JPS62226074A - Measuring method for three-dimensional position of vehicle - Google Patents

Measuring method for three-dimensional position of vehicle

Info

Publication number
JPS62226074A
JPS62226074A JP6861686A JP6861686A JPS62226074A JP S62226074 A JPS62226074 A JP S62226074A JP 6861686 A JP6861686 A JP 6861686A JP 6861686 A JP6861686 A JP 6861686A JP S62226074 A JPS62226074 A JP S62226074A
Authority
JP
Japan
Prior art keywords
vehicle
laser
photodetecting
laser beam
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6861686A
Other languages
Japanese (ja)
Other versions
JPH0721537B2 (en
Inventor
Shoichi Sakanishi
坂西 昇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP6861686A priority Critical patent/JPH0721537B2/en
Publication of JPS62226074A publication Critical patent/JPS62226074A/en
Publication of JPH0721537B2 publication Critical patent/JPH0721537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To measure the positions of plural running vehicles by emitting a laser beam for rotating synchronously at constant speed so as to turn in the same direction, in the reference position of 2 parts in a limited area, and photodetecting the laser beam by a laser photodetecting device on the vehicle. CONSTITUTION:Laser light emitting devices 53, 54 for rotating synchronously at constant speed so as to turn in the same direction are provided on a spot of 2 parts. When a vehicle is inclined on a road surface, a signal from an inclinometer 71 operates an attitude control device 32 through an arithmetic circuit 72, and the photodetecting surface of a laser photodetector 31 is always held vertically. Also, a signal by the photodetected 31 laser beam becomes the data of photodetecting timings talpha, tbeta and the photodetecting height position of the photodetector 31, in a photodetection processing circuit 73, inputted to the circuit 72, the data of the photodetecting height position is processed, and the photodetecting position is controlled 32. Also, a radio wave from a non-directional transmitter device 55 is received by a mobile radio equipment member 591, inputted to the circuit 72, and in the circuit 72, three-dimensional positions (x)-(z) of the vehicle are calculated, and sent to a radio equipment 63 installed in a job site management office from a radio equipment member 592.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は車両の三次元位置の計測方法に係り、特に車
両の走行路が頻繁に変り、かつ路面が整地でない土木作
業現場における建設車両の位置計測に用いて好適なもの
である。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a method for measuring the three-dimensional position of a vehicle, particularly for construction vehicles at civil engineering work sites where the vehicle travel path changes frequently and the road surface is not leveled. This is suitable for use in position measurement.

(従来の技術) 従来の走行車両の位置計測方法は次のように分類される
。すなわち (A)走行車両が外部の支援施設を利用して位置を検出
する方法。
(Prior Art) Conventional methods for measuring the position of a running vehicle are classified as follows. That is, (A) a method in which a traveling vehicle detects its position using an external support facility.

(A)−(1)固定径路方法・・・・・・走行車両の走
路に埋設したケーブルまたは走路面上に固定した光学テ
ープにより走行車両を誘導、あるいは走路に沿って放射
されるレーザビームにより走行車両を誘導する方法。
(A)-(1) Fixed route method...Guiding the vehicle by a cable buried in the running track or optical tape fixed on the running track, or by a laser beam emitted along the running track. A method of guiding a moving vehicle.

(A)−(2)半固定径路方法・・・・・・走行車両の
走路面上に置いたマークを利用して走行車両を誘導する
方法。
(A)-(2) Semi-fixed route method: A method of guiding the vehicle using marks placed on the road surface of the vehicle.

(A)−(3)自由径路方法・・・・・・外部支援施設
の基準点から走行車両に至る方角及び距離を計測しなが
ら、自由な径路を誘導する方法であって、計測手段とし
ては電波、レーザ光または超音波が用いられ、計測方法
としては次の2方法がある。すなわち (A)−(3)−(i)円弧方法・・・・・・第8図(
alにおいてa及びbは地上の2基準点であり、pは位
置計測の対象である走行車両の位置である。
(A)-(3) Free route method: A method of guiding a free route while measuring the direction and distance from the reference point of an external support facility to the traveling vehicle. Radio waves, laser light, or ultrasonic waves are used, and there are the following two measurement methods. That is, (A)-(3)-(i) Arc method...Figure 8 (
In al, a and b are two reference points on the ground, and p is the position of the vehicle whose position is to be measured.

