JPH071450B2 - Fine positioning device - Google Patents
Fine positioning deviceInfo
- Publication number
- JPH071450B2 JPH071450B2 JP61283063A JP28306386A JPH071450B2 JP H071450 B2 JPH071450 B2 JP H071450B2 JP 61283063 A JP61283063 A JP 61283063A JP 28306386 A JP28306386 A JP 28306386A JP H071450 B2 JPH071450 B2 JP H071450B2
- Authority
- JP
- Japan
- Prior art keywords
- rigid body
- parallel
- displacement
- portions
- central rigid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006073 displacement reaction Methods 0.000 claims description 125
- 230000007246 mechanism Effects 0.000 claims description 71
- 230000033001 locomotion Effects 0.000 claims description 44
- 238000005452 bending Methods 0.000 description 12
- 230000002411 adverse Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q1/00—Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
- B23Q1/25—Movable or adjustable work or tool supports
- B23Q1/26—Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
- B23Q1/34—Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
- B23Q1/36—Springs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/20—Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
- B23Q15/22—Control or regulation of position of tool or workpiece
- B23Q15/24—Control or regulation of position of tool or workpiece of linear position
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/19—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
- G05B19/21—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
- G05B19/23—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41133—Compensation non linear transfer function
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41352—Alternative clamping dilation of piezo, caterpillar motion, inchworm
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nanotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Human Computer Interaction (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Control Of Position Or Direction (AREA)
Description
〔産業上の利用分野〕 本発明は、半導体製造装置、電子顕微鏡等のサブμmオ
ーダの調節を必要とする装置に使用される微細位置決め
装置に関する。 〔従来の技術〕 近年、各種技術分野においては、サブμmのオーダーの
微細な変位調節が可能である装置が要望されている。そ
の典型的な例がLSI(大規模集積回路)、超LSIの製造工
程において使用されるマスクアライナ、電子線描画装置
等の半導体製造装置である。これらの装置においては、
サブμmオーダーの微細な位置決めが必要であり、位置
決めの精度が向上するにしたがつてその集積度も増大
し、高性能の製品を製造することができる。このような
微細な位置決めは上記半導体装置に限らず、電子顕微鏡
をはじめとする各種の高倍率光学装置等においても必要
であり、その精度向上により、バイオテクノロジ、宇宙
開発等の先端技術においてもそれらの発展に大きく寄与
するものである。 従来、このような微細位置決め装置は、例えば「機械設
計」誌、第27巻第1号(1983年1月号)の第32頁乃至第
36頁に示されるような種々の型のものが提案されてい
る。これらのうち、特に面倒な変位縮小機構が不要であ
り、かつ、構成が簡単である点で、平行ばねと微動アク
チユエータを用いた型の微細位置決め装置が優れている
と考えられるので、以下、これを第4図に基づい説明す
る。 第6図は従来の微細位置決め装置の側面図である。図
で、1は支持台、2a,2bは支持台1上に互いに平行に固
定された板状の平行ばね、3は平行ばね2a,2b上に固定
された剛性の高い微動テーブルである。4は支持台1と
微動テーブル3との間に装架された微動アクチユエータ
である。この微動アクチユエータ4には、圧電素子、電
磁ソレノイド等が用いられ、これを励起することによ
り、微動テーブル3に図中に示す座標軸のx軸方向の力
が加えられる。 ここで、平行ばね2a,2bはその構造上、x軸方向の剛性
は低く、これに対してz軸方向、y軸方向(紙面に垂直
な方向)の剛性が高いので、微動アクチユエータが励起
されると、微動テーブル3はほぼx軸方向にのみ変位
し、他方向の変位はほとんど発生しない。 第7図は前述の参考文献に開示された例から容易に考え
られる従来の他の微細位置決め装置の斜視図である。図
で、6は支持台、7a,7bは支持台6上に互いに固定され
た板状の平行ばね、8は平行ばね7a,7bに固定された剛
性の高い中間テーブル、9a,9bは平行ばね7a,7bと直交す
る方向において互いに平行に中間テーブル8に固定され
た板状の平行ばね、10は平行ばね9a,9b上に固定された
剛性の高い微動テーブルである。座標軸を図中に示すよ
うに定めると、平行ばね7a,7bはx軸方向に沿つて配置
され、平行ばね9a,9bはy軸方向に沿つて配置されてい
る。この構造は、基本的には第6図に示す1軸(x軸方
向の変位を生じる)の場合の構造を2段に積層した構造
である。矢印Fxは微動テーブル10に加えられるx軸方向
の力、矢印Fyは中間テーブル8に加えられるy軸方向の
力を示し、力Fx,Fyを加えることができる図示されてい
ない微動アクチユエータが支持台6と微動テーブル10、
支持台6と中間テーブル8との間にそれぞれ設けられ
る。 微動テーブル10に力Fxが加えられると、平行ばね9a,9b
が変形し、一方、平行ばね7a,7bはx軸方向の力Fxに対
しては高い剛性有するので、微動テーブル10はほぼx軸
方向のみ変位する。また、中間テーブル8に力Fyが加え
られると、平行ばね7a,7bが変形し、微動テーブル10は
平行ばね9a,9bを介してほぼy軸方向にのみ変位する。
さらに、両方の力Fx,Fyが同時に加えられると、各平行
ばね7a,7b,9a,9bは同時に変形し、微動テーブル10はこ
れに応じて2次元的に変位する。 このように、第7図に示す装置は、第6図に示す装置が
1軸方向のみの位置決め装置であるのに対して2軸方向
の位置決めを行うことができる。 〔発明が解決しようとする課題〕 ところで、第6図および第7図に示す微細位置決め装置
は、1次元および2次元の位置決めができるが、例え
ば、第6図に示す微細位置決め装置において、平行ばね
2a,2bがx軸方向に押されて変形したとき、微動テーブ
ル3はx軸方向に変位するとともに、極く僅かであるが
z軸方向下向きにも変位を生じる。このような横変位が
発生することはその構造上明らかである。又、第7図に
示す微細位置決め装置においても、同様にz軸方向下向
きの横変位が発生するのは明らかである。そして、サブ
μmオーダの微細位置決めを行う場合、このような極く
僅かな横変位も無視できなくなる。 さらに、x軸方向およびy軸方向の2軸の変位を実施し
ようとする場合、第7図に示す装置ではz軸方向の寸法
が大きくなり、さらにz軸方向の変位や、x軸,y軸,z軸
まわりの変位を発生する装置を付加しようとする場合、
微細位置決め装置全体が大形となるのを避けることはで
きない。 本発明の目的は、上記従来技術の問題点を解決し、剛性
が高く、しかも全体構造を小形に構成することができる
微細位置決め装置を提供することにある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine positioning apparatus used in a semiconductor manufacturing apparatus, an electron microscope, or any other apparatus requiring adjustment on the order of sub-μm. [Prior Art] In recent years, in various technical fields, there is a demand for an apparatus capable of fine displacement adjustment on the order of sub-μm. A typical example thereof is a semiconductor manufacturing apparatus such as an LSI (Large Scale Integrated Circuit), a mask aligner used in a manufacturing process of a VLSI, an electron beam drawing apparatus and the like. In these devices,
Submicron-order fine positioning is required, and as the positioning accuracy improves, the degree of integration increases, and high-performance products can be manufactured. Such fine positioning is necessary not only in the above-mentioned semiconductor device but also in various high-magnification optical devices such as electron microscopes, and by improving its precision, even in advanced technologies such as biotechnology and space development. Will greatly contribute to the development of. Conventionally, such a fine positioning device is disclosed, for example, in "Mechanical Design" magazine, Vol. 27, No. 1 (January 1983), pages 32 to 32.
