JPH07135334A - Fabrication of solar cell with bypass diode - Google Patents

Fabrication of solar cell with bypass diode

Info

Publication number
JPH07135334A
JPH07135334A JP5161171A JP16117193A JPH07135334A JP H07135334 A JPH07135334 A JP H07135334A JP 5161171 A JP5161171 A JP 5161171A JP 16117193 A JP16117193 A JP 16117193A JP H07135334 A JPH07135334 A JP H07135334A
Authority
JP
Japan
Prior art keywords
bypass diode
solar cell
interconnector
electrode
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5161171A
Other languages
Japanese (ja)
Inventor
Takeya Kimura
健也 木村
Masato Asai
正人 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5161171A priority Critical patent/JPH07135334A/en
Publication of JPH07135334A publication Critical patent/JPH07135334A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/142Energy conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a highly reliable solar cell where the positional shift is eliminated between a solar cell, a bypass diode, and an interconnector. CONSTITUTION:The method for fabricating a solar cell comprises a step for applying a surface electrode material, e.g. Ag paste 13', on a solar cell 10' and mounting a bypass diode 16 on it, and a step for firing the Ag paste 13' to secure the bypass diode 16. An interconnector 21 is welded to the upper face of the bypass diode 16 before it is mounted on the surface electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池セルに関し、
特に太陽電池モジュールに影が生じた場合に発生する大
幅な出力低下や逆バイアス電圧によって太陽電池セルが
過熱し事故を引き起こすことを防止するバイパスダイオ
ードを付した太陽電池セルの製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a solar cell,
In particular, the present invention relates to a method of manufacturing a solar battery cell having a bypass diode that prevents a solar battery cell from overheating and causing an accident due to a large output drop or reverse bias voltage that occurs when a shadow occurs on the solar battery module.

【0002】[0002]

【従来の技術】従来の技術について図3及び図4を参照
して説明する。図3(a)及び(b)は従来のバイパス
ダイオード付き太陽電池セルの製造工程を示す断面図、
図4は従来のバイパスダイオードの断面図である。
2. Description of the Related Art A conventional technique will be described with reference to FIGS. 3A and 3B are cross-sectional views showing a manufacturing process of a conventional solar cell with a bypass diode,
FIG. 4 is a sectional view of a conventional bypass diode.

【0003】図3(a)の太陽電池セル10は、P型S
iウェハ11上にn+層12が形成されており、この表
裏にそれぞれ表Ag電極13及び裏Ag電極14が形成
され、さらにその上に半田ディップ15が施されてい
る。
The solar battery cell 10 shown in FIG. 3A is a P-type S.
An n + layer 12 is formed on an i-wafer 11, a front Ag electrode 13 and a back Ag electrode 14 are formed on the front and back, respectively, and a solder dip 15 is further applied thereon.

【0004】一方、図4のバイパスダイオード16は、
P層17とn+層18のPN層の表裏にそれぞれ表Ag
電極19及び裏Ag電極20が形成され、さらにその上
に半田ディップ15が施されている。
On the other hand, the bypass diode 16 shown in FIG.
On the front and back of the PN layer of the P layer 17 and the n + layer 18, front Ag is provided, respectively.
An electrode 19 and a back Ag electrode 20 are formed, and a solder dip 15 is further applied thereon.