−例として電波を用いた場合について説明する。- As an example, a case using radio waves will be explained.

p点から電波を送信し、a点及びb点で受信し、受信と
同時に返信しこれをp点で受信すれば。
If a radio wave is transmitted from point P, received at points A and B, and sent back at the same time as the reception, this is received at point P.

電波がpa間及びpb間を往復する時間を測定すること
により、p点の位置が決定されるものである。
The position of point p is determined by measuring the time taken for the radio waves to travel back and forth between pa and pb.

(A) −(3)   (ii)双曲線方法・・・・・
・第8図(b)において、a、b及びCは地上の3基準
点であり、pは位置計測の対象である走行車両の位置で
ある。−例として電波を用いた場合について説明する。
(A) - (3) (ii) Hyperbolic method...
- In FIG. 8(b), a, b, and C are three reference points on the ground, and p is the position of the vehicle whose position is to be measured. - As an example, a case using radio waves will be explained.

a点及びb点で同時刻T0に電波を送信し、p点におい
て時刻T8及びTbに受信したとすれば、■を電波の伝
播速度として次式が成り立つ。
If radio waves are transmitted at points a and b at the same time T0 and received at point p at times T8 and Tb, the following equation holds true, where ■ is the propagation speed of the radio waves.

pa間の距離 Lll”” V (T、 −To ) 
”’−’(1)pb間の距離 L b = V (T 
b  T o ) −(2)故に  La−Lb = 
V (T、 −’r’b ”) −・(3)(3)式に
よりT−Tbを測定すればり、−Lbが計算できる。そ
して2定点からの距離の差が一定である点の軌跡は、そ
の2定点を焦点とする双曲線であることから、p点はa
点及びb点を焦点とする一つの双曲線(第8図(blの
5−b−)上に在ることになる。a点及びC点について
も同様の測定を行なえば、p点はa点及びC点を焦点と
する双曲線(第8図(blのS、e、 )上に在ること
になり、p点の位置は双曲線S abp及び5acl、
の交点として決定される。(但し、2つの双曲線の交点
は2点あるが、測定者が推定位置に近い一点を選択すれ
ば良い。) (B)外部支援施設を用いず走行車両の車輪の回転、及
び走行車両に搭載したジャイロによって、走行車両が独
自に自立して距離と方向を計測する方法。
Distance between pa Lll"" V (T, -To)
``'-' (1) Distance between pb L b = V (T
b T o ) −(2) Therefore, La − Lb =
V (T, -'r'b '') - (3) By measuring T-Tb using equation (3), -Lb can be calculated. Then, the locus of the point where the difference in distance from the two fixed points is constant is a hyperbola with its two fixed points as foci, so point p is a
Points P and B are on a single hyperbola (5-b- in Figure 8 (bl)) with focal points. If similar measurements are made for points a and C, point p will be on point a. and point C is on the hyperbola (S, e, in Figure 8 (bl)), and the position of point p is on the hyperbola S abp and 5acl,
is determined as the intersection of (However, there are two points of intersection between the two hyperbolas, but the measurer only has to select one point that is close to the estimated position.) (B) Rotation of the wheels of the traveling vehicle without using external support facilities and mounting on the traveling vehicle A method in which a vehicle can independently measure distance and direction using a gyro.

(発明が解決しようとする問題点) 建設車両が稼働する土木作業現場では、(a)建設車両
の走路が頻繁に変る。(b)建設車両の走路面が整地で
ない、という悪条件があり2上記(従来の技術)で述べ
た位置計測方法のうち。
(Problems to be Solved by the Invention) At civil engineering work sites where construction vehicles operate, (a) the route of the construction vehicles changes frequently; (b) Among the position measurement methods described in 2 above (prior art), there is an adverse condition that the road surface for construction vehicles is not leveled.

(A)−(1)固定径路方法及び(A) −(2)半固
定径路方法は、前記(a)建設車両の走路が頻繁に変る
という条件により使えない。また、上記(B)外部支援
施設を用いず、走行車両の自立による位置計測方法は、
誤差が累積されるので、前記(bl建設車両の走路面が
整地でないという条件から、土木作業現場への適用は非
常に困難である。
The (A)-(1) fixed route method and the (A)-(2) semi-fixed route method cannot be used due to the condition that the route of the construction vehicle (a) changes frequently. In addition, the above (B) position measurement method that relies on the self-reliance of the running vehicle without using external support facilities,
Since the errors accumulate, it is very difficult to apply this method to civil engineering work sites due to the condition that the road surface for construction vehicles is not leveled.