Various types have been proposed, as shown on page 36. Among these, since it is considered that a fine positioning device of a mold using a parallel spring and a fine movement actuator is superior in that a particularly complicated displacement reduction mechanism is unnecessary and the configuration is simple, Will be described with reference to FIG. FIG. 6 is a side view of a conventional fine positioning device. In the figure, 1 is a support base, 2a and 2b are plate-like parallel springs fixed in parallel to each other on the support base 1, and 3 is a highly rigid fine movement table fixed onto the parallel springs 2a and 2b. Reference numeral 4 denotes a fine movement actuator mounted between the support base 1 and the fine movement table 3. A piezoelectric element, an electromagnetic solenoid, or the like is used for the fine movement actuator 4, and when it is excited, a force in the x-axis direction of the coordinate axis shown in the drawing is applied to the fine movement table 3. Due to the structure of the parallel springs 2a and 2b, the rigidity in the x-axis direction is low, while the rigidity in the z-axis direction and the y-axis direction (direction perpendicular to the paper surface) is high, so that the fine motion actuator is excited. Then, the fine movement table 3 is displaced substantially only in the x-axis direction, and the displacement in the other direction hardly occurs. FIG. 7 is a perspective view of another conventional fine positioning device easily conceivable from the examples disclosed in the aforementioned references. In the figure, 6 is a support base, 7a and 7b are plate-shaped parallel springs fixed to each other on the support base 6, 8 is an intermediate table having high rigidity fixed to the parallel springs 7a and 7b, and 9a and 9b are parallel springs. A plate-shaped parallel spring fixed to the intermediate table 8 in parallel with each other in a direction orthogonal to 7a and 7b, and a high-rigidity fine movement table fixed to the parallel springs 9a and 9b. When the coordinate axes are determined as shown in the figure, the parallel springs 7a and 7b are arranged along the x-axis direction, and the parallel springs 9a and 9b are arranged along the y-axis direction. This structure is basically a structure in which the structure for one axis (which causes displacement in the x-axis direction) shown in FIG. 6 is laminated in two stages. An arrow Fx indicates a force in the x-axis direction applied to the fine motion table 10, an arrow Fy indicates a force in the y-axis direction applied to the intermediate table 8, and a fine motion actuator (not shown) capable of applying the forces Fx and Fy is a support base. 6 and fine table 10,
It is provided between the support base 6 and the intermediate table 8, respectively. When a force Fx is applied to the fine motion table 10, the parallel springs 9a, 9b
On the other hand, since the parallel springs 7a and 7b have high rigidity with respect to the force Fx in the x-axis direction, the fine movement table 10 is displaced only in the x-axis direction. Further, when a force Fy is applied to the intermediate table 8, the parallel springs 7a and 7b are deformed, and the fine movement table 10 is displaced only in the y-axis direction via the parallel springs 9a and 9b.
Furthermore, when both forces Fx and Fy are applied at the same time, the parallel springs 7a, 7b, 9a and 9b are simultaneously deformed, and the fine movement table 10 is two-dimensionally displaced accordingly. As described above, the apparatus shown in FIG. 7 can perform positioning in the biaxial directions, whereas the apparatus shown in FIG. 6 is a positioning apparatus in the uniaxial directions only. [Problems to be Solved by the Invention] By the way, the fine positioning device shown in FIGS. 6 and 7 can perform one-dimensional and two-dimensional positioning. For example, in the fine positioning device shown in FIG.
When 2a and 2b are pushed and deformed in the x-axis direction, the fine movement table 3 is displaced in the x-axis direction and is also displaced in the z-axis direction downward, although very slightly. It is clear from the structure that such lateral displacement occurs. Also in the fine positioning device shown in FIG. 7, it is apparent that a downward displacement in the z-axis direction similarly occurs. Then, when performing fine positioning on the order of sub-μm, such a very slight lateral displacement cannot be ignored. Furthermore, when attempting to perform biaxial displacements in the x-axis direction and the y-axis direction, the device shown in FIG. 7 has a large dimension in the z-axis direction, and the displacements in the z-axis direction and the x-axis and y-axis directions are increased. , When adding a device that generates displacement around the z-axis,
It is inevitable that the entire fine positioning device becomes large. An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a fine positioning device which has a high rigidity and can be constructed in a small overall structure.
上記の目的を達成するため、本発明は、中心剛体部と、
この中心剛体部から第1の軸方向に対称的に突出する第
1の組の張出し部と、前記中心剛体部から前記第1の軸
と直交する第2の軸方向に対称的に突出する第2の組の
張出し部と、前記第1の組の張出し部にそれぞれ対称的
に設けられるとともに、これら各張出し部の端部側から
の突出部、前記中心剛体部側からの突出部、これら各突
出部間に装架されたアクチュエータ、および前記中心剛
体部側と前記張出し部の端部側とを連結し対応する前記
アクチュエータの駆動により変形する互いに平行なたわ
み梁より成り、前記第2の軸方向の並進変位を発生させ
