JPS5839071A - Solar battery element - Google Patents

Solar battery element

Info

Publication number
JPS5839071A
JPS5839071A JP56136824A JP13682481A JPS5839071A JP S5839071 A JPS5839071 A JP S5839071A JP 56136824 A JP56136824 A JP 56136824A JP 13682481 A JP13682481 A JP 13682481A JP S5839071 A JPS5839071 A JP S5839071A
Authority
JP
Japan
Prior art keywords
hole
wafer
electrode
electrodes
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56136824A
Other languages
Japanese (ja)
Inventor
Shizuo Koyama
小山 倭郎
Hiroyuki Watanabe
博之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN SOLAR ENERG KK
Japan Solar Energy Co Ltd
Original Assignee
JAPAN SOLAR ENERG KK
Japan Solar Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN SOLAR ENERG KK, Japan Solar Energy Co Ltd filed Critical JAPAN SOLAR ENERG KK
Priority to JP56136824A priority Critical patent/JPS5839071A/en
Publication of JPS5839071A publication Critical patent/JPS5839071A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To efficiently perform series and parallel connecting work of solar battery elements in the state that all are placed back surfaces upside by electrically connecting the electrodes of photoreceiving surfaces of the elements to the leads for surface electrodes formed on the back surfaces through conductors formed in the slot at the side surface of the element. CONSTITUTION:An N type impurity phosphorus or the like is diffused in the wafer of a P type silicon substrate 5 formed with a through hole 12, thereby forming an N type layer 4, and acid resistant etching resist 13 is coated on the entire front surface and the periphery of the hole 12 of the back surface. Then, it is etched. The layer 4 remains only the entire front surface, on the inner peripheral wall of the hole 12 and the periphery of the hole 12 of the back surface. When electrode pastes 7, 8, 9 are printed on the wafer, the paste can be readily introduced into the hole 12. Accordingly, the pastes 7, 8 are electrically connected. When the wafer is divided into two from the part which contains the hole 12, two cells 1 are obtained. When the two cells are aligned in series state, the coupling work of the lead wires 15 may be performed only on the back surface side.

Description

【発明の詳細な説明】 本発明は、受光側表面と裏面とにそれぞれ電極を有する
太陽電池素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell element having electrodes on a light-receiving side surface and a back surface, respectively.

従来、太陽電池素子(以下、単に素子という)にあって
は、太陽エネルギーによる電気出力を取り出すための電
極が、受光側の表面と裏面にそれぞれ形成されているの
で、このような素子を多数個直列に接続するためには、
例えば、ひとつの素子の表面側電極に取付けたリード線
を、直列接続すべきもうひとつの素子の裏面側電極に接
続する必要がある。
Conventionally, in solar cell elements (hereinafter simply referred to as elements), electrodes for extracting electrical output from solar energy are formed on the front and back sides of the light-receiving side. To connect in series,
For example, it is necessary to connect a lead wire attached to the front side electrode of one element to the back side electrode of another element to be connected in series.

ところが、このような結線を行なうには、ひとつの素子
の表面を上にした状態で表面電極にリード線の一端を接
続し、次に裏面を上にした状態で、もうひとつの素子の
裏面電極にそのリード線の他端を接続する作業を行なわ
なければならず、したがって、多数個の素子を直列に接
続する場合にはさらに煩雑となる。
However, to make such a connection, connect one end of the lead wire to the front electrode with the front side of one element facing up, then connect one end of the lead wire to the front electrode of the other element with the back side facing up. The other end of the lead wire must be connected to the other end of the lead wire, which becomes even more complicated when a large number of elements are connected in series.

本発明の目的は、短時間にしかも簡単に素子間の結線作
業を行なうことのできる素子を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an element that allows connection work between elements to be performed easily and in a short time.

1、第1図は本発明の一実施例の斜視図であり、第2図
はその側面断面図である。素子1は、平担な表面2と裏
面3とを有しており、P型基板5の表面全面から一側面
を通り裏面の一部にかけて表層にn型層4が設けられて
p rt接合部を形成している。素子の表面2の8層の
上には、櫛形電極7が形成され、また、その裏面3には
長方形状の裏面電極9がP型基板に直接形成されている
1. FIG. 1 is a perspective view of an embodiment of the present invention, and FIG. 2 is a side sectional view thereof. The element 1 has a flat front surface 2 and a flat back surface 3, and an n-type layer 4 is provided on the surface layer from the entire surface of a P-type substrate 5, passing through one side and part of the back surface, to form a p-rt junction. is formed. A comb-shaped electrode 7 is formed on the eight layers on the front surface 2 of the element, and a rectangular back electrode 9 is formed directly on the P-type substrate on the back surface 3 thereof.