土木作業現場で実用可能なのは、上記(従来の技術)で
述べた位置計測方法のうちの(A)−(3)自由径路方
法であるが、計測手段のうち従来の電波を用いた方法の
ものは船舶用など長距離かつ大規模なものには適するが
、高価であり、測位精度もあまり良くない。また、計測
方法については次の問題点がある。
Of the position measurement methods described above (prior technology), the free path method (A)-(3) is practical at civil engineering work sites, but among the measurement methods, conventional methods using radio waves are Although it is suitable for long-distance and large-scale applications such as ships, it is expensive and its positioning accuracy is not very good. Additionally, there are the following problems with the measurement method.

(A)−(3) −(i)円弧方法は、2基準点に対し
、建設車両1台の測位しか行なえない。
(A)-(3)-(i) The arc method can only perform positioning of one construction vehicle with respect to two reference points.

(A) −(3) −(ii)双曲線方法は複数台の建
設車両の測位が可能であるが、3基準点を必要とじ5か
つ基準点相互間(第8図(b)のa点とb点及びa点と
C点)で同期をとる必要があり複雑かつ高価になるとい
う問題点を有するものである。
(A) - (3) - (ii) The hyperbolic method is capable of positioning multiple construction vehicles, but it requires three reference points and between the reference points (point a in Figure 8(b) and This method has the problem of being complicated and expensive because it requires synchronization at point b, point a, and point C).

更に高さ方向の位置を計測するには別の測定手段が必要
であり、全体の構成が複雑になるという問題点もある。
Furthermore, another problem is that another measuring means is required to measure the position in the height direction, making the overall configuration complicated.

(問題点を解決するための手段及び作用)この発明は上
記の点に鑑みなされたものであって、地上の基準となる
2箇所の地点に、同一水平面内において同じ方向を向き
、かつ同一回転速度で定速回転するレーザ光を発光する
2台のレーザ発光装置を設置する。
(Means and effects for solving the problems) This invention has been made in view of the above points, and is based on two points on the ground that are the reference points, facing the same direction in the same horizontal plane, and rotating in the same direction. Two laser emitting devices that emit laser light that rotates at a constant speed are installed.

位置を計測しようとする車両上の見通しのきく位置に、
全方向性1例えば正多角柱面の受光面を持つレーザ発光
装置を設置し、該受光面は車両の傾斜によらず常に垂直
になるように、かつレーザ光の受光位置は、受光面のほ
ぼ中央の高さになるように、姿勢制御装置を介してレー
ザ受光器を該車両上に設置する。
In a visible position on the vehicle whose position is to be measured,
Omnidirectionality 1 For example, a laser emitting device with a light receiving surface of a regular polygonal column is installed, and the light receiving surface is always vertical regardless of the inclination of the vehicle, and the receiving position of the laser beam is almost the same as the light receiving surface. A laser receiver is installed on the vehicle via an attitude control device so that it is at the center height.

また、上記2台のレーザ発光装置のいずれかに、レーザ
光が基準方位(以下において基準方位を北位とする)を
向いた時に信号を発信する手段(例えば近接スイッチ)
を設け、更にレーザ光の北位からの回転角度を検出する
手段を設けて、レーザ光に方位情輯を附與する。レーザ
光の北位からの回転角度を検出する手段としては2次の
2方法がある。すなわち ■ レーザ光が北位を向いたときの信号をリセットポイ
ントとして、レーザ光の回転角度に応じた信号(周波数
、電波強度またはパルス符号)の電波を、無指向性送信
機から送信し。
Also, a means (for example, a proximity switch) for transmitting a signal to either of the two laser emitting devices described above when the laser beam is directed toward a reference direction (hereinafter, the reference direction is assumed to be north).
In addition, a means for detecting the rotation angle of the laser beam from the north is provided to impart azimuth information to the laser beam. There are two secondary methods for detecting the rotation angle of the laser beam from the north. In other words, ■ With the signal when the laser beam points north as the reset point, a radio wave with a signal (frequency, radio wave intensity, or pulse code) corresponding to the rotation angle of the laser beam is transmitted from an omnidirectional transmitter.

