JPH07122666B2 - Vehicle three-dimensional position measurement method - Google Patents

Vehicle three-dimensional position measurement method

Info

Publication number
JPH07122666B2
JPH07122666B2 JP61020087A JP2008786A JPH07122666B2 JP H07122666 B2 JPH07122666 B2 JP H07122666B2 JP 61020087 A JP61020087 A JP 61020087A JP 2008786 A JP2008786 A JP 2008786A JP H07122666 B2 JPH07122666 B2 JP H07122666B2
Authority
JP
Japan
Prior art keywords
vehicle
laser
laser light
light receiving
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61020087A
Other languages
Japanese (ja)
Other versions
JPS62179675A (en
Inventor
昇一 坂西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP61020087A priority Critical patent/JPH07122666B2/en
Publication of JPS62179675A publication Critical patent/JPS62179675A/en
Publication of JPH07122666B2 publication Critical patent/JPH07122666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は車両位置の計測方式に係り,特に車両の走行
路が頻繁に変り,かつ路面が整地でない土木作業現場に
おける建設車両の位置計測に用いて好適なものである。
Description: TECHNICAL FIELD The present invention relates to a vehicle position measuring method, and particularly to measuring the position of a construction vehicle at a civil engineering work site where the traveling path of the vehicle changes frequently and the road surface is not leveled. It is suitable for use.

(従来の技術) 従来の走行車両の位置計測方法は次のように分類され
る。すなわち (A)走行車両が外部の支援施設を利用して位置を検出
する方式。
(Prior Art) Conventional position measurement methods for traveling vehicles are classified as follows. That is, (A) a method in which a traveling vehicle detects a position by using an external support facility.

(A)−(1)固定径路方式……走行車両の走路に埋設
したケーブルまたは走路面上に固定した光学テープによ
り走行車両を誘導,あるいは走路に沿って放射されるレ
ーザビームにより走行車両を誘導する方式。
(A)-(1) Fixed path system: A running vehicle is guided by a cable embedded in the running path of the running vehicle or an optical tape fixed on the running surface, or is guided by a laser beam emitted along the running path. Method to do.

(A)−(2)半固定径路方式……走行車両の走路面上
に置いたマークを利用して走行車両を誘導する方式。
(A)-(2) Semi-fixed path system ... A system that guides the traveling vehicle by using marks placed on the traveling surface of the traveling vehicle.

(A)−(3)自由径路方式……外部支援施設の基準点
から走行車両に至る方角及び距離を計測しながら,自由
な径路を誘導する方式であって,計測手段としては電
波,レーザまたは超音波が用いられ,計測方式としては
次の2方式がある。すなわち (A)−(3)−(i)円弧方式……第8図(a)にお
いてa及びbは地上の2基準点であり,pは位置計測の対
象である走行車両の位置である。一例として電波を用い
た場合について説明する。p点から電波を送信し,a点及
びb点で受信し,受信と同時に返信しこれをp点で受信
すれば,電波がpa間及びpb間を往復する時間を測定する
ことにより,p点の位置が決定されるものである。
(A)-(3) Free path method: A method of guiding a free path while measuring the direction and distance from the reference point of the external support facility to the traveling vehicle, and the measuring means is radio wave, laser or Ultrasonic waves are used, and there are the following two measurement methods. That is, (A)-(3)-(i) circular arc method ... In FIG. 8 (a), a and b are two reference points on the ground, and p is the position of the traveling vehicle whose position is to be measured. The case of using radio waves will be described as an example. If radio waves are transmitted from point p, received at points a and b, returned at the same time as reception, and received at point p, the time it takes for the radio waves to travel back and forth between pa and pb is measured to obtain p points. The position of is determined.