【0005】従来のバイパスダイオード付き太陽電池セ
ルは、図3(a)の半田ディップ済みの太陽電池セル1
0を200°Cに加熱し、セル上の任意の位置に図4の
半田ディップ済みのバイパスダイオード16を搭載す
る。そして、さらに太陽電池セル10及びバイパスダイ
オード16上にインターコネクタ21をそれぞれのせ
て、各々を半田付けにて接続固定する。
The conventional solar cell with a bypass diode is the solar cell 1 with solder dip shown in FIG. 3 (a).
0 is heated to 200 ° C., and the solder-dipped bypass diode 16 of FIG. 4 is mounted at an arbitrary position on the cell. Then, the interconnector 21 is further placed on the solar battery cell 10 and the bypass diode 16, and each is connected and fixed by soldering.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記した従
来のバイパスダイオード付き太陽電池の製造工程におい
ては、太陽電池セル10、バイパスダイオード16、イ
ンターコネクタ21を同時に加熱して半田付けを行って
いるため、太陽電池セル10、バイパスダイオード1
6、インターコネクタ21間の位置ずれが起こりやすく
信頼性が低下する、という問題があった。
However, in the manufacturing process of the conventional solar cell with the bypass diode, the solar cell 10, the bypass diode 16, and the interconnector 21 are heated at the same time for soldering. , Solar cell 10, bypass diode 1
6. There was a problem that the positional displacement between the interconnectors 21 is likely to occur and the reliability is lowered.

【0007】また、位置ずれ防止のためには、組み立て
作業に時間がかかりコストも高くつくという問題もあっ
た。
Further, there has been a problem that assembling work is time-consuming and costly in order to prevent the displacement.

【0008】そこで、本発明の目的は、太陽電池セル、
バイパスダイオード、インターコネクタ間の位置ずれの
ない高信頼性の太陽電池を提供することにある。
Therefore, an object of the present invention is to provide a solar cell,
An object of the present invention is to provide a highly reliable solar cell with no displacement between the bypass diode and the interconnector.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に本発明は、太陽電池セルの表面電極上にバイパスダイ
オードが搭載され、該バイパスダイオードの上面にイン
ターコネクタが接続されてなるバイパスダイオード付き
太陽電極セルの製造方法において、前記太陽電池セル上
に表面電極材料を設け該表面電極材料上にバイパスダイ
オードを載置する工程と、前記表面電極材料の焼成によ
って前記バイパスダイオードを固定する工程と、を含ん
でなることを特徴とする。
In order to achieve the above-mentioned object, the present invention has a bypass diode in which a bypass diode is mounted on the surface electrode of a solar cell and an interconnector is connected to the upper surface of the bypass diode. In the method of manufacturing a solar electrode cell, a step of providing a surface electrode material on the solar cell and placing a bypass diode on the surface electrode material; a step of fixing the bypass diode by firing the surface electrode material; It is characterized by comprising.

【0010】また、表面電極への搭載前のバイパスダイ
オードの上面に、予めインターコネクタを熔接によって
接続してなることを特徴とする。
Further, an interconnector is previously connected by welding to the upper surface of the bypass diode before being mounted on the surface electrode.

【0011】[0011]

【作用】以上のように、本発明においては表面電極材料
の焼成とバイパスダイオードの接続固定を同時に行って
おり、インターコネクタの接続はこの工程の後に行う。
つまり、バイパスダイオードと太陽電極セルとが固定さ
れた状態においてインターコネクタを接続するので、従
来のように太陽電池セル、バイパスダイオード、インタ
ーコネクタの3者間の位置ずれが生じることはなく、特
性が不安定となる、信頼性が低下するといった問題は発
生しない。さらに、表面電極焼成は不可欠な工程である
が、この工程と同時にバイパスダイオードを接続固定す
るので、作業の効率化、コストダウンを図れる。
As described above, in the present invention, the firing of the surface electrode material and the connection and fixing of the bypass diode are simultaneously performed, and the interconnector is connected after this step.
That is, since the interconnector is connected in a state in which the bypass diode and the solar electrode cell are fixed, there is no positional displacement between the solar battery cell, the bypass diode, and the interconnector as in the conventional case, and the characteristics are improved. Problems such as instability and reduced reliability do not occur. Further, the surface electrode firing is an indispensable step, but since the bypass diode is connected and fixed at the same time as this step, work efficiency and cost reduction can be achieved.