上記車載レーザ受光器が2本のレーザ光を受光する時の
、該電波の信号を計測する。
When the vehicle-mounted laser receiver receives two laser beams, the radio wave signals are measured.

■ レーザ光が北位を向いたときの信号の時刻から、上
記車載レーザ受光器が2本のレーザ光を受光する時刻ま
での2箇の時間を計測する。
(2) Measure two times from the time of the signal when the laser beam points north to the time when the vehicle-mounted laser receiver receives the two laser beams.

このようにして、車載のレーザ受光器が受光する2本の
レーザ光線から、2箇の方位角データを得ることができ
、これと2箇所のレーザ発光器の距離とから該車両の水
平面内における位置を決定することができる。また、該
レーザ受光器が載置される姿勢制御装置の脚長を測定す
ることにより、該車両の高さを決定することができる。
In this way, two azimuth angle data can be obtained from the two laser beams received by the on-vehicle laser receiver, and from this and the distances between the two laser emitters, The location can be determined. Furthermore, the height of the vehicle can be determined by measuring the leg length of the attitude control device on which the laser receiver is mounted.

以上のようにしてこの発明では2箇所の基準点に対し、
複数台の移動車両の3次元の位置を計測できるものであ
る。
As described above, in this invention, for two reference points,
It is capable of measuring the three-dimensional positions of multiple moving vehicles.

(実施例) 以下図面に基づいてこの発明の実施例について説明する
(Example) Examples of the present invention will be described below based on the drawings.

第2図はレーザ発光装置20の一具体例の概略図であり
8脚25を有する筺体24には、パルスモータ23によ
って定速回転されるターンテーブル22を介して、レー
ザ発光器21が回転可能なように枢着される。パルスモ
ータ23は、2台のレーザ発光器を同期回転させるため
のものであって。
FIG. 2 is a schematic diagram of a specific example of a laser emitting device 20. A laser emitting device 21 is rotatable in a housing 24 having eight legs 25 via a turntable 22 rotated at a constant speed by a pulse motor 23. It is pivoted like this. The pulse motor 23 is for synchronously rotating the two laser emitters.

1台の発振器56(第4図参照)で2台のパルスモータ
を駆動する。Oはレーザ発光器21の回転中心線を示す
。第2図は2台のレーザ発光装置20のうちの1台に、
無指向性送信機41.電気ケーブル42及び近接スイッ
チ43を装着したものを示す。近接スイッチ43はレー
ザ発光器21から発するレーザ光が北位を向いたとき、
近接スイッチ43がONになるように設定し、そのとき
無指向性送信4ff141に対してパルス送信トリガを
与えるように成っている。42は近接スイッチ43と無
指向性送信機41を連結する電気ケーブルである。
One oscillator 56 (see FIG. 4) drives two pulse motors. O indicates the rotation center line of the laser emitter 21. FIG. 2 shows one of the two laser emitting devices 20,
Omnidirectional transmitter 41. An electric cable 42 and a proximity switch 43 are shown attached. The proximity switch 43 is activated when the laser beam emitted from the laser emitter 21 faces north.
The proximity switch 43 is set to be turned on, and at that time a pulse transmission trigger is given to the omnidirectional transmission 4ff141. 42 is an electric cable connecting the proximity switch 43 and the omnidirectional transmitter 41.

また、該2台のレーザ発光装置20の脚25を調節して
、レーザ発光器21の回転中心線Oがそれぞれ垂直にな
るように、かつ22本のレーザ光線の地上からの高さが
同一になるように、2台のレーザ発光装置20を地上に
設置する。
In addition, the legs 25 of the two laser emitting devices 20 are adjusted so that the rotation center lines O of the laser emitting devices 21 are vertical, and the heights of the 22 laser beams from the ground are the same. Two laser emitting devices 20 are installed on the ground so that.