(A)−(3)−(ii)双曲線方式……第8図(b)に
おいて,a,b及びcは地上の3基準点であり,pは位置計測
の対象である走行車両の位置である。一例として電波を
用いた場合について説明する。a点及びb点で同時刻T0
に電波を送信し,p点において時刻Ta及びTbに受信したと
すれば,Vを電波の伝播速度として次式が成り立つ。
(A)-(3)-(ii) Hyperbolic method ... In Fig. 8 (b), a, b and c are the three reference points on the ground, and p is the position of the traveling vehicle that is the object of position measurement. is there. The case of using radio waves will be described as an example. Same time T 0 at points a and b
If a radio wave is transmitted to and received at times T a and T b at point p, the following equation holds with V as the propagation velocity of the radio wave.

pa間の距離 La=V(Ta−T0) ……(1) pb間の距離 Lb=V(Ta−T0) ……(2) 故に La−Lb=V(Ta−Tb) ……(3) (3)式によりTa−Tbを測定すればLa−Lbが計算でき
る。そして2定点からの距離の差が一定である点の軌跡
は,その2定点を焦点とする双曲線であることから,p点
はa点及びb点を焦点とする一つの双曲線(第8図
(b)のSabp)上に在ることになる。a点及びc点につ
いても同様の測定を行なえば,p点はa点及びc点を焦点
とする双曲線(第8図(b)のSacp)上に在ることにな
り,p点の位置は双曲線Sabp及びSacpの交点として決定さ
れる。(但し,2つの双曲線の交点は2点あるが,測定者
が推定位置に近い一点を選択すれば良い。) (B)外部支援施設を用いず走行車両の車輪の回転,及
び走行車両に搭載したジャイロによって,走行車両が独
自に自立して距離と方向を計測する方式 (発明が解決しようとする問題点) 建設車両が稼働する土木作業現場では,(a)建設車両
の走路が頻繁に変る,(b)建設車両の走路面が整地で
ない,という悪条件があり,上記(従来の技術)で述べ
た位置計測方式のうち,(A)−(1)固定径路方式及
び(A)−(2)半固定径路方式は,前記(a)建設車
両の走路が頻繁に変るという条件により使えない。ま
た,上記(B)外部支援施設を用いず,走行車両の自立
による位置計測方式は,誤差が累積されるので,前記
(b)建設車両の走路面が整地でないという条件から,
土木作業現場への適用は非常に困難である。
The distance between the pa L a = V (T a -T 0) ...... (1) Distance L b = V (T a -T 0) between pb ...... (2) thus L a -L b = V (T a -T b) ...... (3) (3) L a -L b can be calculated by measuring the T a -T b by equation. Since the locus of points where the difference in distance from the two fixed points is constant is a hyperbola whose focal points are the two fixed points, the p point is one hyperbola whose focal points are the points a and b (Fig. 8 ( b) on S abp ). If the same measurement is performed for points a and c, the point p lies on the hyperbola (S acp in Fig. 8 (b)) whose focal points are points a and c, and the position of the point p Is determined as the intersection of the hyperbolas S abp and S acp . (However, there are two intersections of the two hyperbolas, but the measurer only needs to select one that is close to the estimated position.) (B) The wheel of the traveling vehicle is rotated without using an external support facility, and it is mounted on the traveling vehicle. A method in which a traveling vehicle independently measures the distance and direction by the gyro (the problem to be solved by the invention) At the civil engineering work site where the construction vehicle operates, (a) the traveling path of the construction vehicle changes frequently. , (B) There is a bad condition that the road surface of the construction vehicle is not leveled, and among the position measurement methods described in the above (Prior Art), (A)-(1) fixed path method and (A)-( 2) The semi-fixed route system cannot be used due to the condition (a) that the running path of the construction vehicle changes frequently. Further, since the error is accumulated in the position measurement method in which the (B) external support facility is not used and the traveling vehicle is independent, from the condition (b) that the road surface of the construction vehicle is not leveled,
It is very difficult to apply to civil engineering work sites.

土木作業現場で実用可能なのは,上記(従来の技術)で
述べた位置計測方式のうちの(A)−(3)自由径路方
式であるが,計測手段のうち従来の電波を用いた方式の
ものは船舶用など長距離かつ大規模なものには適する
が,高価であり,測位精度もあまり良くない。また,計
測方式については次の問題点がある。
Of the position measurement methods described in (Prior Art) above, the free path method (A)-(3) is practically applicable to civil engineering work sites. Is suitable for long-distance and large-scale vessels such as ships, but it is expensive and its positioning accuracy is not so good. In addition, the measurement method has the following problems.

