approximately only in the y-axis direction. Furthermore, if both forces FX+F are applied simultaneously, each parallel spring 7
a, 7b, 9a, 9b are deformed at the same time, fine movement table 1
0 is two-dimensionally displaced accordingly.

このように、第5図に示す装置は、第4図に示す装置が
1軸方向のみの位置決め装置であるのに対して2軸方向
の位置決めを行うことができる。
In this manner, the device shown in FIG. 5 can perform positioning in two axial directions, whereas the device shown in FIG. 4 is a positioning device in only one axial direction.

以上述べた第4図および第5図に示す装置は、°倣動テ
ーブル10を定められた軸方向に直線的に変位させる装
置である。これに対して、微動テーブルをある軸のまわ
りに微小回転変位させる微細位置決め装置が日本特許出
願公告公報、昭57−50433号に示されている。こ
のallH位置決め装置を第6図により説明する。
The device shown in FIGS. 4 and 5 described above is a device that linearly displaces the following movement table 10 in a predetermined axial direction. On the other hand, a fine positioning device for slightly rotationally displacing a fine movement table around a certain axis is disclosed in Japanese Patent Application Publication No. 57-50433. This allH positioning device will be explained with reference to FIG.

第6図は微小回転変位を行う従来の微細位置決め装置の
一部破断斜視図である。図で、11は円柱状の中央固定
部、lla、llb、llcは中央固定部11の周面に
その長手方向に等間隔に形成された縦溝である。12は
中央固定部11を中心として可回動に設けられたリング
状のステージ、12a+ 〜12as、12bt 〜1
2bs、12cl〜12(−+はそれぞれ縦溝11a、
11b。
FIG. 6 is a partially cutaway perspective view of a conventional fine positioning device that performs minute rotational displacement. In the figure, reference numeral 11 denotes a cylindrical central fixing part, and lla, llb, and llc are longitudinal grooves formed on the circumferential surface of the central fixing part 11 at equal intervals in its longitudinal direction. 12 is a ring-shaped stage rotatably provided around the central fixed part 11, 12a+ ~ 12as, 12bt ~ 1
2bs, 12cl to 12 (-+ is vertical groove 11a,
11b.

11cに対向してステージ12に固定されたU字状金具
である。13は各縦溝11a、11b。
It is a U-shaped metal fitting fixed to the stage 12 opposite to the stage 11c. 13 is each vertical groove 11a, 11b.

11cと各U字状金具12 at 〜12 Csとの間
に装架されたバイモルフ形圧電素子、13Aはバイモル
フ形圧電素子13のU字状金具と係合する部分に固定さ
れた突起である。中央固定部11、ステージ12)各U
字状金具12 at 〜l 2 Csはいずれも剛体で
ある。ここで、上記バイモルフ形圧電素子13を第7図
面の簡単な説明する。
The bimorph piezoelectric element 13A is mounted between the bimorph piezoelectric element 11c and each of the U-shaped metal fittings 12 at to 12 Cs, and 13A is a protrusion fixed to a portion of the bimorph piezoelectric element 13 that engages with the U-shaped metal fitting. Central fixed part 11, stage 12) each U
All of the character-shaped fittings 12 at to l 2 Cs are rigid bodies. Here, the bimorph type piezoelectric element 13 will be briefly explained in the seventh drawing.

第7図はバイモルフ形圧電素子の斜視図である。FIG. 7 is a perspective view of a bimorph piezoelectric element.

図で、13a、13bは圧電素子、13cは圧電素子1
3a、13bの中間に設けられた共通電極である。圧電
素子13a、13bは共通電極13Cを挾持した状態で
互いに密着されている。13d、13eはそれぞれ圧電
素子13a、13bに固着された表面電極である。この
状態において、表面電極13dと共通電極13cとの間
に圧電素子13aを縮ませる極性の電圧を印加し、同時
に、表面電極13eと共通電極13cとの間に圧電素子
13bを伸ばす極性の電圧を印加すると、各圧電素子1
3a、13bが矢印の方向に伸縮することにより、バイ
モルフ形圧電素子13全体は図のように変形する。この
ようなバイモルフ形圧電素子13により、圧電素子単体
に比べて大きな変位量を得ることができる。
In the figure, 13a and 13b are piezoelectric elements, and 13c is piezoelectric element 1.
This is a common electrode provided between 3a and 13b. The piezoelectric elements 13a and 13b are closely attached to each other with a common electrode 13C sandwiched therebetween. 13d and 13e are surface electrodes fixed to piezoelectric elements 13a and 13b, respectively. In this state, a voltage with a polarity that shrinks the piezoelectric element 13a is applied between the surface electrode 13d and the common electrode 13c, and at the same time, a voltage with a polarity that stretches the piezoelectric element 13b is applied between the surface electrode 13e and the common electrode 13c. When applied, each piezoelectric element 1
By expanding and contracting 3a and 13b in the direction of the arrow, the entire bimorph piezoelectric element 13 is deformed as shown in the figure. With such a bimorph type piezoelectric element 13, a larger amount of displacement can be obtained than with a single piezoelectric element.

このようなバイモルフ形圧電素子13は、第6図に示す
装置において、一端が縦溝11a、11b、llcに固
定され、他端は自由端となって各対応するU字状金具に
突起13Aを介して接触している。今、各バイモルフ形
圧電素子13に適宜の電圧を印加し、第7図に示す変形
を生じさせると、ステージ12はその変形に応じて中央
固定部11を中心として回動変位する。そこで、ステー
ジ12上に微動テーブルを載置固定しておけば、微動テ
ーブルの微小回転変位を得ることができる。
In the device shown in FIG. 6, such a bimorph piezoelectric element 13 has one end fixed to the vertical grooves 11a, 11b, and llc, and the other end is a free end and has a projection 13A on each corresponding U-shaped metal fitting. I am in contact with you through. Now, when an appropriate voltage is applied to each bimorph type piezoelectric element 13 to cause the deformation shown in FIG. 7, the stage 12 will be rotated about the central fixed part 11 in accordance with the deformation. Therefore, by placing and fixing the fine movement table on the stage 12, it is possible to obtain minute rotational displacement of the fine movement table.