素子1の櫛形状表面電極7が集まる一辺の側面には、素
子の厚み方向に、複数個(本件実施例では3個)の溝1
0が形成されている。素子1の表面における溝10の周
辺と、素子の裏面における溝10の周辺には、それぞれ
、表面電極7と、表面電極用リード付部8が8層4を被
覆して設けられており、この表面電極7と表面電極用リ
ード付部8は、溝10の内部に充填された導電性を有す
る側面導通部11により電気的に接続されている。
A plurality of (three in this embodiment) grooves 1 are formed in the thickness direction of the element on one side of the element 1 where the comb-shaped surface electrodes 7 gather.
0 is formed. Surface electrodes 7 and surface electrode lead attachment portions 8 are provided around the grooves 10 on the front surface of the element 1 and around the grooves 10 on the back surface of the element, respectively, covering the eight layers 4. The surface electrode 7 and the surface electrode lead attachment portion 8 are electrically connected by a conductive side conductive portion 11 filled in the groove 10 .

このような構造を有する素子の製造方法を、第3図ない
し第9図を参照しながら説明する。
A method of manufacturing an element having such a structure will be explained with reference to FIGS. 3 to 9.

第3図で示す断面形状のP型シリコン基板5の所定個所
に、例えば、YAGレーザのパルス状ビームを照射して
、第4図に示すように内径200μ〜300μの貫通孔
12が形成されたP型シリコン基板のウェハーを、必要
な場合にはエツチング液により例えば表面層10μ〜2
0μ程度をエツチングして取り除き、通常の拡散方法、
例えば気相拡散法などでn型の不純・物リン等を拡散し
て、第5図に示すように、8層4を形成する。その後、
そのウェハーの表面全面と裏面の孔12周辺を含む一部
に、第6図に示すように、耐酸性のエツチングレジスト
1.!1を塗布する。
A through hole 12 having an inner diameter of 200 μm to 300 μm is formed as shown in FIG. 4 by irradiating, for example, a pulsed beam of a YAG laser onto a predetermined location of the P-type silicon substrate 5 having the cross-sectional shape shown in FIG. 3. A wafer of a P-type silicon substrate is coated with a surface layer of 10 μm to 2 μm, for example, using an etching solution if necessary.
Etch and remove about 0μ, and use the usual diffusion method.
For example, by diffusing n-type impurities, phosphorus, etc., using a vapor phase diffusion method, eight layers 4 are formed as shown in FIG. after that,
As shown in FIG. 6, an acid-resistant etching resist 1. ! Apply 1.

次に、このウェハーをエツチング液で必要時間処理した
後、エツチングレジスト13をレジスト用の溶剤を用い
て取り除くと、第7図に示すように、エツチングレジス
ト13が塗布された8層4のみを残し、残余の8層4は
すべて除去された構造のものが得られる。この結果、ウ
ェハー上の8層4は、ウェハーの表面全体、貫通丸12
の内周壁、及びウェハーの裏面における貫通孔12の周
辺のみとなる。このようなウェハーの表面および裏面の
P型およびn型のシリコンに対してオーミックな電極を
形成するため、第8図に示すように、電極用ペースト7
.8および9を印刷し焼成する。
Next, after treating this wafer with an etching solution for the required time, the etching resist 13 is removed using a resist solvent, leaving only the eight layers 4 coated with the etching resist 13, as shown in FIG. , a structure in which all remaining eight layers 4 are removed is obtained. As a result, the 8 layers 4 on the wafer cover the entire surface of the wafer, the through holes 12
, and the area around the through hole 12 on the back surface of the wafer. In order to form ohmic electrodes on the P-type and n-type silicon on the front and back surfaces of the wafer, an electrode paste 7 is applied as shown in FIG.
.. 8 and 9 are printed and fired.

このように、表面側の電極用ペースト7と裏面側の表面
電極リード付は用ペースト8とを印刷する場合、貫通孔
12の内部にもその印刷ペーストが容易に入り込んでく
るので、両電極用ペースト7および8の電気的接続を行
なうことができる。
In this way, when printing the paste 7 for electrodes on the front side and the paste 8 for electrodes with leads on the back side, the printing paste easily enters the inside of the through hole 12. Electrical connections between pastes 7 and 8 can be made.