(A)−(3)−(i)円弧方式は,2基準点に対し,建
設車両1台の測位しか行なえない。
The (A)-(3)-(i) circular arc method can only position one construction vehicle for two reference points.

(A)−(3)−(ii)双曲線方式は複数台の建設車両
の測位が可能であるが,3基準点を必要とし,かつ基準点
相互間(第8図(b)のa点とb点及びa点とc点)で
同期をとる必要があり複雑かつ高価になるという問題点
を有するものである。
(A)-(3)-(ii) The hyperbolic method is capable of positioning a plurality of construction vehicles, but it requires three reference points and is located between the reference points (point a in FIG. 8 (b)). There is a problem that it becomes complicated and expensive because it is necessary to synchronize at points b and a and c).

更に高さ方向の位置を計測するには別の測定手段が必要
であり,全体の構成が複雑になるという問題点もある。
Further, another measuring means is required to measure the position in the height direction, and there is also a problem that the entire configuration becomes complicated.

(問題点を解決するための手段及び作用) この発明は上記の点に鑑みなされたもので、2箇所の基
準位置に設置し、それぞれ、レーザ発光器と、該レーザ
光を水平面内に定速回転させる脚及びターンテーブル、
ならびに基準方位信号を発信する無指向性送信機とより
成るレーザ発光装置と;該レーザ発光装置からのレーザ
光を全方向受光可能なように、多角柱面上にレーザ受光
板を貼着したレーザ受光部と、該レーザ受光部を車両の
姿勢に関係なく垂直に保ち、かつ該レーザ受光部の地上
からの高さを常に一定に保つ姿勢制御装置とから成る車
載のレーザ受光装置と;該車載受光装置で得られる2つ
の発光角と、既知である基準点間距離より車両位置を演
算する車載演算装置と;該車載演算装置から得た車両位
置と高さの情報を地上局に対して送信する無線通信装置
とからなり、車両の走路が頻繁に変わり車両の走路面が
不整地というような悪条件下でも、2箇所の基準点にレ
ーザ発光装置を設置するだけで、レーザ受光装置を搭載
した複数台の走行車両の位置計測が容易かつ安価に可能
となり、更に作業車の高さ方向の情報は、特に土木作業
における整地面の平坦性に直接関係し、作業の進捗状況
が把握できるので、配車作業の効率化が期待できると共
に、1個所の作業現場管理事務所において、広範囲にわ
たる複数台の作業車両の位置を把握できるので、適切な
作業指示を出すことができて、作業の大幅な能率向上及
び安全確保が可能となるものである。
(Means and Actions for Solving Problems) The present invention has been made in view of the above points, and is installed at two reference positions, and the laser light emitter and the laser light are respectively moved at a constant speed in a horizontal plane. Rotating legs and turntables,
And a laser emitting device comprising an omnidirectional transmitter for transmitting a reference azimuth signal; a laser having a laser receiving plate attached on a polygonal prism surface so that laser light from the laser emitting device can be received in all directions. An in-vehicle laser light receiving device comprising a light receiving part and an attitude control device for keeping the laser light receiving part vertical regardless of the attitude of the vehicle and for keeping the height of the laser light receiving part constant from the ground; An on-vehicle arithmetic device that calculates the vehicle position from two emission angles obtained by the light receiving device and a known distance between reference points; and information on the vehicle position and height obtained from the on-vehicle arithmetic device is transmitted to the ground station. It is equipped with a laser light receiving device by simply installing a laser emitting device at two reference points even under adverse conditions such as the vehicle's running path changes frequently and the running surface of the vehicle is uneven. Running multiple vehicles Both positions can be measured easily and inexpensively, and the information in the height direction of the work vehicle is directly related to the flatness of the ground level, especially in civil engineering work, and the progress status of the work can be grasped. In addition to being able to expect higher efficiency, it is possible to grasp the positions of multiple work vehicles in a wide range at one work site management office, so it is possible to issue appropriate work instructions, greatly improve work efficiency and ensure safety. Is possible.

(実施例) 以下図面に基づいてこの発明の実施例について説明す
る。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings.