る平行たわみ梁変位機構の組と、前記第2の張出し部に
それぞれ対称的に設けられるとともに、これら各張出し
部の端部側からの突出部、前記中心剛体部側からの突出
部、これら各突出部間に装架されたアクチュエータ、お
よび前記中心剛体部側と前記張出し部の端部側とを連結
し対応する前記アクチュエータの駆動により変形する互
いに平行なたわみ梁より成り、前記第1の軸方向の並進
変位を発生させる平行たわみ梁変位機構の組と、前記第
1の組の張出し部の端部に連結され固定端に固定される
固定部と、前記第2の組の張出し部の端部に連結された
微動テーブルとで微細位置決め装置を構成したことを特
徴とする。 [作用] 第1の組の張出し部の平行たわみ梁変位機構の組を駆動
すると、その変位は中心剛体部、第2の張出し部を介し
て微動テーブルに伝達され、これを第2の軸方向に変位
させる。第2の組の張出し部の平行たわみの梁変位機構
の組を駆動すると、その変位は直接微動テーブルに伝達
され、これを第1の軸方向に変位させる。微動テーブル
等に、何らかの理由により外部からの力が加わると、こ
の力は、微動テーブルが連結された張出し部の平行たわ
み梁構造のアクチュエータを介する各突出部間、中心剛
体部、他方の張出し部の平行たわみ梁構造のアクチュエ
ータを介する各突出部間を通って固定部に伝達される。
この伝達経路に介在する部材はいずれも、微動テーブル
に影響を与えることなく剛性を高くすることができるの
で、微細位置決め装置の機構の剛性は高く、上記外力が
加わってもその悪影響を抑えることができ、かつ、位置
決めを迅速に行なうことができる。 〔実施例〕 以下、本発明を図示の実施例に基づいて説明する。 第1図は本発明の第1の実施例に係る微細位置決め装置
の分解斜視図である。図で、x,y,zは互いに直交する座
標軸を示す。15は剛性の高い部材より成る中心剛体部、
16aは中心剛体部15からy軸方向に張出した張出し部、1
6bは中心剛体部15から張出し部16aと反対向きに張出し
た張出し部、17aは中心剛体部15からx軸方向に張出し
た張出し部、17bは中心剛体部15から張出し部17aと反対
向きに張出した張出し部である。18a,18bはそれぞれ張
出し部16a,16bの端部下端に設けられた固定部、19a,19b
はそれぞれ張出し部17a,17bの端部上端に設けられた微
動テーブル連結部、20は微動テーブルである。 張出し部16a,16b,17a,17b、固定部18a,18b,および微動
テーブル連結部19a,19bはそれぞれ中心剛体部15と同じ
部材で構成され、中心剛体部15とともに1つのブロツク
から加工成形される。 16Fxa,16Fxbはそれぞれ張出し部16a,16bに構成された平
行たわみ梁変位機構であり、互いに中心剛体部15に対し
て対称的に構成されている。平行たわみ梁変位機構16Fx
a,16Fxbは共働してx軸方向の並進変位を発生する。17F
ya,17Fybはそれぞれ張出し部17a,17bに構成された平行
たわみ梁変位機構であり、互いに中心剛体部15に対して
対称的に構成されている。平行たわみ梁変位機構17Fya,
17Fybは共働してy軸方向の並進変位を発生する。な
お、平行たわみ梁変位機構の構造については後述する。
上記平行たわみ梁変位機構16Fxa,16Fxb,17Fya,17Fybは
各張出し部16a,16b,17a,17bの所定個所に所定の貫通孔
を形成することにより構成される。なお、Sは各平行た
わみ梁変位機構に設けられたストレンゲージである。 次に、上記平行たわみ梁変位機構の構成を図により説明
する。第2図(a),(b)は対称形の平行たわみ梁変
位機構の側面図である。図で、31a,31b,31cは剛体部、3
4a1,34a2は剛体部31c,31a間に互いに平行に連結された
平行たわみ梁である。平行たわみ梁34a1,34a2は剛体部
にあけた貫通孔32aにより形成される。34b1,34b2は剛体
部31b,31c間に互いに連結された平行たわみ梁であり、
剛体部にあけられた貫通孔32bにより形成される。36a,3
6bは圧電アクチユエータであり、それぞれ貫通孔32a,32
b内に突出した剛体部からの突出部間に装着されてい
る。剛体部31cの中心から左方の構成により平行たわみ
梁変位機構39aが、又、右方の構成により平行たわみ梁
変位機構39bが構成される。Sは各平行たわみ梁の適所
に設けられたストレンゲージである。 ここで、座標軸を図示のように定める(y軸は紙面に垂
直な方向)。今、圧電アクチユエータ36a,36bに同時に
電圧を印加して同一大きさのZ軸方向の力fを発生させ
る。このとき、一方の平行たわみ梁変位機構、例えば平
行たわみ梁変位機構39aに生じる変位について考える。
圧電アクチユエータ36aに電圧が印加されることによ
り、剛体部31cは力fによりz軸方向に押圧されること
になる。このため、平行たわみ梁34a1,34a2は第4図に
示す平行ばね2a,2bと同じように曲げ変形を生じ、剛体
部31cは第2図(b)に示すようにz軸方向に変位す
る。このとき、仮に他方の平行たわみ梁変位機構39bが
存在しないとすると剛体部31cには極めて微小ではある
が横変位(x軸方向の変位)をも同時に生じるはずであ
る。 又、平行たわみ梁変位機構39aが存在しない場合、他方
の平行たわみ梁変位機構39bに生じる変位について考え
ると、平行たわみ梁変位機構39bは剛体部31cの中心を通
るy軸方向に沿う面(基準面)に対して平行たわみ梁変
位機構39aと面対称に構成されていることから、基準面
に関して面対称な力fを受けると上記と同様に、剛体部
31cにはz軸方向の変位と同時に上記横変位が生じ、そ
の大きさや方向は、平行たわみ梁変位機構39aのそれと
基準面に関して面対称となる。すなわち、上記横変位に
ついてみると、平行たわみ梁変位機構39aに生じる横変
位は、x軸方向の変位については図で左向き、y軸まわ
りの回転変位については図で反時計方向に生じ、一方、
平行たわみ梁変位機構39bに生じる横変位は、x軸方向
変位については図で右向き、y軸まわりの回転変位につ
いては図で時計方向に生じる。そして、それらx軸方向
変位の大きさおよびy軸まわりの回転変位の大きさは等
しい。したがつて、両者に生じる横変位は互いにキヤン
セルされる。この結果、力fが加わつたことにより、各
平行たわみ梁34a1,34a2,34b1,34b2にその長手方向の伸
びによる僅かな内部応力の増大が生じるだけで、剛体部
31cはz軸方向のみの変位(主変位)εを生じる。 圧電アクチユエータ36a,36bに印加されている電圧が除
かれると、各平行たわみ梁34a1,34a2,34b1,34b2は変形
前の状態に復帰し、平行たわみ梁変位機構39a,39bは第
2図(a)に示す状態に戻り、変位εは0となる。な
お、上記の作動中、各ストレンゲージSを用いて実際の
変位量を検出し、これに基づいてフイードバツク制御を
行うことにより正確な位置決めを実施することができ
る。 次に、第1図に示す本実施例の動作を説明する。今、平
行たわみ梁変位機構16Fxa,16Fxbの各圧電アクチユエー
タに等しい電圧を印加すると、その平行たわみ梁34a1,3
4a2,34b1,34b2が印加電圧に応じて第1図のx軸方向に
第2図(b)に示すように変形し、並進変位する。 これら平行たわみ梁変位機構16Fxa,16Fxbは、中心剛体
部15、平行たわみ梁変位機構17Fya,17Fyb、および固定
部19aに固定された微動テーブル20と一体であるので、
そのx軸方向の並進変位はそのまま微動テーブル20に伝
達され、微動テーブル20は同量だけx軸方向に並進変位
する。同様に、平行たわみ梁変位機構17Fya,17Fybの圧
電アクチユエータに同一電圧を印加した場合、微動テー
ブル20はy軸方向に並進変位する。さらに、これら各平
行たわみ梁変位機構を同時に駆動すると、合成された並
進変位を得ることができる。 このように、本実施例では、一方の張出し部にx軸方向
に並進変位する平行たわみ梁変位機構を設け、他方の張
出し部にy軸方向に並進変位する平行たわみ梁変位機構
を設け、一方の張出し部の端部を固定し、他方の張出し
部の端部に微動テーブルを固定したので、極めて簡素か
つ小形な構成で2軸の並進変位を得ることができる。
又、各平行たわみ梁変位機構は、各張出し部の端部側か
らの突出部、中心剛体部側からの突出部、これら各突出
部間に装架されたアクチュエータ、および中心剛体部側
と張出し部の端部側とを連結し対応するアクチュエータ
の駆動により変形する互いに平行なたわみ梁で構成した
ので、突出部はアクチュエータを固定するだけで短い寸
法で済み、その剛性を充分に大きくすることができ、こ
れにより、微動テーブル、一方の張出し部のアクチュエ
ータと各突出部、中心剛体部、他方の張出し部のアクチ
ュエータと各突出部を通って固定部に至る力の伝達経路
の剛性、即ち機構の剛性が高く、外力による悪影響を抑
え、かつ、位置決めを迅速に行なうことができる。 第3図は本発明の第2の実施例に係る微細位置決め装置
の分解斜視図である。図で、第1図に示す部分と同一部
分には同一符号を付して説明を省略する。21は剛性の高
い部材より成る中心剛体部であり、微動テーブル20が固
定される。22aは中心剛体部21からx軸方向に張出した
張出し部、22bは中心剛体部21から張出し部22aと反対向
きに張出した張出し部である。23a,23bはそれぞれ張出
し部22a,22bの端部下方から突出した固定部であり、固
定部19a,19bと結合される。この結合の1個所が2点鎖
線で示されている。中心剛体部21、各張出し部22a,22
b、および連結部23a,23bはそれぞれ1つの部材から一体
に加工成形される。 22Fza,22Fzbはそれぞれ張出し部22a,22bに構成された第
2図(a)に示すものと同じ平行たわみ梁変位機構であ
り、互いに中心剛体部21に対して対称的に配置されてい
る。これら平行たわみ梁変位機構22Fza,22Fzbは共働し
てz軸方向の並進変位を発生する。平行たわみ梁変位機
構22Fza,22Fzbは各張出し部22a,22bの所定個所に所定の
貫通孔を形成することにより構成される。 次に本実施例の動作を説明する。張出し部17a,17bと張
出し部22a,22bとは連結されており、かつ、中心剛体部2
1と微動テーブル20も連結されているので、平行たわみ
梁変位機構16Fxa,16Fxb,17Fya,17Fybにより発生した並
進変位はそのまま微動テーブル20を並進変位させる。端
部22a,22bは、端部17a,17b、平行たわみ梁変位機構17Fy
a,17Fyb、中心剛体部15、平行たわみ梁変位機構16Fxa,1
6Fxb、および端部16a,16bを介して固定部18a,18bに固定
されている。したがつて、平行たわみ梁変位機構22Fza,
22Fzbの各圧電アクチユエータに同一電圧を印加する
と、これら平行たわみ梁変位機構22Fza,22Fzbは第2図
(b)に示すように変位し、微動テーブル20もz軸方向
に同一量変位する。 このように、本実施例では、さきの実施例に、さらにz
軸方向の並進変位を発生する平行たわみ梁変位機構を連
結したので、極めて簡素かつ小形な構成で3軸の並進変
位を得ることができる。又、さきの実施例と同じく剛性
の高い微細位置決め装置を構成することができる。 第4図は本発明の第3の実施例に係る微細位置決め装置
の分解斜視図である。図で、第1図に示す部分と同一部
分には同一符号を付して説明を省略する。26は剛性の高
い部材より成る中心剛体部であり、微動テーブル20が結
合される。その結合の1個所が2点鎖線で示されてい
る。27aは中心剛体部26からx軸方向に張出した張出し
部、27bは中心剛体部26から張出した張出し部である。
張出し部27aと端部17a、および張出し部27bと端部17bと
はそれぞれ連結されている。その結合の1個所が2点鎖
線で示されている。 27Mza,27Mzbはそれぞれ張出し部27a,27bに構成された放
射たわみ梁変位機構であり、互いに中心剛体部26に対し
て対称的に配置されている。これら平行たわみ梁変位機
構27Mza,27Mzbは共働してz軸まわりの回転変位を発生
する。これら放射たわみ梁変位機構27Mza,27Mzbはそれ
ぞれ所定個所に所定の貫通孔を形成することにより構成