【0012】また、表面電極への搭載前のバイパスダイ
オードの上面に、予め前記インターコネクタを熔接によ
って接続する方法によれば、太陽電池セルとインターコ
ネクタ接続済みのバイパスダイオードとを正確に固定す
るだけでよく、位置決めを正確にできる。
According to the method of connecting the interconnector to the upper surface of the bypass diode before mounting on the surface electrode by welding in advance, the solar cell and the bypass diode already connected to the interconnector are simply fixed. The positioning is accurate.

【0013】[0013]

【実施例】本発明の一実施例について、図1及び図2を
参照して説明する。図1(a)及び(b)は本実施例に
よる太陽電池セルの製造方法を説明するための太陽電池
セルの断面図、図2は本発明の他の実施例を説明するた
めのバイパスダイオードの断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 1 (a) and 1 (b) are cross-sectional views of a solar battery cell for explaining a method of manufacturing a solar battery cell according to this embodiment, and FIG. 2 shows a bypass diode for explaining another embodiment of the present invention. FIG.

【0014】なお、図3及び図4の従来例と同一機能部
分には同一記号を付している。ここでは、主に従来例と
異なる点についてのみ説明する。
The same functional parts as those of the conventional example shown in FIGS. 3 and 4 are designated by the same symbols. Here, only the points different from the conventional example will be described.

【0015】図1(a)及び(b)に示す実施例の特徴
は、図3及び図4の従来例のように、太陽電池セル1
0、バイパスダイオード16、インターコネクタ21を
同時に加熱して半田付けを行うのではなく、まず太陽電
池セル10にバイパスダイオード16を接続しておき、
その後にインターコネクタ21を接続固定するというよ
うに接続を2段階に分けた点にある。
The feature of the embodiment shown in FIGS. 1 (a) and 1 (b) is that the solar cell 1 is different from the conventional example shown in FIGS.
0, the bypass diode 16, and the interconnector 21 are not simultaneously heated and soldered, but the bypass diode 16 is first connected to the solar cell 10,
After that, the connection is divided into two stages such that the interconnector 21 is connected and fixed.

【0016】具体的には、図1に示すように、まずP型
Siウェハ11にn+層12を拡散し、裏Ag電極14
を形成する。次に、表Ag電極13を形成するためにウ
ェハ表面にAgペースト13’を印刷し、この状態で2
mm角のペレット状のバイパスダイオード16を任意の
位置に載置し、このまま表電極の焼成を行う。これによ
り、バイパスダイオード16が太陽電極セル10’の表
電極に接続される。
Specifically, as shown in FIG. 1, first, an n + layer 12 is diffused in a P-type Si wafer 11 and then a back Ag electrode 14 is formed.
To form. Next, Ag paste 13 ′ is printed on the surface of the wafer to form the front Ag electrode 13, and in this state 2
The mm-square pellet-shaped bypass diode 16 is placed at an arbitrary position, and the front electrode is baked as it is. As a result, the bypass diode 16 is connected to the front electrode of the solar cell 10 '.

【0017】つまり、この工程においては、表電極の焼
成とバイパスダイオード16の接続を同時に行ってい
る。この後半田ディップを行い、次いで図1(b)に示
すようにインターコネクタ21を接続する。
That is, in this step, the firing of the front electrode and the connection of the bypass diode 16 are simultaneously performed. After this, solder dipping is performed, and then the interconnector 21 is connected as shown in FIG.

【0018】上記方法によれば、バイパスダイオード1
6と太陽電極セル10’とが固定された状態においてイ
ンターコネクタ21を接続するので、従来のように太陽
電池セル10’、バイパスダイオード16、インターコ
ネクタ21の3者間の位置ずれが生じることはなく、特
性が不安定となる、または信頼性が低下するという問題
は発生しない。
According to the above method, the bypass diode 1
Since the interconnector 21 is connected in a state where the solar cell 10 and the solar electrode cell 10 'are fixed to each other, the positional displacement between the solar battery cell 10', the bypass diode 16 and the interconnector 21 does not occur as in the conventional case. There is no problem that the characteristics become unstable or the reliability decreases.