第2図はレーザ発光装置20の一具体例の概略図であり,
脚25を有する筐体24には,モータ23によって定速回転さ
れるターンテーブル22を介して,レーザ発光器21が回転
可能なように枢着される。Oはレーザ発光器21の回転中
心線を示す。28は近接スイッチで,レーザ発光器21から
発するレーザ光が基準方位例えば北位を向いたとき,近
接スイッチ28がONになるように設定し,そのとき無指向
性送信機26に対してパルス送信トリガを与えるように成
っている。27は近接スイッチ28と無指向性送信器26を連
結する電気ケーブルである。尚,2箇所の基準位置に設定
される2台のレーザ発光装置から発せられるレーザ光及
びパルス信号は,それぞれ弁別できるように周波数,位
相,波長,強度を変えておく。また,該2台のレーザ発
光装置20の脚25を調節して,レーザ発光器21の回転中心
線Oがそれぞれ垂直になるように,かつ,2本のレーザ光
線の地上からの高さが同一になるように,2台のレーザ発
光装置20を地上に設置する。
FIG. 2 is a schematic view of a specific example of the laser emitting device 20,
A laser emitter 21 is rotatably attached to a housing 24 having legs 25 via a turntable 22 which is rotated at a constant speed by a motor 23. O indicates the center line of rotation of the laser emitter 21. A proximity switch 28 is set so that the proximity switch 28 is turned on when the laser light emitted from the laser emitter 21 faces the reference direction, for example, north, and at that time, pulse transmission is performed to the omnidirectional transmitter 26. Made to give a trigger. 27 is an electric cable connecting the proximity switch 28 and the omnidirectional transmitter 26. Incidentally, the laser light and the pulse signal emitted from the two laser emitting devices set at the two reference positions are changed in frequency, phase, wavelength and intensity so that they can be discriminated from each other. Also, the legs 25 of the two laser light emitting devices 20 are adjusted so that the rotation center lines O of the laser light emitting devices 21 are vertical and the heights of the two laser beams are the same from the ground. Therefore, two laser light emitting devices 20 are installed on the ground.

第3図はレーザ受光装置30の一具体例の概略図である。
図においてレーザ受光部31は,例えばアモルファスシリ
コンから成る受光素子を板状に形成して正n角柱(n≧
3)に構成したものであり,図では正3角柱に構成した
ものを示す。このレーザ受光部31を構成する受光面は,
姿勢制御装置32により,レーザ受光装置30が車両に搭載
されたときに該車両の傾斜,地面の凹凸に関係なく常に
垂直になるように構成されている。
FIG. 3 is a schematic view of a specific example of the laser light receiving device 30.
In the figure, the laser light receiving portion 31 has a plate-shaped light receiving element made of, for example, amorphous silicon, and has a regular n-shaped prism (n ≧ n
3), and the figure shows the structure of a regular triangular prism. The light receiving surface that constitutes the laser light receiving section 31 is
The attitude control device 32 is configured such that when the laser light receiving device 30 is mounted on a vehicle, the laser light receiving device 30 is always vertical regardless of the inclination of the vehicle and the unevenness of the ground.

第1図はこの発明の車両位置計算方式の説明図である。
図においてA及びBは,地上の基準となる2箇所の地点
に設置されたレーザ発光装置20の位置を示し,それぞれ
第2図のOに対応する。Pは位置を計測しようとする車
両上に設置されたレーザ受光装置30の位置を示し,第3
図のレーザ受光部31の正3角柱の軸中心に対応する。第
1図において,A点を原点とする直角座標軸をA−xyと
し,x軸の負の方向を北位とし,図のように符号L,α及び
βを定めれば,P点の座標x,yは次式で求められる。
FIG. 1 is an explanatory diagram of a vehicle position calculation system of the present invention.
In the figure, A and B show the positions of the laser light emitting device 20 installed at two points on the ground which are reference points, and each corresponds to O in FIG. P indicates the position of the laser light receiving device 30 installed on the vehicle whose position is to be measured.
It corresponds to the axial center of the regular triangular prism of the laser receiving unit 31 in the figure. In Fig. 1, the Cartesian coordinate axis with point A as the origin is A-xy, the negative direction of the x axis is north, and if the symbols L, α, and β are set as shown in the figure, the coordinate x , y is calculated by the following equation.