される。なお、放射たわみ梁変位機構の構造については
後述する。各放射たわみ梁変位機構27Mza,27Mzb、中心
剛体部26、張出し部27a,27bは一体に加工成形される。 次に、上記放射たわみ梁変位機構の構成を図により説明
する。第5図(a),(b)は対称形の放射たわみ梁変
位機構の側面図である。 図で、41a,41b,41cは剛体部、44a1,44a2,44b1,44b2は放
射たわみ梁である。各放射たわみ梁44a1,44a2,44b1,44b
2は剛体部41cの中心を通る紙面に垂直な軸Oに対して一
点鎖線L1,L2に沿つて放射状に延びており、それぞれ隣
接する剛体部間を連結している。放射たわみ梁44a1,44a
2は貫通孔42aをあけることにより形成され、又、放射た
わみ梁44b1,44b2は貫通孔42bをあけることにより形成さ
れる。46a,46bは圧電アクチユエータであり、それぞれ
貫通孔42a,42bに剛体部から突出した突出部間に装着さ
れている。軸Oの左側の構成により放射たわみ梁変位機
構49aが、又、右側の構成により放射たわみ梁変位機構4
9bが構成される。なお、Sは放射たわみ梁の適所に設け
られたストレンゲージである。 今、圧電アクチユエータ46a,46bに同時に所定の電圧を
印加して同一の大きさの、中心軸Oを中心とする円に対
する接線方向の力fを発生させる。そうすると、剛体部
41cの左方の突出部は圧電アクチユエータ46aに発生した
力により上記接線に沿つて上向きに押され、剛体部41c
の右方の突出部は圧電アクチユエータ46bに発生した力
により上記接線に沿つて下向きに押される。剛体部41c
は両剛体部41a,41bに放射たわみ梁44a1,44a2,44b1,44b2
で連結された形となつているので、上記の力を受けた結
果、第5図(b)に示すように放射たわみ梁44a1,44a2,
44b1,44b2の剛体部41a,41bに連結されている部分は点O
から放射状に延びる直線L1,L2上にあるが、剛体部41cに
連結されている部分は、上記直線L1,L2から僅かにずれ
た直線(この直線も点Oから放射状に延びる直線であ
る。)L1′,L2′上にずれる微小変位を生じる。このた
め、剛体部41cは図で時計方向に微小角度δだけ回動す
る。この回転変位δの大きさは、放射たわみ梁44a1,44a
2,44b1,44b2の曲げに対する剛性により定まるので、力
fを正確に制御すれば、回転変位δもそれと同じ精度で
制御できることになる。 圧電アクチユエータ46a,46bに印加されている電圧が除
かれると、放射たわみ梁44a1,44a2,44b1,44b2は変形前
の状態に復帰し、回転変位機構は第5図(a)に示す状
態に戻り、変位δは0となる。なお、上記の動作中、各
ストレンゲージSを用いて実際の変位量を検出し、これ
に基づいてフイードバツク制御を行うことにより正確な
位置決めを実施することができる。 次に本実施例の動作を説明する。張出し部17a,17bと張
出し部27a,27bとは連結されており、かつ、中心剛体部2
6と微動テーブル20も連結されているので、平行たわみ
梁変位機構16Fxa,16Fxb,17Fya,17Fybにより発生した並
進変位はそのまま微動テーブル20を並進変位させる。
又、端部27a,27bは、端部17a,17b、平行たわみ梁変位機
構17Fya,17Fyb、中心剛体部15、平行たわみ梁変位機構1
6Fxa,16Fxb、および端部16a,16bを介して固定部18a,18b
に固定されている。したがつて、放射たわみ梁変位機構
27Mza,27Mzbの各圧電アクチユエータに同一電圧を印加
すると、これら放射たわみ梁変位機構27Mza,27Mzbは第
5図(b)に示すように回転変位し、微動テーブル20も
z軸まわりに同一量回転変位する。 このように、本実施例では、第1の実施例に、さらにz
軸まわりの回転変位を発生する放射たわみ梁変位機構を
連結したので、極めて簡素かつ小形な構成で2軸の並進
変位と1軸まわりの回転変位を得ることができる。又、
さきの実施例と同じく剛性の高い微細位置決め装置を構
成することができる。 なお、上記実施例の説明では、y軸方向の張出し部の端
部を固定し、x軸方向の張出し部の端部に微動テーブル
を設けた例について説明したが、これとは逆に、x軸方
向の張出し部の端部を固定し、y軸方向の張出し部の端
部に微動テーブルを設けてもよいのは明らかである。
又、上記各実施例の説明において、微動テーブル30を長
方形として図示したが、これに限ることはなく、板体部
分を長方形等、対象物体を載置固定し易い形状とするこ
とは当然である。 〔発明の効果〕 以上述べたように、本発明では、直交する2つの方向の
張出し部にそれぞれ並進方向が直交する平行たわみ梁変
位機構を構成したので、極めて簡素かつ小形な構成で2
軸の並進変位を得ることができる。又、各平行たわみ梁
変位機構は、各張出し部の端部側からの突出部、中心剛
体部側からの突出部、これら各突出部間に装架されたア
クチユエータ、および中心剛体部側と張出し部の端部側
とを連結し対応する前記アクチユエータの駆動により変
形する互いに平行なたわみ梁で構成したので、微細位置
決め装置の機構の剛性を高くすることができ、外力によ
る悪影響を抑えることができ、かつ、位置決めを迅速に
行なうことができる。In order to achieve the above object, the present invention provides a central rigid body portion,
A first set of projecting portions that symmetrically protrudes from the central rigid body portion in a first axial direction, and a first set of projecting portions that symmetrically protrudes from the central rigid body portion in a second axial direction orthogonal to the first axis. The protrusions of the second set and the protrusions of the first set are provided symmetrically, respectively, and the protrusions from the end side of each of these protrusions, the protrusions from the central rigid body side, and these An actuator mounted between the projecting portions, and flexible beams parallel to each other that connect the central rigid body portion side and the end portion side of the overhanging portion and are deformed by driving of the corresponding actuators; And a set of parallel flexible beam displacement mechanisms that generate translational displacement in a direction and symmetrically provided on the second overhanging portion, and projecting from the end side of each of these overhanging portions and the central rigid body portion side. Protrusions, each of these protrusions An actuator mounted between the central rigid body portion and an end portion side of the overhanging portion, the bending beams being parallel to each other and deformed by driving of the corresponding actuator; A set of parallel flexural beam displacement mechanisms that generate translational displacement, a fixed part that is fixed to a fixed end that is connected to the end of the overhang part of the first set, and an end part of the overhang part of the second set. It is characterized in that a fine positioning device is constituted by the fine movement tables connected to each other. [Operation] When the set of parallel bending beam displacement mechanisms of the first set of overhangs is driven, the displacement is transmitted to the fine motion table via the central rigid body part and the second overhang, and this is transmitted in the second axial direction. Shift to. When the set of parallel displacement beam displacement mechanisms of the second set of overhangs is driven, the displacement is directly transmitted to the fine movement table, which displaces it in the first axial direction. When an external force is applied to the fine motion table, etc. for some reason, this force is applied between the protrusions of the overhanging part to which the fine motion table is connected, the central rigid body part, and the other overhanging part via the actuator of the parallel flexural beam structure. Is transmitted to the fixed portion through the actuators having the parallel flexible beam structure.