上記従来の装置は、U字状金具とバイモルフ形圧電素子
13とにより両者を保合状態に保持し、これにより、バ
イモルフ形圧電素子13の自然変形のままでの装架を許
し、かつ、バイモルフ形圧電素子13をステージ12に
固定した場合に生じる変位の拘束(干渉)を防止してい
る。
The conventional device described above uses the U-shaped metal fitting and the bimorph type piezoelectric element 13 to hold the two in a fixed state, thereby allowing the bimorph type piezoelectric element 13 to be mounted while being naturally deformed, and This prevents displacement restriction (interference) that would occur when the shaped piezoelectric element 13 is fixed to the stage 12.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、第4図お゛よび第5図に示す微細位置決め装
置は、1次元および2次元の位置決めができるのみであ
り、z軸方向の変位や、X軸、y軸。
By the way, the fine positioning devices shown in FIGS. 4 and 5 are only capable of one-dimensional and two-dimensional positioning, and are capable of displacement in the z-axis direction, X-axis, and y-axis.

2軸まわりの回転変位を与えることはできず、又、第6
図に示す微細位置決め装置については、X軸。
It is not possible to give rotational displacement around two axes, and the sixth
For the fine positioning device shown in the figure, the X axis.

y軸、z軸方向の変位と他の2軸まわりの回転変位を与
えることはできない、そして、これら従来の微細位置決
め装置からは、第5図および第6図に示す装置を組合わ
せてX軸、y軸方向の変位と2軸まわりの回転変位を与
える3軸の微細位置決め装置を想定し得るのみであり、
これらから4軸以上の微細位置決、め装置を構成するの
は極めて困難である。
It is not possible to provide displacement in the y- and z-axis directions and rotational displacement around the other two axes, and these conventional fine positioning devices can be combined with the devices shown in FIGS. , it is only possible to imagine a three-axis fine positioning device that provides displacement in the y-axis direction and rotational displacement around two axes,
It is extremely difficult to construct a fine positioning and positioning device with four or more axes from these.

本発明は、このような事情に鑑みてなされたものであり
、その目的は、従来技術の問題点を解決し、簡単な構造
でX軸、y軸、z軸方向の変位、および2軸まわりの回
転変位を行うことができる微細位置決め装置を提供する
にある。
The present invention has been made in view of the above circumstances, and its purpose is to solve the problems of the prior art and to provide displacement in the X-axis, y-axis, and z-axis directions, as well as around two axes, with a simple structure. An object of the present invention is to provide a fine positioning device capable of performing rotational displacement of .

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、本発明は、中心剛体部から
、直交する3つの軸のうちの第1の軸方向に沿って張出
した1対の第1の張出し部と、第2の軸方向に沿って張
出した他の1対の第2の張出し部とを備え、第1の張出
し部の一方側の張り出し部および他方側の張出し部のそ
れぞれに平行たわみ梁変位機構および放射たわみ梁変位
a樽を設け、両側の平行たわみ梁変位機構および放射た
わみ梁変位機構が互いに中心剛体部を中心に対称に配置
されてお″す、かつ、平行たわみ梁変位機構は第2の軸
方向の並進変位を発生させ、放射たわみ梁変位機構は第
3の軸まわりの回転変位を発生させるようにし、又、第
2の張出し部の一方側の張出し部および他方側の張出し
部のそれぞれに2組の平行たわみ梁変位機構を各組の平
行たわみ梁変位機構が中心剛体部を中心に互いに対称に
なるように配置し、一方の組の平行たわみ梁変位機構は
第1の軸方向の並進変位を発生させ、他方の組の平行た
わみ梁変位機構は第3の軸方向の並進変位を発生させる
ようにしたことを特徴とする。
In order to achieve the above object, the present invention includes a pair of first overhanging parts that overhang from a central rigid body part along the first axial direction of three orthogonal axes, and and another pair of second overhangs extending along the first overhang. A barrel is provided, and the parallel flexure beam displacement mechanisms and the radial flexure beam displacement mechanisms on both sides are arranged symmetrically with respect to the central rigid body part, and the parallel flexure beam displacement mechanisms are configured to perform translational displacement in the second axial direction. The radial deflection beam displacement mechanism is configured to generate rotational displacement around the third axis, and two sets of parallel beams are provided on each of the overhang portion on one side and the overhang portion on the other side of the second overhang portion. The flexible beam displacement mechanisms are arranged such that each set of parallel flexible beam displacement mechanisms is symmetrical with respect to the central rigid body part, and one set of parallel flexible beam displacement mechanisms generates a translational displacement in the first axial direction. , the other set of parallel deflection beam displacement mechanisms is characterized in that it generates translational displacement in the third axial direction.

〔作用〕[Effect]

3つの平行たわみ梁変位機構によりX軸、y軸。 X-axis and y-axis by three parallel deflection beam displacement mechanisms.

z軸方向のうちの任意の方向又はそれらの合成方向に並
進変位を生じさせ、又、放射たわみ梁変位機構により上
記軸のうちの定められた軸まわりに回転変位を生じさせ
る。
A translational displacement is caused in an arbitrary direction of the z-axis direction or a composite direction thereof, and a rotational displacement is caused around a predetermined one of the axes by the radial deflection beam displacement mechanism.