【0019】さらに、表電極焼成は不可欠な工程である
が、この工程と同時にバイパスダイオード16を接続固
定するので作業の効率化、コストダウンを図れる。
Further, although firing of the front electrode is an indispensable step, since the bypass diode 16 is connected and fixed at the same time as this step, work efficiency and cost reduction can be achieved.

【0020】また、上記方法は予め太陽電極セル10’
とバイパスダイオード16とを接続しておき、その後イ
ンターコネクタ21を接続するものであるが、予めバイ
パスダイオード16にインターコネクタ21を接続して
おいてもよい。即ち、例えば図2に示すように、バイパ
スダイオード16の表Ag電極19に対してインターコ
ネクタ21を予め熔接によって接続しておき、この後に
インターコネクタ接続済みのバイパスダイオード16を
太陽電池セルに接続するようにしてもよい。ここで、熔
接方法は例えばパラレルギャップ法にて行う。
In addition, the above method is performed in advance by using a solar electrode cell 10 '.
And the bypass diode 16 are connected in advance, and then the interconnector 21 is connected. However, the interconnector 21 may be connected to the bypass diode 16 in advance. That is, for example, as shown in FIG. 2, the interconnector 21 is connected in advance to the front Ag electrode 19 of the bypass diode 16 by welding, and then the bypass diode 16 connected to the interconnector is connected to the solar battery cell. You may do it. Here, the welding method is, for example, a parallel gap method.

【0021】この方法によっても、従来のように太陽電
池セル、バイパスダイオード、インターコネクタの3者
間の位置ずれが生じることはなく、図1(a)及び
(b)の実施例と同様、特性の不安定化、信頼性の低下
という問題を解消できる。
This method also does not cause the positional displacement among the three members of the solar cell, the bypass diode, and the interconnector as in the conventional case, and has the same characteristics as in the embodiment of FIGS. 1 (a) and 1 (b). It is possible to solve the problems of instability and deterioration of reliability.

【0022】また、上記両実施例を組み合わせて、予め
インターコネクタを接続した図2に示すバイパスダイオ
ードを、図1のように表電極焼成時に固定するようにし
てもよい。
Further, by combining the above embodiments, the bypass diode shown in FIG. 2 to which the interconnector is connected in advance may be fixed during firing of the front electrode as shown in FIG.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
太陽電池セル、バイパスダイオード、インターコネクタ
の3者間の位置ずれを防止でき、特性の安定化、信頼性
の向上を図れる。さらに、工程を簡略化できるので、作
業効率を高め、コストダウンできる。
As described above, according to the present invention,
It is possible to prevent positional deviation between the solar battery cell, the bypass diode, and the interconnector, thereby stabilizing the characteristics and improving the reliability. Furthermore, since the process can be simplified, work efficiency can be improved and cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)及び(b)はそれぞれ、本発明の一実施
例によるバイパスダイオード付き太陽電池の製造工程図
である。
1A and 1B are respectively manufacturing process diagrams of a solar cell with a bypass diode according to an embodiment of the present invention.

【図2】本発明の他の実施例を示すバイパスダイオード
の断面図である。
FIG. 2 is a cross-sectional view of a bypass diode showing another embodiment of the present invention.

【図3】(a)及び(b)はそれぞれ、従来例によるバ
イパスダイオード付き太陽電池の製造工程図である。
3A and 3B are respectively manufacturing process diagrams of a solar cell with a bypass diode according to a conventional example.

【図4】従来例によるバイパスダイオードの断面図であ
る。
FIG. 4 is a cross-sectional view of a bypass diode according to a conventional example.