Since the rigidity of any member interposed in this transmission path can be increased without affecting the fine movement table, the rigidity of the mechanism of the fine positioning device is high, and its adverse effects can be suppressed even if the external force is applied. In addition, the positioning can be performed quickly. [Examples] Hereinafter, the present invention will be described based on illustrated examples. FIG. 1 is an exploded perspective view of a fine positioning device according to a first embodiment of the present invention. In the figure, x, y, and z indicate coordinate axes that are orthogonal to each other. 15 is a central rigid body made of a highly rigid member,
16a is a projecting portion projecting from the central rigid body portion 15 in the y-axis direction, 1
6b is a projecting portion projecting from the central rigid body portion 15 in the opposite direction to the projecting portion 16a, 17a is a projecting portion projecting from the central rigid body portion 15 in the x-axis direction, and 17b is projecting from the central rigid body portion 15 in the opposite direction to the projecting portion 17a. It is the overhang part. 18a and 18b are fixed portions provided at the lower ends of the overhang portions 16a and 16b, and 19a and 19b, respectively.
Is a fine movement table connecting portion provided on the upper ends of the ends of the overhang portions 17a and 17b, and 20 is a fine movement table. The overhanging portions 16a, 16b, 17a, 17b, the fixing portions 18a, 18b, and the fine movement table connecting portions 19a, 19b are each formed of the same member as the central rigid body portion 15, and are machined from one block together with the central rigid body portion 15. . 16Fxa and 16Fxb are parallel flexural beam displacement mechanisms formed in the overhanging portions 16a and 16b, respectively, and are symmetrically configured with respect to the central rigid body portion 15. Parallel flexible beam displacement mechanism 16Fx
a, 16Fxb cooperate to generate translational displacement in the x-axis direction. 17F
ya and 17Fyb are parallel flexural beam displacement mechanisms formed on the overhanging portions 17a and 17b, respectively, and are symmetrically configured with respect to the central rigid body portion 15. Parallel flexible beam displacement mechanism 17Fya,
17Fyb cooperates to generate a translational displacement in the y-axis direction. The structure of the parallel flexible beam displacement mechanism will be described later.
The parallel flexural beam displacement mechanism 16Fxa, 16Fxb, 17Fya, 17Fyb is configured by forming a predetermined through hole at a predetermined position of each overhanging portion 16a, 16b, 17a, 17b. In addition, S is a strain gauge provided in each parallel flexible beam displacement mechanism. Next, the configuration of the parallel flexible beam displacement mechanism will be described with reference to the drawings. 2 (a) and 2 (b) are side views of a symmetric parallel flexible beam displacement mechanism. In the figure, 31a, 31b, 31c are rigid parts, 3
4a 1 and 34a 2 are parallel flexible beams connected in parallel to each other between the rigid body portions 31c and 31a. The parallel flexible beams 34a 1 and 34a 2 are formed by through holes 32a formed in the rigid body portion. 34b 1 and 34b 2 are parallel flexible beams connected to each other between the rigid body portions 31b and 31c,
It is formed by a through hole 32b formed in the rigid portion. 36a, 3
6b is a piezoelectric actuator, and through holes 32a, 32
It is mounted between the protrusions from the rigid body that protrudes into b. A parallel flexible beam displacement mechanism 39a is configured by the configuration on the left side of the center of the rigid body portion 31c, and a parallel flexible beam displacement mechanism 39b is configured by the configuration on the right side. S is a strain gauge provided at an appropriate position of each parallel flexible beam. Here, the coordinate axes are defined as shown (the y axis is the direction perpendicular to the paper surface). Now, a voltage is applied to the piezoelectric actuators 36a and 36b at the same time to generate a force f in the Z-axis direction of the same magnitude. At this time, the displacement occurring in one of the parallel flexible beam displacement mechanisms, for example, the parallel flexible beam displacement mechanism 39a will be considered.
By applying a voltage to the piezoelectric actuator 36a, the rigid portion 31c is pressed in the z-axis direction by the force f. Therefore, the parallel flexible beams 34a 1 and 34a 2 undergo bending deformation similarly to the parallel springs 2a and 2b shown in FIG. 4, and the rigid body portion 31c is displaced in the z-axis direction as shown in FIG. 2 (b). To do. At this time, if the other parallel flexural beam displacement mechanism 39b does not exist, lateral displacement (displacement in the x-axis direction) should occur at the same time in the rigid portion 31c, although it is extremely small. Further, when the parallel flexural beam displacement mechanism 39a does not exist, considering the displacement generated in the other parallel flexural beam displacement mechanism 39b, the parallel flexural beam displacement mechanism 39b is a surface along the y-axis direction passing through the center of the rigid portion 31c (reference Since it is configured to be plane-symmetric with the flexural beam displacement mechanism 39a parallel to the plane), when a force f that is plane-symmetric with respect to the reference plane is received, the rigid body portion is similar to the above.