更に、より確実にペーストが入り込むようにするため、
印刷時に貫通孔120部分を下方から真空吸引してもよ
い。次に、第9図に示すように、貫通孔12を含む部分
からこのウェハーをレーザスクライバまたはダイヤモン
ドスクライバにより2個に切断分離すると、上述した素
子が得られる。
Furthermore, in order to ensure that the paste enters,
During printing, vacuum suction may be applied to the through hole 120 portion from below. Next, as shown in FIG. 9, this wafer is cut into two pieces from the portion including the through hole 12 using a laser scriber or a diamond scriber to obtain the above-mentioned elements.

第10図は、2個の太陽電池素子が直列接続されている
状態を示す。リード結線15が裏面電極9と表面電極用
リード付部8の間に接続されている。このような結線作
業は裏面側のみで行なうことができる。
FIG. 10 shows a state in which two solar cell elements are connected in series. A lead connection 15 is connected between the back electrode 9 and the lead attachment portion 8 for the front electrode. Such wiring work can be performed only on the back side.

第11図は太陽電池素子相互間の他の接続手段を示して
いる。プリント基板19上に形成された配線パターン1
8に、導電ペーストまたは半田17を介して、裏面電極
9と表面電極用リード付部8の間が接続されている。
FIG. 11 shows another connection means between solar cell elements. Wiring pattern 1 formed on printed circuit board 19
8, the back electrode 9 and the front electrode lead attachment portion 8 are connected via a conductive paste or solder 17.

上述の実施例において、電極の形成方法として導電ペー
ストを印刷し焼成させたが、他の実施例として蒸着方法
、メッキ方法、あるいはその他公知の方法を用いること
ができる。
In the above embodiments, the electrodes were formed by printing and baking a conductive paste, but in other embodiments, a vapor deposition method, a plating method, or other known methods may be used.

又、電極形成後に電極部分の保護又は素子間の配線を容
易にする目的で通常牛用デツプが行なわれるが、本発明
の場合にも半田デツプすることは有効である。上記実施
例ではひとつのウェハーから2個の素子を作成する場合
を示したが、2個に限らず、更に多くの素子を同時に作
成することも勿論可能である。
Further, after forming the electrodes, solder-dipping is usually performed for the purpose of protecting the electrode portions or facilitating wiring between elements, but solder-dipping is also effective in the case of the present invention. Although the above embodiment shows the case where two elements are produced from one wafer, it is of course possible to simultaneously produce more elements than just two.

以上説明したように、本発明によれば、素子の受光面の
電極と裏面に設けた表面電極用リード付は部との間を、
素子の側面の溝に設けられた導通部を介して電気的に接
続するようにしたので、直並列接続すべき素子をすべて
裏返した状態のままで、すべての結線作業を完成するこ
とができ、或いはプリント配線基板上に並設するだけで
作業を完成することができる。また、側面の溝に導通部
を形成しているので側面に突出個所がなく、素子を隙間
なく並設することができる。
As explained above, according to the present invention, the connection between the electrode on the light-receiving surface of the element and the lead-equipped part for the surface electrode provided on the back surface is
Since electrical connections are made via the conductive parts provided in the grooves on the sides of the elements, all wiring work can be completed with all the elements to be connected in series and parallel turned upside down. Alternatively, the work can be completed simply by arranging them side by side on a printed wiring board. Furthermore, since the conductive portion is formed in the groove on the side surface, there is no protrusion on the side surface, and the elements can be arranged side by side without any gaps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の斜視図、第2図はその側面
動面図、第3図ないし第9図は、本発明の実施例に係る
太陽電池素子の製造方法を説明するための側面断面図、
第10図及び第11図は本発明の太陽電池素子の使用状
態を説明する側面断面図である。 1・・・・・・太陽電池素子、 2・・・・・・表面、 3・・・・・・裏面、 4・・・・・・n層、 5・・・・・・P型基盤、 7・・・・・・表面電極、 8・・・・・・表面電極用リード付部、9・・・・・・
裏面電極、 10・・・・・・側面の溝、 11・・・−・・側面導通部。 特許出願人  ジャパン・ソーラー・エナジー株式会社
代理人 弁理士 西  1)  新
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a side view of the same, and FIGS. 3 to 9 are for explaining a method of manufacturing a solar cell element according to an embodiment of the present invention. side sectional view of
FIGS. 10 and 11 are side sectional views illustrating the usage state of the solar cell element of the present invention. DESCRIPTION OF SYMBOLS 1... Solar cell element, 2... Front surface, 3... Back surface, 4... N layer, 5... P-type substrate, 7...Surface electrode, 8...Lead attachment part for surface electrode, 9...
back electrode, 10... side groove, 11... side conduction part; Patent applicant Japan Solar Energy Co., Ltd. Agent Patent attorney Nishi 1) Arata