〔実施例〕〔Example〕

以下、本発明を図示の実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on illustrated embodiments.

第1図は本発明の実施例に係る微細位置決め装置の分解
斜視図である。図で、X、  y、2は互いに直交する
座標軸を示す。15は剛性の高い部材より成る中心剛体
部、16’aは中心剛体部31からy軸方向に張出した
張出し部、16bは中心剛体部15から張出し部16a
と反対向きに張出した張出し部、17aは中心剛体部1
5からX軸方向に張出した張出し部17bは中心剛体部
15から張出し部17aと反対向きに張出した張出し部
である。18a、18bはそれぞれ張出し部16a、1
6bの端部下端に設けられた固定部、19a、19bは
それぞれ張出し部17a、17bの端部上端に設けられ
た微動テープ連結部、20は微動テーブルである。張出
し部16a、16b。
FIG. 1 is an exploded perspective view of a fine positioning device according to an embodiment of the present invention. In the figure, X, y, and 2 indicate coordinate axes that are orthogonal to each other. Reference numeral 15 denotes a central rigid body part made of a highly rigid member, 16'a an overhanging part extending from the central rigid body part 31 in the y-axis direction, and 16b an overhanging part 16a extending from the central rigid body part 15.
The overhanging part 17a that overhangs in the opposite direction is the central rigid body part 1.
The overhanging portion 17b overhanging from the central rigid body portion 15 in the X-axis direction is an overhanging portion extending from the central rigid body portion 15 in the opposite direction to the overhanging portion 17a. 18a and 18b are projecting portions 16a and 1, respectively.
A fixed part 6b is provided at the lower end of the end, 19a and 19b are fine movement tape connecting parts provided at the upper end of the overhang parts 17a and 17b, respectively, and 20 is a fine movement table. Overhanging portions 16a, 16b.

17a、17b、固定部18a、18b、および微動テ
ーブル連結部19a、19bはそれぞれ中心剛体部15
と同じ部材で構成され、中心剛体部15とともに1つの
ブロックから加工成形される。
17a, 17b, fixed parts 18a, 18b, and fine movement table connecting parts 19a, 19b are each connected to the central rigid body part 15.
It is made of the same material as the central rigid body part 15, and is processed and formed from one block.

16 Mz−、16Mz、はそれぞれ張出し部16a。16Mz- and 16Mz are respectively overhang portions 16a.

16bに構成された放射たわみ梁変位機構であり、互い
に中心剛体部15に対して対称的に構成されている。放
射たわみ梁変位機構16Mg、、16M!bは共働して
z軸方向の軸まわりの回転変位を発生する。なお、放射
たわみ梁変位機構の構造については後述する。16 F
、、、  16 Fxkはそれぞれ張出し部16a、1
6bにおける放射たわみ梁変位機構16M2□ 16M
z+、の外方に構成された平行たわみ梁変位機構であり
、互いに中心剛体部15に対して対称的に構成されてい
る。平行たわみ梁変位機構16 FX、、  16 F
xbは共働してX軸方向の並進変位を発生する。
16b, and are configured symmetrically with respect to the central rigid body portion 15. Radiation deflection beam displacement mechanism 16Mg,, 16M! b work together to generate rotational displacement about the axis in the z-axis direction. The structure of the radial deflection beam displacement mechanism will be described later. 16F
,,, 16 Fxk are overhang parts 16a and 1, respectively.
Radial deflection beam displacement mechanism in 6b 16M2□ 16M
z+, and are configured symmetrically with respect to the central rigid body portion 15. Parallel deflection beam displacement mechanism 16 FX,, 16 F
xb work together to generate translational displacement in the X-axis direction.

17 F、、、  17 F、bはそれぞれ張出し部1
7a。
17 F, , 17 F and b are respectively overhang parts 1
7a.

17bに構成された平行たわみ梁変位機構であり、互い
に中心剛体部15に対して対称的に構成されている。平
行たわみ梁変位機構17 F、、、 17 F、bは共
働してy軸方向の並進変位を発生する。17F g11
+  17 F zbはそれぞれ張出し部17a、17
bにおける平行たわみ梁変位機構17F□、17P 、
bの外方に構成された平行たわみ梁変位機構であり、互
いに中心剛体部15に対して対称的に構成されている。
17b, and are configured symmetrically with respect to the central rigid body portion 15. The parallel deflection beam displacement mechanisms 17F, 17F, b work together to generate translational displacement in the y-axis direction. 17F g11
+ 17 F zb are the overhanging portions 17a and 17, respectively.
Parallel deflection beam displacement mechanism 17F□, 17P at b,
These are parallel deflection beam displacement mechanisms configured outwardly of b, and are configured symmetrically to each other with respect to the central rigid body portion 15.

平行たわみ梁変位機構17Fz−。Parallel deflection beam displacement mechanism 17Fz-.

17Fzbは共働してz軸方向の並進変位を発生する。17Fzb works together to generate translational displacement in the z-axis direction.

平行たわみ梁変位機構17 Fz、、  17 Ftb
が1構成されている部分はその上端部が他の部分に対し
て高くなるように形成されている。なお、平行だわみ梁
変位機構の構造については後述する。
Parallel deflection beam displacement mechanism 17 Fz,, 17 Ftb
The portion having one structure is formed such that its upper end portion is higher than the other portions. The structure of the parallel deflection beam displacement mechanism will be described later.

上記放射たわみ梁変位機構16Mza、16M21平行
たわみ梁変位機構16FX−,16Fxb、17Fy−
、17Fyb、’ 17 Fz−、17Fzbは各張出
し部16a、16b、17a、17bの所定個所に所定
の貫通孔を形成することにより構成される。
The above radial flexure beam displacement mechanism 16Mza, 16M21 parallel flexure beam displacement mechanism 16FX-, 16Fxb, 17Fy-
, 17Fyb, ' 17 Fz-, 17Fzb are constructed by forming predetermined through holes at predetermined locations of each of the projecting portions 16a, 16b, 17a, and 17b.