第3図はレーザ受光装置30の一具体例の概略図である
。図においてレーザ受光器31は1例えばアモルファス
シリコンから成る受光素子を板状に形成して正n角柱(
n≧3)に構成したものであり9図では正3角柱に構成
したものを示す。このレーザ受光器31は全方向受光可
能な形状であれば良いので、正n角柱の他に円筒形状で
も良いことは言うまでもない。このレーザ受光331を
構成する受光面は、レーザ受光装置30が車両に搭載さ
れたときに該車両の傾斜、地面の凹凸に関係なく、常に
垂直になるように、姿勢制御装置32に載置される。
FIG. 3 is a schematic diagram of a specific example of the laser light receiving device 30. In the figure, a laser receiver 31 is constructed by forming a light-receiving element made of, for example, amorphous silicon into a plate shape.
n≧3), and FIG. 9 shows a regular triangular prism structure. Since this laser receiver 31 may have any shape as long as it can receive light in all directions, it goes without saying that it may have a cylindrical shape in addition to a regular n-prism. The light receiving surface constituting the laser light receiving device 331 is mounted on the attitude control device 32 so that when the laser light receiving device 30 is mounted on a vehicle, it is always vertical regardless of the inclination of the vehicle or the unevenness of the ground. Ru.

第1図はこの発明の水平面内における車両位置計算方法
の説明図である。図においてA及びBは、地上の基準と
なる2箇所の地点に設置されたレーザ発光装置20の位
置を示し、それぞれ第2図のOに対応する。Pは位置を
計測しようとする車両上に設置されたレーザ受光装置3
0の位置を示し、第3図のレーザ受光器31の正3角柱
の軸中心に対応する。第1図において、A点を原点とす
る直角座標軸をA−xyとし、X軸の負の方向を北位と
し2図のように符号り、α及びβを定めれば、P点の座
標x、yは次式でsin (π−(π−α)−β)  
 sinβ故に。
FIG. 1 is an explanatory diagram of a method for calculating a vehicle position in a horizontal plane according to the present invention. In the figure, A and B indicate the positions of the laser emitting device 20 installed at two reference points on the ground, and each corresponds to O in FIG. 2. P is a laser light receiving device 3 installed on the vehicle whose position is to be measured
0, which corresponds to the axial center of the regular triangular prism of the laser receiver 31 in FIG. In Figure 1, the orthogonal coordinate axis with point A as the origin is A-xy, the negative direction of the X axis is north, and if α and β are determined, the negative direction of the , y is sin (π-(π-α)-β)
Because of sin β.

X=τ丁・cos (π−α) y−1丁・5in(π−α) sxnLα−μフ 上記(4)式及び(5)式における角度α及びβを求め
る具体的方法については後述する。(第5図及び第6図
参照) P点の高さ方向座標値2は2次のようにして求める。す
なわち、あらかじめ、レーザ受光器(第3図の31)の
高さ方向の中央位置をhoに設定しておき、A点及びB
点からの2本の発光レーザ光は、第2図で説明したよう
に地上からの高さが同一であり、P点においては受光レ
ーザをレーザ受光器の高さ方向の中心で受けるように、
姿勢制御装置(第3図の32)の脚長を調節するのでそ
の脚長の変化量をh(詳説すれば姿勢制御装置の4本の
脚の長さの調節量の平均値)とすれば。
X = τ / cos (π - α) y - 1 / 5 in (π - α) sxnL α - μ The specific method for determining the angles α and β in the above equations (4) and (5) will be described later. . (See Figures 5 and 6) The height direction coordinate value 2 of point P is obtained in a quadratic manner. That is, the center position in the height direction of the laser receiver (31 in Fig. 3) is set in advance to ho, and points A and B are set in advance.
The two emitted laser beams from the point are at the same height from the ground as explained in Fig. 2, and at point P, the receiving laser beam is received at the center of the height direction of the laser receiver.
Since the leg length of the posture control device (32 in FIG. 3) is adjusted, let the amount of change in the leg length be h (more specifically, the average value of the length adjustment amounts of the four legs of the posture control device).

z=h0+h −・−・・−・・−−一−−=−一−−
−−・・・−−画一一−−−−−−・−・=−・−−−
−−−−−(6)で求められる。
z=h0+h −・−・・−・・−−1−−=−1−−
−−・・・−−Ichiichi −−−−−−・−・=−・−−−
--- It is determined by (6).

第4図はこの発明の土木作業現場における一具体例の概
要説明図である。図において51及び52はいずれも土
木作業中の建設車両、53及び54はいずれも第2図で
説明したレーザ発光装置で。
FIG. 4 is a schematic explanatory diagram of a specific example of the present invention at a civil engineering work site. In the figure, 51 and 52 are both construction vehicles undergoing civil engineering work, and 53 and 54 are the laser emitting devices explained in FIG. 2.