Claims (1)

【特許請求の範囲】[Claims] 受光面の電極が集まる一辺の側面に表面と裏面を貫通す
る溝を形成し、その溝の裏面周辺に表面電極用リード付
部を導電体により形成するとともに、上記溝に側面導電
部を設けて、上記受光面の電極と上記表面電極用リード
付部を導通させたことを特徴とする太陽電池素子。
A groove passing through the front and back surfaces is formed on the side surface of one side where the electrodes of the light-receiving surface gather, and a lead attachment portion for the front electrode is formed from a conductive material around the back surface of the groove, and a side conductive portion is provided in the groove. , A solar cell element characterized in that the electrode on the light-receiving surface and the leaded part for the surface electrode are electrically connected.
JP56136824A 1981-08-31 1981-08-31 Solar battery element Pending JPS5839071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56136824A JPS5839071A (en) 1981-08-31 1981-08-31 Solar battery element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56136824A JPS5839071A (en) 1981-08-31 1981-08-31 Solar battery element

Publications (1)

Publication Number Publication Date
JPS5839071A true JPS5839071A (en) 1983-03-07

Family

ID=15184358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56136824A Pending JPS5839071A (en) 1981-08-31 1981-08-31 Solar battery element

Country Status (1)

Country Link
JP (1) JPS5839071A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123073A (en) * 1983-12-08 1985-07-01 Fuji Electric Corp Res & Dev Ltd Thin-film solar cell
FR2641646A1 (en) * 1989-01-06 1990-07-13 Mitsubishi Electric Corp SOLAR CELL AND MANUFACTURING METHOD THEREOF
EP0985233A1 (en) 1997-05-30 2000-03-15 Interuniversitair Micro-Elektronica Centrum Vzw Solar cell and process of manufacturing the same
JP2005011869A (en) * 2003-06-17 2005-01-13 Sekisui Jushi Co Ltd Solar cell module and its manufacturing method
JP2008282926A (en) * 2007-05-09 2008-11-20 Sanyo Electric Co Ltd Solar battery module
DE102008021355A1 (en) 2008-03-14 2009-10-01 Ersol Solar Energy Ag Process for the production of monocrystalline solar cells with a back contact structure
DE102009031151A1 (en) 2008-10-31 2010-05-12 Bosch Solar Energy Ag Solar cell and process for its production
CN102709389A (en) * 2012-05-27 2012-10-03 苏州阿特斯阳光电力科技有限公司 Method for preparing double-faced back contact solar cell
CN102800743A (en) * 2011-05-27 2012-11-28 苏州阿特斯阳光电力科技有限公司 Manufacturing method of back contact type crystalline silicon solar cell
CN102800740A (en) * 2011-05-27 2012-11-28 苏州阿特斯阳光电力科技有限公司 Manufacturing method of back contact crystalline silicon solar cell
WO2012162901A1 (en) * 2011-05-27 2012-12-06 苏州阿特斯阳光电力科技有限公司 Method for manufacturing back contact crystalline silicon solar cell sheet
US8916410B2 (en) 2011-05-27 2014-12-23 Csi Cells Co., Ltd Methods of manufacturing light to current converter devices
US9153713B2 (en) 2011-04-02 2015-10-06 Csi Cells Co., Ltd Solar cell modules and methods of manufacturing the same
CN110767761A (en) * 2018-07-27 2020-02-07 上海理想万里晖薄膜设备有限公司 Photovoltaic module