次に、上記放射たわみ梁変位機構および平行たわみ梁変
位機構の構成を図により説明する。第2図(a)、  
(b)は対称形の放射たわみ梁変位機構の側面図である
Next, the configurations of the radial flexure beam displacement mechanism and the parallel flexure beam displacement mechanism will be explained with reference to the drawings. Figure 2(a),
(b) is a side view of a symmetrical radial flexure beam displacement mechanism;

図で、21a、21b、21cは剛体部、24a1.2
4az 、24b+、24bzは放射たわみ梁である。
In the figure, 21a, 21b, 21c are rigid parts, 24a1.2
4az, 24b+, 24bz are radial deflection beams.

各放射たわみ梁24a1.24az、24b、、24b
、は剛体部20の中心を通る紙面に垂直な軸0に対して
一点鎖線Ll、L、に沿って放射状に延びており、それ
ぞれ隣接する剛体部間を連結している。放射たわみ梁2
4a1.24a=は貫通孔22aをあけることにより形
成され、又、放射たわみ梁24b+、24bzは貫通孔
22bをあけることにより形成される。26a、26b
は圧電アクチュエータであり、それぞれ貫通孔22a。
Each radial deflection beam 24a1.24az, 24b, 24b
, extend radially along dashed-dotted lines Ll, L with respect to the axis 0 passing through the center of the rigid body part 20 and perpendicular to the plane of the paper, and connect adjacent rigid body parts. Radial deflection beam 2
4a1.24a= is formed by drilling the through hole 22a, and the radial deflection beams 24b+, 24bz are formed by drilling the through hole 22b. 26a, 26b
are piezoelectric actuators, and each has a through hole 22a.

22bに剛体部から突出した突出部間に装着されている
。軸Oの左側の構成により放射たわみ梁変位機構29a
が、又、右側の構成により放射たわみ梁変位機構29b
が構成される。
22b between the protruding parts protruding from the rigid body part. Due to the configuration on the left side of the axis O, the radial deflection beam displacement mechanism 29a
However, due to the configuration on the right side, the radial deflection beam displacement mechanism 29b
is configured.

今、圧電アクチュエータ26a、26bに同時に所定の
電圧を印加して同一の大きさの、中心軸Oを中心とする
円に対する接線方向の力fを発生させる。そうすると、
剛体部20の左方の突出部は圧電アクチュエータ26a
に発生した力により上記接線に沿って上向きに押され、
剛体部20の右方の突出部は圧電アクチュエータ26b
に発生した力により上記接線に沿って下向きに押される
Now, a predetermined voltage is simultaneously applied to the piezoelectric actuators 26a and 26b to generate a force f of the same magnitude in a tangential direction to a circle centered on the central axis O. Then,
The left protrusion of the rigid body part 20 is a piezoelectric actuator 26a.
is pushed upward along the tangent line by the force generated in
The right protrusion of the rigid body part 20 is a piezoelectric actuator 26b.
is pushed downward along the tangent line by the force generated.

剛体部20は両開体部21a、21bに放射たわみ梁2
4a+、24az、24b1.24bzで連結された形
となっているので、上記の力を受けた結果、第2図(b
)に示すように放射たわみ梁24a、。
The rigid body part 20 has radial deflection beams 2 on both open body parts 21a and 21b.
Since it is connected by 4a+, 24az, 24b1.24bz, as a result of receiving the above force, the result shown in Figure 2 (b
) as shown in the radial deflection beam 24a,.

24az、24b+、24bzの剛体部21 a、2 
l bに連結されている部分は点0から放射状に延びる
直11L+、Lg上にあるが、剛体部20に連結されて
いる部分は、上記直線Ll、Lffiから僅かにずれた
直線(この直線も点0から放射状に延びる直線である。
24az, 24b+, 24bz rigid body parts 21 a, 2
The part connected to lb is on the straight line 11L+, Lg extending radially from point 0, but the part connected to the rigid body part 20 is on a straight line slightly deviated from the straight line Ll, Lffi (this straight line is also It is a straight line extending radially from point 0.

)Ll  ’、L、’上にずれる微小変位を生じる。こ
のため、剛体部20は図で時計方向に微小角度δだけ回
動する。この回転変位δの大きさは、放射たわみ梁24
a+、24az、24b+。
)Ll', L,' causes a slight displacement upward. Therefore, the rigid body portion 20 rotates by a small angle δ clockwise in the figure. The magnitude of this rotational displacement δ is determined by the radial deflection beam 24
a+, 24az, 24b+.

24b2の曲げに対する剛性により定まるので、力fを
正確に制御すれば、回転変位δもそれと同じ精度で制御
できることになる。
Since it is determined by the bending rigidity of 24b2, if the force f is accurately controlled, the rotational displacement δ can also be controlled with the same accuracy.

圧電アクチュエータ26a、26bに印加されている電
圧が除かれると、放射だわみ梁24al。
When the voltage applied to the piezoelectric actuators 26a, 26b is removed, the radial deflection beam 24al.

24az、24b+、24btは変形前の状態ニ復帰し
、回転変位機構は第2図(a)に示す状態に戻り、変位
δは0となる。
24az, 24b+, and 24bt return to the state before deformation, the rotational displacement mechanism returns to the state shown in FIG. 2(a), and the displacement δ becomes 0.