故に, 第4図は第1図のA点及びB点からのレーザ光及びパル
ス信号をP点で受けた時刻から,α及びβを計測する方
法の一具体例の説明図である。第4図(a)はA点から
のレーザ光及びパルス信号をP点で受けた時刻を横軸に
とり,レーザ光及びパルス信号の電気的波形を縦軸にと
っている。今,パルス信号を受信してから,受光レーザ
波形の立上り及び立下りまでの時間をそれぞれta1及びt
a2とし,次のパルス信号を受信するまでの時間をTaとす
れば,第2図で説明したようにTaはA点におけるレーザ
発光器の回転周期であり,また,この実施例ではレーザ
光が北位に発光されるときに,パルス信号が発信され
る。
Therefore, FIG. 4 is an illustration of a specific example of a method for measuring α and β from the time when the laser light and the pulse signal from points A and B in FIG. 1 are received at point P. In FIG. 4A, the horizontal axis represents the time when the laser light and pulse signal from point A was received at point P, and the vertical axis represents the electrical waveform of the laser light and pulse signal. Now, the time from the reception of the pulse signal to the rise and fall of the received laser waveform is t a1 and t, respectively.
Assuming that a2 and the time until the next pulse signal is received are T a , T a is the rotation period of the laser emitter at point A as explained in FIG. A pulse signal is emitted when the light is emitted to the north.

第4図(b)はB点からのレーザ光及びパルス信号をP
点で受けたものであり,tb1,tb2及びTbはそれぞれ第4図
(a)のta1,ta2及びTaに対応する。
FIG. 4 (b) shows the laser light and pulse signal from point B as P
The points t b1 , t b2 and T b correspond to t a1 , t a2 and T a in FIG. 4 (a), respectively.

以上述べたことにより第1図における方位角α及びβは
次式で求められる。
From the above, the azimuth angles α and β in FIG. 1 can be obtained by the following equations.

従って,P点の座標x及びyは,上記α及びβの値を,
(4)式及び(5)式に入れて求められる。
Therefore, the coordinates x and y of P point are the values of α and β above.
It is obtained by putting it into the equations (4) and (5).

P点の高さ方向座標値Zは,次のようにして求める。す
なわち,あらかじめ,レーザ受光部(第3図の31)の高
さ方向の中央位置をhoに設定しておき,A点及びB点から
の2本の発光レーザ光は,第2図で説明したように地上
からの高さが同一であり,P点においては受光レーザをレ
ーザ受光部の高さ方向の中心で受けるように,姿勢制御
装置(第3図の32)の脚長を調節するのでその脚長の変
化量をh(詳説すれば姿勢制御装置の4本の脚の長さの
調節量の平均値)とすれば, Z=ho+h ……(8) で求められる。
The height direction coordinate value Z of the point P is obtained as follows. That is, the center position in the height direction of the laser receiving part (31 in FIG. 3) is set to h o in advance, and the two emitted laser beams from points A and B are described in FIG. As described above, since the height from the ground is the same, and at point P, the leg length of the attitude control device (32 in Fig. 3) is adjusted so that the received laser is received at the center in the height direction of the laser receiver. If the amount of change in the leg length is h (in detail, the average value of the adjustment amounts of the lengths of the four legs of the posture control device), then Z = ho + h (8).