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123073A (en) * 1983-12-08 1985-07-01 Fuji Electric Corp Res & Dev Ltd Thin-film solar cell
JPH0510834B2 (en) * 1983-12-08 1993-02-10 Fuji Denki Sogo Kenkyusho Kk
FR2641646A1 (en) * 1989-01-06 1990-07-13 Mitsubishi Electric Corp SOLAR CELL AND MANUFACTURING METHOD THEREOF
EP0985233A1 (en) 1997-05-30 2000-03-15 Interuniversitair Micro-Elektronica Centrum Vzw Solar cell and process of manufacturing the same
JP2005011869A (en) * 2003-06-17 2005-01-13 Sekisui Jushi Co Ltd Solar cell module and its manufacturing method
JP2008282926A (en) * 2007-05-09 2008-11-20 Sanyo Electric Co Ltd Solar battery module
DE102008021355A1 (en) 2008-03-14 2009-10-01 Ersol Solar Energy Ag Process for the production of monocrystalline solar cells with a back contact structure
DE102008021355B4 (en) * 2008-03-14 2020-08-20 Solarworld Industries Gmbh Process for the production of monocrystalline solar cells with a rear contact structure
DE102009031151A1 (en) 2008-10-31 2010-05-12 Bosch Solar Energy Ag Solar cell and process for its production
US9153713B2 (en) 2011-04-02 2015-10-06 Csi Cells Co., Ltd Solar cell modules and methods of manufacturing the same
CN102800740A (en) * 2011-05-27 2012-11-28 苏州阿特斯阳光电力科技有限公司 Manufacturing method of back contact crystalline silicon solar cell
WO2012162901A1 (en) * 2011-05-27 2012-12-06 苏州阿特斯阳光电力科技有限公司 Method for manufacturing back contact crystalline silicon solar cell sheet
WO2012162902A1 (en) * 2011-05-27 2012-12-06 苏州阿特斯阳光电力科技有限公司 Fabrication method for back-contacted crystalline silicon solar cell
WO2012162905A1 (en) * 2011-05-27 2012-12-06 苏州阿特斯阳光电力科技有限公司 Method for manufacturing back contact crystalline silicon solar cell sheet
US8916410B2 (en) 2011-05-27 2014-12-23 Csi Cells Co., Ltd Methods of manufacturing light to current converter devices
CN102800743A (en) * 2011-05-27 2012-11-28 苏州阿特斯阳光电力科技有限公司 Manufacturing method of back contact type crystalline silicon solar cell
US9209342B2 (en) 2011-05-27 2015-12-08 Csi Cells Co., Ltd Methods of manufacturing light to current converter devices
US9281435B2 (en) 2011-05-27 2016-03-08 Csi Cells Co., Ltd Light to current converter devices and methods of manufacturing the same
CN102709389A (en) * 2012-05-27 2012-10-03 苏州阿特斯阳光电力科技有限公司 Method for preparing double-faced back contact solar cell
CN110767761A (en) * 2018-07-27 2020-02-07 上海理想万里晖薄膜设备有限公司 Photovoltaic module

Similar Documents

Publication Publication Date Title
JP4073968B2 (en) Solar cell and manufacturing method thereof
JP2744847B2 (en) Improved solar cell and method for manufacturing the same
US8481105B2 (en) Solar battery and manufacturing method therefor
US7498508B2 (en) High voltage solar cell and solar cell module
JP3169497B2 (en) Solar cell manufacturing method
US6069065A (en) Semiconductor device fabrication method
JPS5839071A (en) Solar battery element
JP2009130116A (en) Inter-element wiring member, photoelectric conversion element, photoelectric conversion element connector using these, and photoelectric conversion module
JP2001068699A (en) Solar cell
JPH0682854B2 (en) Solar cell
JP2000164901A (en) Solar battery
JP2002026345A (en) Solar cell
JP2014045124A (en) Solar cell and manufacturing method therefor, solar cell module and manufacturing method therefor
TW201306283A (en) Back-contact solar cell and method for producing such a back-contact solar cell
TW202018959A (en) Cut solar cell, method for manufacturing the same and solar cell module
JPH07106619A (en) Fabrication of solar cell
JP2002111024A (en) Solar battery device
JP2000164903A (en) Solar battery
JPH11135812A (en) Formation method for solar cell element
WO2018207312A1 (en) Solar cell and method for manufacturing solar cell
JP2915702B2 (en) Solar cell and method of manufacturing the same
JP5779223B2 (en) Photoelectric conversion element connector and photoelectric conversion module
JPH05315629A (en) Manufacture of solar cell
JP3352586B2 (en) Method of manufacturing solar cell
JP2023500440A (en) Photovoltaic device manufacturing method