第3図(a)、  (b)は対称形の平行たわみ梁変位
機構の側面図である。図で、31a、31b。
FIGS. 3(a) and 3(b) are side views of a symmetrical parallel deflection beam displacement mechanism. In the figure, 31a and 31b.

31cは剛体部、34a+、34a2は剛体部31C,
31a間に互いに平行に連結された平行たわみ梁である
。平行たわみ梁34a+、34azは剛体部にあけた貫
通孔32aにより形成される。
31c is a rigid body part, 34a+, 34a2 is a rigid body part 31C,
31a are parallel flexible beams connected in parallel to each other. The parallel flexible beams 34a+ and 34az are formed by through holes 32a formed in the rigid body part.

34+、34bzは剛体部31b、31c間に互いに平
行に連結された平行たわみ梁であり、剛体部にあけられ
た貫通孔32bにより形成される。
Parallel flexible beams 34+ and 34bz are connected parallel to each other between the rigid body parts 31b and 31c, and are formed by a through hole 32b formed in the rigid body part.

36a、36bは圧電アクチュエータであり、それぞれ
貫通孔32a、32b内に突出した剛体部からの突出部
間に装着されている。剛体部31cの中心から左方の構
成により平行たわみ梁変位機構39aが、又、右方の構
成により平行たわみ梁変位機構39bが構成される。
Piezoelectric actuators 36a and 36b are mounted between protrusions from the rigid body parts protruding into the through holes 32a and 32b, respectively. The configuration to the left of the center of the rigid body portion 31c constitutes a parallel flexible beam displacement mechanism 39a, and the configuration to the right constitutes a parallel flexible beam displacement mechanism 39b.

ここで、座標軸を図示のように定める(y軸は紙面に垂
直な方向)。今、圧電アクチュエータ36a、36bに
同時に電圧を印加して同一大きさのX軸方向の力fを発
生させる。このとき、一方の平行たわみ梁変位機構、例
えば平行たわみ梁変位機構39aに生じる変位について
考える。圧電アクチュエータ36aに電圧が印加される
ことにより、剛体部31cは力fによりX軸方向に押圧
されることになる。このため、平行たゎみ梁34al、
34azは第4図に示す平行ばね2a。
Here, coordinate axes are determined as shown in the figure (y-axis is perpendicular to the plane of the paper). Now, a voltage is simultaneously applied to the piezoelectric actuators 36a and 36b to generate the same force f in the X-axis direction. At this time, consider the displacement that occurs in one parallel flexible beam displacement mechanism, for example, the parallel flexible beam displacement mechanism 39a. By applying a voltage to the piezoelectric actuator 36a, the rigid body portion 31c is pressed in the X-axis direction by a force f. For this reason, the parallel sagging beam 34al,
34az is a parallel spring 2a shown in FIG.

2bと同じように曲げ変形を生じ、剛体部31cは第3
図(b)に示すように2軸方向に変位する。
Similar to 2b, bending deformation occurs, and the rigid body part 31c
As shown in Figure (b), it is displaced in two axial directions.

このとき、仮に他方の平行たわみ梁変位機構395が存
在しないとすると剛体部31cには極めて微小ではある
が横変位(X軸方向の変位)をも同時に生じるはずであ
る。
At this time, if the other parallel deflection beam displacement mechanism 395 were not present, a very small lateral displacement (displacement in the X-axis direction) would also occur in the rigid body portion 31c at the same time.

又、平行たわみ梁変位機構39aが存在しない場合、他
方の平行たわみ梁変位機構39bに生じる変位について
考えると、平行たわみ梁変位機構39bは剛体部31c
の中心を通るy軸方向に沿う面(基準面)に対して平行
たわみ梁変位機構39aと面対称に構成されていること
から、基準面に関して面対称な力fを受けると上記と同
様に、剛体部31cにはy軸方向の変位と同時に上記横
変位が生じ、その大きさや方向は、平行たわみ梁変位機
構39aのそれと基準面に関して面対称となる。すなわ
ち、上記横変位についてみると、平行たわみ梁変位機構
39aに生じる横変位は、X軸方向の変位については図
で左向き、y軸まわりの回転変位については図で反時計
方向に生じ、一方、平行たわみ梁変位機構39aに生じ
る横変位は、X軸方向変位については図で右向き、y軸
まわりの回転変位については図で時計方向に生じる。
Moreover, when considering the displacement that occurs in the other parallel flexible beam displacement mechanism 39b when the parallel flexible beam displacement mechanism 39a does not exist, the parallel flexible beam displacement mechanism 39b is the rigid body part 31c.
Since it is constructed in plane symmetry with the parallel deflection beam displacement mechanism 39a with respect to the plane (reference plane) along the y-axis direction passing through the center of The above-mentioned lateral displacement occurs in the rigid portion 31c at the same time as the displacement in the y-axis direction, and its magnitude and direction are symmetrical with respect to the reference plane with respect to the parallel deflection beam displacement mechanism 39a. That is, regarding the above-mentioned lateral displacement, the lateral displacement that occurs in the parallel deflection beam displacement mechanism 39a occurs in the left direction in the figure for displacement in the X-axis direction, and counterclockwise in the figure for rotational displacement around the y-axis. The lateral displacement that occurs in the parallel deflection beam displacement mechanism 39a occurs in the right direction in the figure for displacement in the X-axis direction, and clockwise in the figure for rotational displacement around the y-axis.