第5図はこの発明の受光レーザ演算処理ブロック図の一
具体例である。レーザ受光点へ入ったレーザ光は受光素
子により電流に変換され,レーザ受光部31の上部(H)
及び下部(L)の長さに対応した電流値となってそれぞ
れ電流電圧変換器51及び52へ入り,それぞれ対応した電
圧値に変換されてBPF(バンドパスフィルタ)53,54,55
及び56へ入る。53及び55はA点からのレーザ光を処理す
るBPFであり,54及び56はB点からのレーザ光を処理する
BPFを示す。尚,付記すれば,前記第2図の説明で述べ
たように,A点及びB点から発せられるレーザ光及びパル
ス信号は,それぞれ弁別できるように成っているので前
記4箇のBPFへはそれぞれ弁別された電圧のみが入って
ゆくように成っている。BPFを出た電圧はそれぞれ電流
回路57,58,59,60及びLPF(ローパスフィルタ)61,62,6
3,64で必要な電気的処理をされ,電圧値VHa,VHb,VLa,V
Lbが得られる。
FIG. 5 is a specific example of a light receiving laser calculation processing block diagram of the present invention. The laser light entering the laser receiving point is converted into a current by the light receiving element, and the upper portion (H) of the laser receiving section 31
And current values corresponding to the length of the lower part (L) enter the current-voltage converters 51 and 52, respectively, and are converted into corresponding voltage values, and the BPFs (band-pass filters) 53, 54, 55
Enter 56. 53 and 55 are BPFs that process laser light from point A, and 54 and 56 process lasers from point B
Indicates BPF. It should be noted that, as described in the description of FIG. 2, the laser light and the pulse signal emitted from the points A and B can be discriminated from each other. It is designed so that only the discriminated voltage enters. The voltage output from BPF is the current circuit 57, 58, 59, 60 and LPF (low-pass filter) 61, 62, 6 respectively.
The required electrical processing is performed at 3,64 and the voltage values V Ha , V Hb , V La , V
Lb is obtained.

第6図はこの発明の土木作業現場における一具体例の概
要説明図である。図において71及び72はいずれも土木作
業中の建設車両,73及び74はいずれも第2図で説明した
レーザ発光装置で,地上の位置計測の基準となる2地点
に設置され,かつ2本の発光レーザの地上高が同一にな
るようにそれぞれの脚長を調節して設置される。75及び
76はいずれも第2図で説明した無指向性送信機である。
77及び78はいずれも第3図で説明したレーザ受光装置で
あり,79及び80はいずれも無線機であって、送信機75及
び76からのパルス発信を受信,並びに作業現場管理事務
所81内に設置された車両位置管理装置82と結ばれた無線
機83との間で,通信連絡をするように成っている。車両
管理装置82において,例えば建設車両71の位置読み出し
を完了したら,次に建設車両72の位置読み出しを実施す
る。
FIG. 6 is a schematic explanatory view of a concrete example of the present invention at a civil engineering work site. In the figure, 71 and 72 are both construction vehicles during civil engineering work, and 73 and 74 are both laser light emitting devices described in FIG. 2, which are installed at two points that serve as a reference for position measurement on the ground, and two The leg lengths of the light emitting lasers are adjusted so that the ground heights are the same. 75 and
76 is the omnidirectional transmitter described in FIG.
77 and 78 are both laser receiving devices described in FIG. 3, 79 and 80 are both radios, and receive pulse transmissions from transmitters 75 and 76, and inside the work site management office 81. The vehicle position management device 82 installed in the vehicle and the wireless device 83 connected to the vehicle position management device 82 communicate with each other. In the vehicle management device 82, for example, when the position reading of the construction vehicle 71 is completed, the position reading of the construction vehicle 72 is performed next.

第7図は第6図における例えば建設車両71の位置計測を
する場合の一具体例のブロック図である。建設車両71が
路面の傾斜,凹凸により傾斜すると,傾斜計91(車両の
前後方向用と左右方向用の2セット)からの信号が演算
回路92を介して,姿勢制御装置32の作動部材を作用させ
てレーザ受光部31の受光面を常に垂直に保持するように
成っている。これ以外の第7図記載の部分は既に説明済
か乃至は従来技術の組合せから成っているので説明は省
略する。
FIG. 7 is a block diagram of a specific example in the case of measuring the position of the construction vehicle 71 in FIG. 6, for example. When the construction vehicle 71 leans due to the slope or unevenness of the road surface, a signal from the inclinometer 91 (two sets for the front-rear direction and the left-right direction of the vehicle) actuates the operating member of the attitude control device 32 via the arithmetic circuit 92. By doing so, the light receiving surface of the laser light receiving portion 31 is always held vertically. The other parts shown in FIG. 7 have already been described or consist of a combination of conventional techniques, and therefore description thereof will be omitted.