The lateral displacement occurs in the 31c at the same time as the displacement in the z-axis direction, and its magnitude and direction are plane-symmetric with that of the parallel flexible beam displacement mechanism 39a with respect to the reference plane. That is, regarding the lateral displacement, the lateral displacement generated in the parallel flexible beam displacement mechanism 39a is leftward in the figure for displacement in the x-axis direction, and counterclockwise in the figure for rotational displacement around the y-axis.
The lateral displacement occurring in the parallel flexural beam displacement mechanism 39b occurs rightward in the figure for displacement in the x-axis direction, and occurs clockwise in the diagram for rotational displacement around the y-axis. The magnitude of the displacement in the x-axis direction and the magnitude of the rotational displacement about the y-axis are the same. Therefore, the lateral displacements that occur on both sides cancel each other. As a result, the force f is applied to each of the parallel flexible beams 34a 1 , 34a 2 , 34b 1 , 34b 2 so that only a slight increase in internal stress occurs due to the elongation in the longitudinal direction.
31c causes displacement (main displacement) ε only in the z-axis direction. When the voltage applied to the piezoelectric actuators 36a, 36b is removed, each of the parallel flexible beams 34a 1 , 34a 2 , 34b 1 , 34b 2 returns to the state before deformation, and the parallel flexible beam displacement mechanisms 39a, 39b move to the first position. Returning to the state shown in FIG. 2 (a), the displacement ε becomes zero. During the above operation, the actual displacement amount is detected using each strain gauge S, and the feed back control is performed based on the detected displacement amount, whereby accurate positioning can be performed. Next, the operation of this embodiment shown in FIG. 1 will be described. Now, when an equal voltage is applied to each piezoelectric actuator of the parallel flexible beam displacement mechanism 16Fxa, 16Fxb, the parallel flexible beam 34a 1 , 3
4a 2 , 34b 1 and 34b 2 are deformed in the x-axis direction in FIG. 1 as shown in FIG. 2 (b) according to the applied voltage, and are displaced in translation. Since these parallel flexible beam displacement mechanisms 16Fxa, 16Fxb are integral with the central rigid body portion 15, the parallel flexible beam displacement mechanisms 17Fya, 17Fyb, and the fine movement table 20 fixed to the fixed portion 19a,
The translational displacement in the x-axis direction is directly transmitted to the fine movement table 20, and the fine movement table 20 is translationally displaced in the x-axis direction by the same amount. Similarly, when the same voltage is applied to the piezoelectric actuators of the parallel flexural beam displacement mechanisms 17Fya and 17Fyb, the fine movement table 20 is translationally displaced in the y-axis direction. Further, when these parallel flexural beam displacement mechanisms are driven simultaneously, a combined translational displacement can be obtained. As described above, in the present embodiment, one of the overhanging portions is provided with the parallel flexural beam displacement mechanism that is translationally displaced in the x-axis direction, and the other overhanging portion is provided with the parallel flexural beam displacement mechanism that is translationally displaced in the y-axis direction. Since the end portion of the overhanging portion is fixed and the fine movement table is fixed to the end portion of the other overhanging portion, it is possible to obtain translational displacement of two axes with an extremely simple and small structure.
In addition, each parallel flexible beam displacement mechanism has a protrusion from the end side of each overhanging portion, a protrusion from the central rigid body side, an actuator mounted between these protruding portions, and an overhang with the central rigid body side. Since it is composed of flexible beams that are parallel to each other and are deformed by the drive of the corresponding actuators, the protrusions need only be fixed to the actuator to have a short dimension, and the rigidity can be sufficiently increased. By doing this, the rigidity of the force transmission path to the fixed portion through the fine movement table, the actuator of one overhanging portion and each protrusion, the central rigid body portion, the actuator of the other overhanging portion and each protrusion, that is, the mechanism The rigidity is high, the adverse effect of external force can be suppressed, and the positioning can be performed quickly. FIG. 3 is an exploded perspective view of the fine positioning device according to the second embodiment of the present invention. In the figure, the same parts as those shown in FIG. Reference numeral 21 denotes a central rigid body portion made of a highly rigid member, to which the fine movement table 20 is fixed. Reference numeral 22a denotes a projecting portion projecting from the central rigid body portion 21 in the x-axis direction, and 22b denotes a projecting portion projecting from the central rigid body portion 21 in a direction opposite to the projecting portion 22a. Reference numerals 23a and 23b denote fixing portions projecting from the lower ends of the projecting portions 22a and 22b, respectively, and are connected to the fixing portions 19a and 19b. One point of this bond is shown by a chain double-dashed line. Central rigid body part 21, each overhang part 22a, 22
The b and the connecting portions 23a and 23b are integrally formed from one member. 22Fza and 22Fzb are parallel flexural beam displacement mechanisms which are the same as those shown in FIG. 2 (a) and which are formed on the overhanging portions 22a and 22b, respectively, and are symmetrically arranged with respect to the central rigid body portion 21. These parallel flexible beam displacement mechanisms 22Fza and 22Fzb cooperate to generate translational displacement in the z-axis direction. The parallel flexible beam displacement mechanism 22Fza, 22Fzb is configured by forming a predetermined through hole at a predetermined position of each overhanging portion 22a, 22b. Next, the operation of this embodiment will be described. The overhang portions 17a, 17b and the overhang portions 22a, 22b are connected to each other, and the central rigid body portion 2
Since 1 and the fine movement table 20 are also connected, the translational displacement generated by the parallel flexible beam displacement mechanisms 16Fxa, 16Fxb, 17Fya, 17Fyb causes the fine movement table 20 to be displaced in translation as it is. The end portions 22a, 22b are the end portions 17a, 17b, the parallel flexible beam displacement mechanism 17Fy.
a, 17Fyb, central rigid body part 15, parallel flexible beam displacement mechanism 16Fxa, 1
It is fixed to the fixed portions 18a and 18b via 6Fxb and the ends 16a and 16b. Therefore, the parallel flexible beam displacement mechanism 22Fza,
When the same voltage is applied to each piezoelectric actuator of 22Fzb, these parallel flexural beam displacement mechanisms 22Fza and 22Fzb are displaced as shown in FIG. 2 (b), and the fine movement table 20 is also displaced by the same amount in the z-axis direction. Thus, in the present embodiment, z is further added to the previous embodiment.
Since the parallel flexible beam displacement mechanism that generates the translational displacement in the axial direction is connected, the translational displacements of three axes can be obtained with an extremely simple and small structure. Further, it is possible to configure a fine positioning device having high rigidity as in the previous embodiment. FIG. 4 is an exploded perspective view of a fine positioning device according to a third embodiment of the present invention. In the figure, the same parts as those shown in FIG. Reference numeral 26 denotes a central rigid body portion made of a highly rigid member, to which the fine movement table 20 is joined. One point of the bond is shown by a chain double-dashed line. Reference numeral 27a denotes a projecting portion projecting from the central rigid body portion 26 in the x-axis direction, and 27b denotes a projecting portion projecting from the central rigid body portion 26.