そして、それら各X軸方向変位の大きさおよびy軸まわ
りの回転変位の大きさは等しい、したがつて、両者に生
じる横変位は互いにキャンセルされる。この結果、力f
が加わったことにより、各平行たわみ梁34ar、34
at、34b1.34bzにその長手方向の伸びによる
僅かな内部応力の増大が生じるだけで、剛体部31Cは
2軸方向のみの変位(主変位)εを生じる。
The magnitude of each displacement in the X-axis direction and the magnitude of rotational displacement around the y-axis are equal, so the lateral displacements occurring in both cancel each other out. As a result, the force f
By adding , each parallel flexible beam 34ar, 34
At, 34b1.34bz, a slight increase in internal stress due to the longitudinal elongation causes the rigid body portion 31C to undergo displacement (principal displacement) ε only in the biaxial direction.

圧電アクチュエータ36a、36bに印加されている電
圧が除かれると、各平行たわみ梁34at。
When the voltage applied to piezoelectric actuators 36a, 36b is removed, each parallel flexible beam 34at.

34az、34b+、34bzは変形前の状態に復帰し
、平行たわみ梁変位機構39a、39bは第3図(a)
に示す状態に戻り、変位εはOとなる。
34az, 34b+, and 34bz return to the state before deformation, and the parallel deflection beam displacement mechanisms 39a and 39b are as shown in FIG. 3(a).
The state returns to the state shown in , and the displacement ε becomes O.

次に、本実施例の動作を説明する。今、平行たわみ梁変
位機横16 FX−、16FXbの圧電アクチュエータ
に等しい電圧を印加すると、その平行たわみ梁34a+
、34az、34bt、34bzが印加電圧に応じて第
1図のX軸方向に第3図(b)に示ように変形し、並進
変位する。これら平行たわみ梁変位機構16 F、、、
  16 FXbは、放射たわみ張り変位機構16 M
−、16M−b、中心剛体部15、平行たわみ梁変位機
構17F、1.17Fyb。
Next, the operation of this embodiment will be explained. Now, when an equal voltage is applied to the piezoelectric actuators of the horizontal parallel deflection beam displacement machines 16FX- and 16FXb, the parallel deflection beam 34a+
, 34az, 34bt, and 34bz deform and translate in the X-axis direction of FIG. 1 as shown in FIG. 3(b) according to the applied voltage. These parallel deflection beam displacement mechanisms 16F...
16 FXb is a radial deflection tension displacement mechanism 16 M
-, 16M-b, central rigid body part 15, parallel deflection beam displacement mechanism 17F, 1.17Fyb.

17 F−−、17F−b、および固定部19aに固定
された微動テーブル20と一体であるので、そのX軸方
向の並進変位はそのまま微動テーブル20に伝達され、
微動テーブル20は同量だけX軸方向に並進変位する。
17F--, 17F-b, and the fine movement table 20 fixed to the fixed part 19a, the translational displacement in the X-axis direction is directly transmitted to the fine movement table 20,
The fine movement table 20 is translated by the same amount in the X-axis direction.

また、放射たわみ梁16 Mz−、16Mzbの圧電ア
クチュエータに等しい電圧を印加すると、その放射たわ
み梁24a1.24az、24b+、24bzは印加電
圧に応じて第1図の2軸方向の軸まわりに第2図(b)
に示ように変形して回転変位する。
Furthermore, when an equal voltage is applied to the piezoelectric actuators of the radial flexure beams 16 Mz- and 16Mzb, the radial flexure beams 24a1. Figure (b)
It deforms and rotates as shown in .

この回転変位は、中心剛体部15.平行たわみ梁変位機
構17Fy−,17Fyb、17F−917F□、およ
び固定部19a、19bを介して微動テーブル20に伝
えられ、微動テーブル20を当該軸まわりに回転変位す
る。
This rotational displacement is caused by the central rigid body portion 15. It is transmitted to the fine movement table 20 via the parallel deflection beam displacement mechanisms 17Fy-, 17Fyb, 17F-917F□ and the fixed parts 19a and 19b, and rotationally displaces the fine movement table 20 around the axis.

同様に、平行たわみ梁変位機構17F、、、171bの
圧電アクチュエータに同一電圧を印加した場合、微動テ
ーブル20はy軸方向に並進変位し、また、平行たわみ
梁変位機構17 F、、、  17 F、bの圧電アク
チュエータに同一電圧を印加すると微動テーブル20は
Z軸方向に並進変位する。
Similarly, when the same voltage is applied to the piezoelectric actuators of the parallel flexible beam displacement mechanisms 17F, 171b, the fine movement table 20 is translated in the y-axis direction, and the parallel flexure beam displacement mechanisms 17F, 17F When the same voltage is applied to the piezoelectric actuators , b, the fine movement table 20 is translated in the Z-axis direction.

さらに、これらたわみ梁変位機構の2m以上を同様に駆
動すると、合成された並進変位又は並進変位と回転変位
の複合の変位を得ることができる。
Furthermore, by driving 2 m or more of these flexible beam displacement mechanisms in the same manner, a combined translational displacement or a composite displacement of translational displacement and rotational displacement can be obtained.

このように、本実施例では、一方の張出し部にX軸方向
に並進変位する平行たわみ梁変位機構およびy軸方向の
軸まわりに回転変位する放射たわみ梁変位機構を設け、
他方の張出し部にy軸方向に並進変位する平行たわみ梁
変位機構およびZ軸方向に並進変位する平行たわみ梁変
位機構を設け、一方の張出し部の端部を固定し、他方の
張出し部の端部に微動テーブルを固定したので、極めて
簡単なかつ小形の構成で3軸の並進変位と1軸の回 ・
軸変位を得ることができる。
As described above, in this embodiment, one of the overhangs is provided with a parallel flexure beam displacement mechanism for translational displacement in the X-axis direction and a radial flexure beam displacement mechanism for rotational displacement around an axis in the y-axis direction.
A parallel flexible beam displacement mechanism that translates in the y-axis direction and a parallel flexible beam displacement mechanism that translates in the Z-axis direction are provided on the other overhang, and the end of one overhang is fixed and the end of the other overhang is fixed. Since a fine movement table is fixed to the part, translational displacement on three axes and rotation on one axis can be achieved with an extremely simple and compact configuration.
Axial displacement can be obtained.