(発明の効果) この発明は上述のようにして成るので,建設車両が稼働
する土木作業現場のように,(a)車両の走路が頻繁に
変り,(b)車両の走路面が不整地,という悪条件のも
とでも,2箇所の基準点にレーザ発光装置を設置するだけ
で,レーザ受光装置を搭載した複数台の走行車両の位置
計測が容易かつ安価に可能になる。更に作業車の高さ方
向の情報は,特に土木作業における整地面の平坦性に直
接関係し,作業の進捗状況が把握できるので,配車作業
の効率化が期待できる。更に,1箇所の作業現場管理事務
所において,広範囲にわたる複数台の作業車両の位置を
把握できるので,適切な作業指示を出すことができて,
作業の大幅な能率向上及び安全確保が可能となり,更に
は作業の無人化も期待できるというすぐれた効果を奏す
るものである。
(Effects of the Invention) Since the present invention is configured as described above, (a) the track of the vehicle frequently changes, (b) the track surface of the vehicle is uneven, as in a civil engineering work site where a construction vehicle operates. Even under such adverse conditions, it is possible to easily and inexpensively measure the position of multiple traveling vehicles equipped with a laser receiver by simply installing the laser emitters at two reference points. Furthermore, since the information on the height direction of the work vehicle is directly related to the flatness of the ground level in civil engineering work in particular, and the progress status of the work can be grasped, it is expected that the efficiency of the dispatch work will be improved. Furthermore, in one work site management office, it is possible to grasp the positions of a plurality of work vehicles over a wide range, so it is possible to issue appropriate work instructions,
This has the excellent effect that work efficiency can be greatly improved and safety can be ensured, and further unmanned work can be expected.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の車両位置計算方式の説明図,第2図
はレーザ発光装置の一具体例の概略図,第3図はレーザ
受光装置の一具体例の概略図,第4図(a)及び(b)
は,位置を計測しようとする車両において,レーザ光及
びパルス信号の電気的波形と,受信時刻との関係を示す
説明図,第5図は受光レーザ演算処理ブロック図の一具
体例,第6図はこの発明の土木作業現場における一具体
例の概要説明図,第7図は第6図における建設車両71の
位置計測をする場合の一具体例のブロック図,第8図
(a)及び(b)はそれぞれ従来技術の位置計測方式の
うちの自由径路方式の円弧方式及び双曲線方式の説明図
である。 20……レーザ発光装置,21……レーザ発光器, 22……ターンテーブル,25……脚, 26……無指向性送信機,30……レーザ受光装置, 31……レーザ受光部,32……姿勢制御装置。
FIG. 1 is an explanatory view of a vehicle position calculating method of the present invention, FIG. 2 is a schematic view of a specific example of a laser emitting device, FIG. 3 is a schematic view of a specific example of a laser receiving device, and FIG. ) And (b)
Is an explanatory view showing the relationship between the reception time and the electrical waveforms of the laser light and the pulse signal in the vehicle whose position is to be measured. FIG. 5 is a specific example of a light receiving laser calculation processing block diagram, FIG. Is a schematic explanatory view of a concrete example of the civil engineering work site of the present invention, FIG. 7 is a block diagram of a concrete example in the case of measuring the position of the construction vehicle 71 in FIG. 6, FIGS. 8 (a) and (b) 13A and 13B are explanatory views of a free path method, an arc method and a hyperbolic method, of the conventional position measuring methods. 20 …… Laser emitting device, 21 …… Laser emitting device, 22 …… Turntable, 25 …… Leg, 26 …… Omnidirectional transmitter, 30 …… Laser receiving device, 31 …… Laser receiving unit, 32… ... Attitude control device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】2箇所の基準位置に設置し、それぞれ、レ
ーザ発光器と、該レーザ光を水平面内に定速回転させる
脚及びターンテーブル、ならびに基準方位信号を発信す
る無指向性送信機とより成るレーザ発光装置と;該レー
ザ発光装置からのレーザ光を全方向受光可能なように、
多角柱面上にレーザ受光板を貼着したレーザ受光部と、
該レーザ受光部を車両の姿勢に関係なく垂直に保ち、か
つ該レーザ受光部の地上からの高さを常に一定に保つ姿
勢制御装置とから成る車載のレーザ受光装置と;該車載
受光装置で得られる2つの発光角と、既知である基準点
間距離より車両位置を演算する車載演算装置と;該車載
演算装置から得た車両位置と高さの情報を地上局に対し
て送信する無線通信装置からなることを特徴とする、車
両の三次元位置計測方式。
1. A laser emitter, two legs and a turntable for rotating the laser beam in a horizontal plane at a constant speed, and an omnidirectional transmitter for transmitting a reference azimuth signal. A laser emitting device comprising: a laser emitting device capable of receiving laser light from the laser emitting device in all directions,
A laser light receiving part in which a laser light receiving plate is attached on a polygonal prism surface,
An in-vehicle laser light receiving device comprising an attitude control device for keeping the laser light receiving part vertical regardless of the attitude of the vehicle, and for keeping the height of the laser light receiving part constant from the ground; Two emission angles and an in-vehicle arithmetic device that calculates a vehicle position from a known distance between reference points; a wireless communication device that transmits vehicle position and height information obtained from the in-vehicle arithmetic device to a ground station A three-dimensional vehicle position measurement system characterized by the following:
JP61020087A 1986-02-03 1986-02-03 Vehicle three-dimensional position measurement method Expired - Lifetime JPH07122666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61020087A JPH07122666B2 (en) 1986-02-03 1986-02-03 Vehicle three-dimensional position measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61020087A JPH07122666B2 (en) 1986-02-03 1986-02-03 Vehicle three-dimensional position measurement method