【符号の説明】[Explanation of symbols]

10’ 太陽電池セル 13 表Ag電極 13’ Agペースト 16 バイパスダイオード 21 インターコネクタ 10 'solar cell 13 table Ag electrode 13' Ag paste 16 bypass diode 21 interconnector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】太陽電池セルの表面電極上にバイパスダイ
オードが搭載され、該バイパスダイオードの上面にイン
ターコネクタが接続されてなるバイパスダイオード付き
太陽電極セルの製造方法において、 前記太陽電池セル上に表面電極材料を設け該表面電極材
料上にバイパスダイオードを載置する工程と、前記表面
電極材料の焼成によって前記バイパスダイオードを固定
する工程と、を含んでなることを特徴とするバイパスダ
イオード付き太陽電極セルの製造方法。
1. A method of manufacturing a solar electrode cell with a bypass diode, wherein a bypass diode is mounted on a surface electrode of a solar cell, and an interconnector is connected to an upper surface of the bypass diode, wherein a surface is provided on the solar cell. A solar electrode cell with a bypass diode, comprising: a step of providing an electrode material and mounting a bypass diode on the surface electrode material; and a step of fixing the bypass diode by firing the surface electrode material. Manufacturing method.
【請求項2】太陽電池セルの表面電極上に搭載されるバ
イパスダイオードの上面にインターコネクタが接続され
てなるバイパスダイオード付き太陽電極セルの製造方法
において、 前記表面電極への搭載前のバイパスダイオードの上面
に、予め前記インターコネクタを熔接によって接続して
なることを特徴とするバイパスダイオード付き太陽電極
セルの製造方法。
2. A method of manufacturing a solar electrode cell with a bypass diode, wherein an interconnector is connected to an upper surface of a bypass diode mounted on a surface electrode of a solar battery cell, wherein the bypass diode before mounting on the surface electrode is provided. A method of manufacturing a solar electrode cell with a bypass diode, characterized in that the interconnector is previously connected to the upper surface by welding.
JP5161171A 1993-06-30 1993-06-30 Fabrication of solar cell with bypass diode Pending JPH07135334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5161171A JPH07135334A (en) 1993-06-30 1993-06-30 Fabrication of solar cell with bypass diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5161171A JPH07135334A (en) 1993-06-30 1993-06-30 Fabrication of solar cell with bypass diode

Publications (1)

Publication Number Publication Date
JPH07135334A true JPH07135334A (en) 1995-05-23

Family

ID=15729943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5161171A Pending JPH07135334A (en) 1993-06-30 1993-06-30 Fabrication of solar cell with bypass diode

Country Status (1)

Country Link
JP (1) JPH07135334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149463B1 (en) * 2010-11-23 2012-05-24 한국에너지기술연구원 Solar cell module having bypass element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149463B1 (en) * 2010-11-23 2012-05-24 한국에너지기술연구원 Solar cell module having bypass element

Similar Documents

Publication Publication Date Title
US6610919B2 (en) Solar battery
US20030000571A1 (en) Solar cell and method of producing the same
KR102619339B1 (en) Solar cell interconnection
JP2002527889A (en) Solar cell having bypass diode and method of manufacturing solar cell
JPH09116175A (en) Electrode structure of photovoltaic device
JPS60239067A (en) Solar cell element
US5045481A (en) Method of manufacturing a solar cell
JPH03165578A (en) Solar cell and manufacture thereof
JPH06209115A (en) Solder part forming method of solar cell
JPS5839071A (en) Solar battery element
GB2107928A (en) Solar cell assembly
JP2001044459A (en) Solar battery
JP3022049B2 (en) Mounting method of light emitting diode of chip component type
JPH11251613A (en) Solar cell device
JPH07135334A (en) Fabrication of solar cell with bypass diode
JP2005184025A (en) Manufacturing method for semiconductor device
EP3809471A1 (en) Automated assembly and mounting of solar cells on space panels
JPH07106619A (en) Fabrication of solar cell
JPH10270735A (en) Solar cell and its production
JPH0536998A (en) Formation of electrode
CA2143641A1 (en) Process for producing miniature components
JP2005191201A (en) Inner lead for connecting solar cell element, solar cell module and its production method
JPH04251986A (en) Manufacture of solar cell
JP3352586B2 (en) Method of manufacturing solar cell
JP3312121B2 (en) Manufacturing method of light emitting diode of chip component type