The overhang 27a and the end 17a are connected to each other, and the overhang 27b and the end 17b are connected to each other. One point of the bond is shown by a chain double-dashed line. 27Mza and 27Mzb are radial bending beam displacement mechanisms formed in the overhanging portions 27a and 27b, respectively, and are symmetrically arranged with respect to the central rigid body portion 26. These parallel flexible beam displacement mechanisms 27Mza and 27Mzb cooperate to generate rotational displacement around the z axis. The radial bending beam displacement mechanisms 27Mza and 27Mzb are each configured by forming a predetermined through hole at a predetermined position. The structure of the radial flexible beam displacement mechanism will be described later. The radial flexible beam displacement mechanisms 27Mza, 27Mzb, the central rigid body portion 26, and the overhanging portions 27a, 27b are integrally formed. Next, the configuration of the radial bending beam displacement mechanism will be described with reference to the drawings. 5 (a) and 5 (b) are side views of a symmetric radial flexible beam displacement mechanism. In the figure, 41a, 41b and 41c are rigid portions, and 44a 1 , 44a 2 , 44b 1 and 44b 2 are radial bending beams. Radial flexible beams 44a 1 , 44a 2 , 44b 1 , 44b
2 The one-dot chain line L 1, L 2 with respect to an axis perpendicular O to the plane passing through the center of the rigid portion 41c extend along connexion radially, are connected between the rigid portion adjacent respectively. Radiant flexible beam 44a 1 , 44a
2 is formed by forming a through hole 42a, and radial bending beams 44b 1 and 44b 2 are formed by forming a through hole 42b. Reference numerals 46a and 46b denote piezoelectric actuators, which are mounted in the through holes 42a and 42b between the protruding portions protruding from the rigid body portion. The radial flexible beam displacement mechanism 49a is configured by the configuration on the left side of the axis O, and the radial flexible beam displacement mechanism 4a is configured by the configuration on the right side.
9b is constructed. In addition, S is a strain gauge provided in an appropriate position of the radiating flexible beam. Now, a predetermined voltage is applied to the piezoelectric actuators 46a and 46b at the same time to generate a force f of the same magnitude in a tangential direction to a circle centered on the central axis O. Then, the rigid body part
The left protrusion of 41c is pushed upward along the tangent line by the force generated in the piezoelectric actuator 46a, and the rigid body 41c
The right-hand protruding portion is pushed downward along the tangent line by the force generated in the piezoelectric actuator 46b. Rigid part 41c
Is a flexible beam radiated to both rigid body parts 41a and 41b 44a 1 , 44a 2 , 44b 1 , 44b 2
As a result of receiving the above force, as shown in FIG. 5 (b), the radiating flexible beams 44a 1 , 44a 2 ,
The portion connected to the rigid body portions 41a and 41b of 44b 1 and 44b 2 is point O.
The straight lines L 1 and L 2 extending radially from the straight line L 1 and L 2 are connected to the rigid body portion 41c, and the straight lines are slightly deviated from the straight lines L 1 and L 2 (the straight lines also extend radially from the point O). A slight displacement that shifts on L 1 ′ and L 2 ′ is generated. Therefore, the rigid body portion 41c rotates clockwise by a minute angle δ in the figure. The magnitude of this rotational displacement δ is determined by the radial flexible beams 44a 1 and 44a.
Since it is determined by the rigidity of 2 , 44b 1 and 44b 2 against bending, if the force f is accurately controlled, the rotational displacement δ can be controlled with the same accuracy. When the voltage applied to the piezoelectric actuators 46a, 46b is removed, the radiating flexible beams 44a 1 , 44a 2 , 44b 1 , 44b 2 return to the state before deformation, and the rotary displacement mechanism is shown in FIG. 5 (a). Returning to the state shown, the displacement δ becomes zero. During the above operation, the actual displacement amount is detected using each strain gauge S, and the feed back control is performed based on the detected displacement amount, whereby accurate positioning can be performed. Next, the operation of this embodiment will be described. The overhang portions 17a, 17b are connected to the overhang portions 27a, 27b, and the central rigid body portion 2
Since 6 and the fine movement table 20 are also connected, the translational displacement generated by the parallel flexible beam displacement mechanisms 16Fxa, 16Fxb, 17Fya, 17Fyb causes the fine movement table 20 to be displaced in translation as it is.
In addition, the end portions 27a and 27b include the end portions 17a and 17b, the parallel flexible beam displacement mechanisms 17Fya and 17Fyb, the central rigid body portion 15, and the parallel flexible beam displacement mechanism 1.
6Fxa, 16Fxb, and fixed parts 18a, 18b via the end parts 16a, 16b
It is fixed to. Therefore, the radial deflection beam displacement mechanism
When the same voltage is applied to each of the 27Mza and 27Mzb piezoelectric actuators, these radial bending beam displacement mechanisms 27Mza and 27Mzb are rotationally displaced as shown in FIG. 5 (b), and the fine movement table 20 is also rotationally displaced by the same amount around the z axis. To do. As described above, in this embodiment, z is further added to the first embodiment.
Since the radial deflection beam displacement mechanism that generates rotational displacement about the axis is connected, it is possible to obtain translational displacement about two axes and rotational displacement about one axis with an extremely simple and small structure. or,
It is possible to construct a fine positioning device having high rigidity as in the previous embodiment. In the description of the above embodiment, an example in which the end of the overhang portion in the y-axis direction is fixed and the fine movement table is provided at the end of the overhang portion in the x-axis direction is described. It is obvious that the end of the axial overhang may be fixed and the fine movement table may be provided at the end of the y overhang.
Further, although the fine movement table 30 is illustrated as a rectangle in the description of each of the above-described embodiments, the present invention is not limited to this, and it is natural that the plate portion has a shape such as a rectangle for easily mounting and fixing the target object. . [Advantages of the Invention] As described above, in the present invention, the parallel bending beam displacement mechanism in which the translation directions are orthogonal to each other is formed in the overhanging portions in the two directions orthogonal to each other.
A translational displacement of the shaft can be obtained. In addition, each parallel flexible beam displacement mechanism has a protrusion from the end of each overhang, a protrusion from the center rigid body, an actuator mounted between these protrusions, and an extension with the center rigid body. Since it is composed of parallel flexible beams that are connected to the ends of the parts and are deformed by the driving of the corresponding actuators, the rigidity of the mechanism of the fine positioning device can be increased and the adverse effect of external force can be suppressed. In addition, the positioning can be performed quickly.
第1図は本発明の第1の実施例に係る微細位置決め装置
の分解斜視図、第2図(a),(b)は第1図に示す平
行たわみ梁変位機構の側面図、第3図および第4図はそ
れぞれ本発明の第2および第3の実施例に係る微細位置
決め装置の分解斜視図、第5図(a),(b)は第1図
に示す放射たわみ梁変位機構の側面図、第6図および第
7図は従来の微細位置決め装置の側面図および斜視図で
ある。 15……中心剛体部、16a,16b,17a,17b……張出し部、16F
xa,16Fxb,17Fya,17Fyb,……平行たわみ梁変機構、20…
…微動テーブル。1 is an exploded perspective view of a fine positioning device according to a first embodiment of the present invention, and FIGS. 2 (a) and 2 (b) are side views of the parallel flexible beam displacement mechanism shown in FIG. 1 and FIG. 4 and FIG. 4 are exploded perspective views of the fine positioning apparatus according to the second and third embodiments of the present invention, and FIGS. 5 (a) and 5 (b) are side views of the radial bending beam displacement mechanism shown in FIG. FIG. 6, FIG. 6 and FIG. 7 are a side view and a perspective view of a conventional fine positioning device. 15 …… Central rigid body part, 16a, 16b, 17a, 17b …… Overhang part, 16F
xa, 16Fxb, 17Fya, 17Fyb, ... Parallel flexible beam displacement mechanism, 20 ...