Publications (2)

Publication Number Publication Date
JPS62179675A JPS62179675A (en) 1987-08-06
JPH07122666B2 true JPH07122666B2 (en) 1995-12-25

Family

ID=12017323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61020087A Expired - Lifetime JPH07122666B2 (en) 1986-02-03 1986-02-03 Vehicle three-dimensional position measurement method

Country Status (1)

Country Link
JP (1) JPH07122666B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU628301B2 (en) * 1987-09-30 1992-09-17 Kabushiki Kaisha Komatsu Seisakusho Position meter using laser beam
CN108828520A (en) * 2018-06-15 2018-11-16 深圳草莓创新技术有限公司 The indoor flying method and Related product of unmanned plane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067812A (en) * 1983-09-22 1985-04-18 Toshihiro Tsumura Inclination angle detecting system of moving body
JPS60122410A (en) * 1983-10-25 1985-06-29 ヨット・デ−−テヒノロギ−・ア−・ゲ− Self-measuring apparatus for position coordinate and directional angle for plane constraint type moving object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067812A (en) * 1983-09-22 1985-04-18 Toshihiro Tsumura Inclination angle detecting system of moving body
JPS60122410A (en) * 1983-10-25 1985-06-29 ヨット・デ−−テヒノロギ−・ア−・ゲ− Self-measuring apparatus for position coordinate and directional angle for plane constraint type moving object

Also Published As

Publication number Publication date
JPS62179675A (en) 1987-08-06

Similar Documents

Publication Publication Date Title
US8422035B2 (en) Distance-measuring method for a device projecting a reference line, and such a device
US4820041A (en) Position sensing system for surveying and grading
JPH05150827A (en) Guide system for unattended vehicle
JP2006275904A (en) Position locating system and vehicle-mounted device
JPH07122666B2 (en) Vehicle three-dimensional position measurement method
JPS62226074A (en) Measuring method for three-dimensional position of vehicle
JP2615015B2 (en) Self-propelled work vehicle position measurement method
JPS62226073A (en) Measuring method for three-dimensional position of vehicle
JPS62187271A (en) Position measuring method for vehicle
JPS62179676A (en) System for measuring three-dimensional position of vehicle
JPS62187270A (en) Position measuring method for vehicle
JPS62174675A (en) Position measurement system for vehicle
JPS62172279A (en) System for measuring position of vehicle
JPH0262007B2 (en)
JPS62165171A (en) Measuring system for position of vehicle
JP2845647B2 (en) Automatic positioning of moving objects
JPS62254085A (en) Detection of position for moving object
JPH09101148A (en) Survey system using gps
JPH0868847A (en) Roadbed level measuring apparatus
JPH04309809A (en) Inside tunnel measuring method in tunnel excavation work
JPS62159071A (en) Detecting method for position of moving body
JPH0716165Y2 (en) Vehicle position / speed detector
JPH0921635A (en) Survey robot system
JP2688955B2 (en) Survey method using laser
JPS62251682A (en) Simple range finding method