なお、上記実施例の説明では、y軸方向の張出し部の端
部を固定し、X軸方向の張出し部の端部に微動テーブル
を設けた例について説明したが、これとは逆に、X軸方
向の張出し部の端部を固定し、y軸方向の張出し部の端
部に微動テーブルを設けてもよいのは明らかである。又
、微動テープルを固定する部分を他よりも高く構成する
例について説明したが、当該部分を他と同一高さとし、
微動テーブルの側に脚部を設けてもよい。
In the above embodiment, an example was explained in which the end of the overhang in the y-axis direction was fixed and a fine movement table was provided at the end of the overhang in the X-axis direction. It is clear that the end of the axial extension may be fixed and a fine movement table may be provided at the end of the y-axis extension. In addition, although an example has been described in which the part to which the fine movement table is fixed is configured higher than the other parts, it is also possible to set the part to be the same height as the other parts,
Legs may be provided on the side of the fine movement table.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明では、一方向の張出し部に並
進方向が異なる2つの平行たわみ梁変位機構を構成し、
他方向の張出し部に前記2つの平行たわみ梁変位機構の
並進方向とは異なる並進方向の平行たわみ梁変位機構お
よび放射たわみ梁変位機構を構成したので、極めて簡単
な構成で3軸方向の並進変位と1軸まわりの回転変位を
得ることができる。
As described above, in the present invention, two parallel deflection beam displacement mechanisms with different translational directions are configured on an overhang in one direction,
Since a parallel flexure beam displacement mechanism and a radial flexure beam displacement mechanism in a translation direction different from the translation direction of the two parallel flexure beam displacement mechanisms are configured on the overhanging part in the other direction, translational displacement in three axial directions can be achieved with an extremely simple configuration. and the rotational displacement around one axis can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る微細位置決め装置の分解
斜視図、第2図(a)、(b)は第1図に示す放射たわ
み梁変位機惜の側面図、第3図(a)。 (b)は第1図に示す平行たわみ梁変位機構の側面図、
第4図、第5図および第6図は従来の微細位置決め装置
の側面図および斜視図、第7図は第6図に示す装置に用
いられるバイモルフ電圧素子の斜視図である。 15・・・・・・中心剛体部、16a、16b、17a
。 17b・・・・・・張出し部、16FX−、16Fxb
+  17Fya、  17 Fyb、  17 Fg
−、17Fvb・・”=平行たわみ梁変機構、16 M
z−、16Mzb”・・放射たゎみ梁変位機構。 第1図 8a 第2図 第3図 コ嘱セ     54D2 第5図   し≦
Figure 1 is an exploded perspective view of a fine positioning device according to an embodiment of the present invention, Figures 2 (a) and (b) are side views of the radial deflection beam displacement machine shown in Figure 1, and Figure 3 (a). ). (b) is a side view of the parallel deflection beam displacement mechanism shown in Fig. 1;
4, 5, and 6 are side and perspective views of a conventional fine positioning device, and FIG. 7 is a perspective view of a bimorph voltage element used in the device shown in FIG. 6. 15... Central rigid body part, 16a, 16b, 17a
. 17b... Overhang, 16FX-, 16Fxb
+ 17Fya, 17Fyb, 17Fg
−, 17Fvb...”=parallel deflection beam deformation mechanism, 16 M
z-, 16Mzb”... Radial deflection beam displacement mechanism. Fig. 1 8a Fig. 2 Fig. 3 Kokase 54D2 Fig. 5 Shi≦

Claims (6)