... fine movement table.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 村山 健 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 (72)発明者 星野 ▲吉▼弘 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 (56)参考文献 特開 昭61−209846(JP,A) 特開 昭61−243511(JP,A) 特開 昭62−187912(JP,A) 特開 昭60−25284(JP,A) 特開 昭57−107751(JP,A) 米国特許3786332(US,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ken Murayama, 650 Jinrachicho, Tsuchiura, Ibaraki Prefecture Tsuchiura Plant, Hitachi Construction Machinery Co., Ltd. Construction Machinery Co., Ltd. Tsuchiura Factory (56) Reference JP-A-61-209846 (JP, A) JP-A-61-243511 (JP, A) JP-A-62-187912 (JP, A) JP-A-60 -25284 (JP, A) JP-A-57-107751 (JP, A) US Patent 3786332 (US, A)
Claims (3)
軸方向に対称的に突出する第1の組の張出し部と、前記
中心剛体部から前記第1の軸と直交する第2の軸方向に
対称的に突出する第2の組の張出し部と、前記第1の組
の張出し部にそれぞれ対称的に設けられるとともに、こ
れら各張出し部の端部側からの突出部、前記中心剛体部
側からの突出部、これら各突出部間に装架されたアクチ
ュエータ、および前記中心剛体部側と前記張出し部の端
部側とを連結し対応する前記アクチュエータの駆動によ
り変形する互いに平行なたわみ梁より成り、前記第2の
軸方向の並進変位を発生させる平行たわみ梁変位機構の
組と、前記第2の張出し部にそれぞれ対称的に設けられ
るとともに、これら各張出し部の端部側からの突出部、
前記中心剛体部側からの突出部、これら各突出部間に装
架されたアクチュエータ、および前記中心剛体部側と前
記張出し部の端部側とを連結し対応する前記アクチュエ
ータの駆動により変形する互いに平行なたわみ梁より成
り、前記第1の軸方向の並進変位を発生させる平行たわ
み梁変位機構の組と、前記第1の組の張出し部の端部に
連結され固定端に固定される固定部と、前記第2の組の
張出し部の端部に連結された微動テーブルとで構成され
ていることを特徴とする微細位置決め装置。1. A central rigid body portion, a first set of projecting portions that symmetrically protrudes from the central rigid body portion in a first axial direction, and a second body orthogonal to the first axis from the central rigid body portion. Of the second set of projecting portions symmetrically projecting in the axial direction of the first set and the projecting parts of the first set are provided symmetrically, and the projecting portions from the end side of each of the projecting portions and the center. Projections from the rigid body side, actuators mounted between these projections, and parallel to each other that connects the central rigid body side and the end side of the overhanging portion and is deformed by driving the corresponding actuator. A set of parallel flexible beam displacement mechanisms, which are composed of flexible beams and generate translational displacement in the second axial direction, and are symmetrically provided on the second overhanging portions respectively, and from the end side of each of these overhanging portions. The protrusion of
Projections from the central rigid part side, actuators mounted between these projecting parts, and mutually deforming by driving the corresponding actuator by connecting the central rigid part side and the end side of the overhang part A set of parallel flexural beam displacement mechanisms that are composed of parallel flexural beams and generate translational displacement in the first axial direction, and a fixed part that is connected to the end of the overhang part of the first set and fixed to the fixed end. And a fine movement table connected to an end portion of the second set of overhanging portions.
アクチュエータは、圧電アクチュエータであることを特
徴とする微細位置決め装置。2. A fine positioning device according to claim 1, wherein the actuator is a piezoelectric actuator.
中心剛体部、前記各張出し部、および前記各平行たわみ
梁機構は、1つの剛体ブロックから加工成形されること
を特徴とする微細位置決め装置。3. The microscopic structure according to claim (1), wherein the central rigid body portion, the respective overhanging portions, and the parallel flexible beam mechanisms are machined from one rigid body block. Positioning device.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61283063A JPH071450B2 (en) | 1986-11-29 | 1986-11-29 | Fine positioning device |
EP87201701A EP0264147B1 (en) | 1986-09-09 | 1987-09-08 | Fine positioning device and displacement controller therefor |
DE3788773T DE3788773T2 (en) | 1986-09-09 | 1987-09-08 | Device for fine adjustment and device for controlling these adjustments. |
US07/244,102 US5005298A (en) | 1986-09-09 | 1988-09-14 | Displacement controller for fine positioning device |
US07/244,168 US4888878A (en) | 1986-09-09 | 1988-09-14 | Fine positioning device |
US07/244,169 US4920660A (en) | 1986-09-09 | 1988-09-14 | Fine positioning device and displacement controller therefor |
US07/244,101 US4991309A (en) | 1986-09-09 | 1988-09-14 | Fine positioning device and displacement controller therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61283063A JPH071450B2 (en) | 1986-11-29 | 1986-11-29 | Fine positioning device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63137308A JPS63137308A (en) | 1988-06-09 |
JPH071450B2 true JPH071450B2 (en) | 1995-01-11 |
Family
ID=17660721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61283063A Expired - Lifetime JPH071450B2 (en) | 1986-09-09 | 1986-11-29 | Fine positioning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH071450B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3786332A (en) | 1969-03-19 | 1974-01-15 | Thomson Houston Comp Francaise | Micro positioning apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57107751A (en) * | 1980-12-26 | 1982-07-05 | Nippon Seiko Kk | Minute position adjusting device |
JPS5994103A (en) * | 1982-11-19 | 1984-05-30 | Nec Corp | Controller of electromechanical transducer |
JPS5996880A (en) * | 1982-11-19 | 1984-06-04 | Nec Corp | Electromechanical transducer |
JPS6025284A (en) * | 1983-07-22 | 1985-02-08 | Hitachi Ltd | Positioning device |
-
1986
- 1986-11-29 JP JP61283063A patent/JPH071450B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3786332A (en) | 1969-03-19 | 1974-01-15 | Thomson Houston Comp Francaise | Micro positioning apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS63137308A (en) | 1988-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0264147B1 (en) | Fine positioning device and displacement controller therefor | |
EP0195479B1 (en) | Fine positioning device | |
US6028376A (en) | Positioning apparatus and exposure apparatus using the same | |
US8179621B2 (en) | Apparatus for manipulation of an optical element | |
JP3919560B2 (en) | Vibration control apparatus, vibration control method, exposure apparatus, and device manufacturing method | |
US7243571B2 (en) | Ultra-precision positioning system | |
JP3963410B2 (en) | Positioning apparatus and exposure apparatus using the same | |
US6860020B2 (en) | Ultra-precision feeding apparatus | |
JP2007184621A (en) | Device for controlling vibration and method of controlling vibration, exposure device and method of fabricating device | |
JPH07109566B2 (en) | Fine positioning device | |
JPH071450B2 (en) | Fine positioning device | |
JPH0555263B2 (en) | ||
JP3255707B2 (en) | Fine positioning device | |
JPH071448B2 (en) | Fine positioning device | |
JPH07109567B2 (en) | Fine positioning device | |
JPS6366613A (en) | Fine positioning device | |
JP2614662B2 (en) | Fine movement mechanism | |
JPH07104723B2 (en) | Fine positioning device | |
JPH03115892A (en) | Micromotion mechanism | |
JPH071452B2 (en) | Fine positioning device | |
JPS6366615A (en) | Fine positioning device | |
JP2760404B2 (en) | Fine movement mechanism | |
JP2773781B2 (en) | Precision fine movement stage device | |
JP2849158B2 (en) | Fine movement mechanism | |
JPS62214412A (en) | Fine positioning device |