【特許請求の範囲】[Claims] (1)中心剛体部と、この中心剛体部から第1の軸方向
に対称的に突出する第1の組の張出し部と、前記中心剛
体部から前記第1の軸と直交する第2の軸方向に対称的
に突出する第2の組の張出し部と、前記第1の組の張出
し部にそれぞれ対称的に設けられた前記第1の軸ならび
に前記第2の軸に直交する第3の軸まわりに回転変位を
発生させる放射たわみ梁変位機構の組および前記第2の
軸方向の並進変位を発生させる平行たわみ梁変位機構の
組と、前記第2の組の張出し部にそれぞれ対称的に設け
られた前記第1の軸方向の並進変位を発生させる平行た
わみ梁変位機構の組および前記第3の軸方向の並進変位
を発生させる平行たわみ梁変位機構の組とを備えたこと
を特徴とする微細位置決め装置。
(1) a central rigid body part, a first set of overhanging parts symmetrically protruding from the central rigid body part in a first axis direction, and a second axis extending from the central rigid body part and perpendicular to the first axis; a second set of overhangs protruding symmetrically in the direction; and a third axis perpendicular to the first axis and the second axis, each symmetrically provided on the first set of overhangs. A set of radial flexure beam displacement mechanisms that generate rotational displacement around the second set of radial flexure beam displacement mechanisms and a set of parallel flexure beam displacement mechanisms that generate translational displacement in the second axial direction are each provided symmetrically on the overhang of the second set. A set of parallel flexible beam displacement mechanisms that generate a translational displacement in the first axial direction and a set of parallel flexible beam displacement mechanisms that generate a translational displacement in the third axial direction. Fine positioning device.
(2)特許請求の範囲第(1)項において、前記各平行
たわみ梁変位機構は、それぞれの変位発生方向の力によ
り曲げ変形を生じる互いに平行な複数のたわみ梁と、こ
れらたわみ梁に前記力を作用させるアクチュエータとに
より構成されていることを特徴とする微細位置決め装置
(2) In claim (1), each of the parallel flexible beam displacement mechanisms includes a plurality of mutually parallel flexible beams that undergo bending deformation due to forces in respective displacement generating directions, and A fine positioning device characterized by comprising: an actuator that acts.
(3)特許請求の範囲第(1)項において、前記放射た
わみ梁変位機構は、回転変位発生軸まわりのモーメント
により曲げ変形を生じ、前記軸上の定められた点に関し
て互いに放射状に延びる複数のたわみ梁と、これらたわ
み梁に前記モーメントを作用させるアクチュエータとに
より構成されていることを特徴とする微細位置決め装置
(3) In claim (1), the radial flexure beam displacement mechanism causes bending deformation due to a moment about a rotational displacement generation axis, and includes a plurality of radial beam displacement mechanisms extending radially from each other with respect to a predetermined point on the axis. A fine positioning device comprising flexible beams and an actuator that applies the moment to the flexible beams.
(4)特許請求の範囲第(2)項または第(3)項にお
いて、前記アクチュエータは圧電アクチュエータである
ことを特徴とする微細位置決め装置。
(4) A fine positioning device according to claim (2) or (3), wherein the actuator is a piezoelectric actuator.
(5)特許請求の範囲第(1)項において、前記中心剛
体部、前記放射たわみ梁変位機構、および前記各平行た
わみ梁変位機構は1つの剛体ブロックから加工成形され
ることを特徴とする微細位置決め装置。
(5) Claim (1), wherein the central rigid body part, the radial flexure beam displacement mechanism, and each of the parallel flexure beam displacement mechanisms are fabricated from one rigid block. Positioning device.
(6)特許請求の範囲第(1)項において、前記第1の
組の張出し部および前記第2の組の張り出し部は、一方
の組の張出し部の各端部が固定され、かつ、他方の組の
張出し部の各端部間に微細テーブルが備えられているこ
とを特徴とする微細位置決め装置。
(6) In claim (1), the first set of overhanging parts and the second set of overhanging parts are such that each end of one set of overhanging parts is fixed, and the other set of overhanging parts is fixed. A micro-positioning device characterized in that a micro-table is provided between each end of the set of overhangs.
JP21061986A 1986-09-09 1986-09-09 Fine positioning device Pending JPS6366615A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP21061986A JPS6366615A (en) 1986-09-09 1986-09-09 Fine positioning device
EP87201701A EP0264147B1 (en) 1986-09-09 1987-09-08 Fine positioning device and displacement controller therefor
DE3788773T DE3788773T2 (en) 1986-09-09 1987-09-08 Device for fine adjustment and device for controlling these adjustments.
US07/244,102 US5005298A (en) 1986-09-09 1988-09-14 Displacement controller for fine positioning device
US07/244,101 US4991309A (en) 1986-09-09 1988-09-14 Fine positioning device and displacement controller therefor
US07/244,168 US4888878A (en) 1986-09-09 1988-09-14 Fine positioning device
US07/244,169 US4920660A (en) 1986-09-09 1988-09-14 Fine positioning device and displacement controller therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21061986A JPS6366615A (en) 1986-09-09 1986-09-09 Fine positioning device

Publications (1)

Publication Number Publication Date
JPS6366615A true JPS6366615A (en) 1988-03-25

Family

ID=16592324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21061986A Pending JPS6366615A (en) 1986-09-09 1986-09-09 Fine positioning device

Country Status (1)

Country Link
JP (1) JPS6366615A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786332A (en) * 1969-03-19 1974-01-15 Thomson Houston Comp Francaise Micro positioning apparatus
JPS5994103A (en) * 1982-11-19 1984-05-30 Nec Corp Controller of electromechanical transducer
JPS5996880A (en) * 1982-11-19 1984-06-04 Nec Corp Electromechanical transducer
JPS6025284A (en) * 1983-07-22 1985-02-08 Hitachi Ltd Positioning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786332A (en) * 1969-03-19 1974-01-15 Thomson Houston Comp Francaise Micro positioning apparatus
JPS5994103A (en) * 1982-11-19 1984-05-30 Nec Corp Controller of electromechanical transducer
JPS5996880A (en) * 1982-11-19 1984-06-04 Nec Corp Electromechanical transducer
JPS6025284A (en) * 1983-07-22 1985-02-08 Hitachi Ltd Positioning device

Similar Documents

Publication Publication Date Title
EP0264147B1 (en) Fine positioning device and displacement controller therefor
US6688183B2 (en) Apparatus having motion with pre-determined degrees of freedom
EP2132600B1 (en) Split axes stage design for semiconductor applications
JPS6366615A (en) Fine positioning device
JPS61243511A (en) Fine positioning device
JPH0555263B2 (en)
JP3255707B2 (en) Fine positioning device
JPS6366613A (en) Fine positioning device
Al-Jodah et al. Development and analysis of a novel large range voice coil motor-driven 3-DOF XYΘ micro-positioning mechanism
JP2000009867A (en) Stage moving device
JP2614662B2 (en) Fine movement mechanism
JPS63137306A (en) Fine positioning device
JP2849158B2 (en) Fine movement mechanism
JPS62174811A (en) Finely positioning device
JPH04348834A (en) Micromovement x-y table
JPS62214413A (en) Fine positioning device
JPS63137308A (en) Fine positioning device
JPS62214412A (en) Fine positioning device
JPH071451B2 (en) Displacement control device for fine positioning device
JP2760404B2 (en) Fine movement mechanism
JPH07109567B2 (en) Fine positioning device
JP2773781B2 (en) Precision fine movement stage device
JPH09318883A (en) Table mechanism
JPH01246036A (en) Slightly moving stage device
JPH07104723B2 (en) Fine positioning device