地上の位置計測の基準となる2地点に設置され。It is installed at two points that serve as the reference for position measurement on the ground.

かつ2本の発光レーザの地上高が同一になるようにそれ
ぞれの脚長を調節して設置される。55は第2図で説明
した無指向性送信機41.電気ケーブル42及び近接ス
イッチ43を組合せたものを代表して図示したものであ
って、以下に於て単に送信機装置と称す。56は2台の
レーザ発光装置53及び54に含まれるパルスモータ(
第2図の23)を同期駆動するためのものである。57
及び5日はいずれも第3図で説明したレーザ受光装置で
あり、59及び60はいずれも無線機であって。
In addition, the two light emitting lasers are installed with their respective leg lengths adjusted so that their heights above the ground are the same. Reference numeral 55 indicates the omnidirectional transmitter 41.55 described in FIG. A combination of an electric cable 42 and a proximity switch 43 is shown as a representative combination, and will hereinafter be simply referred to as a transmitter device. 56 is a pulse motor (
This is for synchronously driving 23) in FIG. 57
and 5th are the laser light receiving devices explained in FIG. 3, and 59 and 60 are both radio devices.

送信機装置55からの電波信号の受信、並びに作業現場
管理事務所61に設置された無線機63との間で送受信
を行なう。62は作業現場管理事務所61内に設置され
た車両位置管理装置である。
It receives radio signals from the transmitter device 55 and performs transmission and reception with a radio device 63 installed in the work site management office 61. 62 is a vehicle position management device installed in the work site management office 61.

第5図ta)及び(b)は前記(4)式及び(5)式に
おける角度α及びβを求める方法の一具体例の説明図で
あうて、第1図、第2図及び第4図も参照しながら説明
する。レーザ発光装置53の発射レーザ光が北位を向い
たことを検出する近接スイッチ43からの信号をリセッ
1−ポイントとして2発射レーザ光の北位からの回転角
に応じて直線的に増加する(第5図(al参照)周波数
の電波を無指向性送信機装置55から発信し、この電波
を無線機59で受信する(以下においては車両51の位
置測定を行なう場合について説明する)。尚。
Figures 5 ta) and 5 (b) are explanatory diagrams of a specific example of the method for determining the angles α and β in the above formulas (4) and (5), and Figures 1, 2, and 4 are also diagrams. I will explain while referring to it. The signal from the proximity switch 43 that detects that the emitted laser light of the laser emitting device 53 is directed north is set as the reset point 1, and increases linearly according to the rotation angle from the north of the emitted laser light (2). Radio waves having the frequency shown in FIG. 5 (see al) are transmitted from the omnidirectional transmitter device 55, and the radio waves are received by the radio device 59 (the case where the position of the vehicle 51 is measured will be described below).

回転角に応じて直線的に増加する周波数の電波の発生は
、鋸歯発生機例えばV−fコンバータ(電圧〜周波数変
換器)に依ればよい。尚、Tはレーザ発光器21の回転
周期である。第5図fb)はレーザ発光装置53及び5
4からのレーザ光をレーザ受光装置57で受光したタイ
ミングの説明図である。レーザ発光装置53及び54(
第1図のA点及びB点)、ならびにレーザ受光装置57
(第1図のP点)が第1図に示すような配置であればα
〉βであるので、第5図(blにおいてB点からのレー
ザ光がA点からのレーザ光よりも先にレーザ受光装置5
7で受光される。第1図においてP点が1丁の下側であ
ればα〈βとなり、第5図(blにおける受光のタイミ
ングは、A点からのちのとB点からのものとは逆になる
。第4図で説明すれば車両51は第1図のP点の位置に
あって、車両52は第1図の1丁の下側に在ることにな
る。このようにして位置計測をしようとする車両の位置
を第1図の1丁の上側か下側かのどちらか一方だけで走
行するようにしておけば。
Generation of radio waves with a frequency that increases linearly in accordance with the rotation angle may be achieved using a sawtooth generator, such as a Vf converter (voltage-to-frequency converter). Note that T is the rotation period of the laser emitter 21. FIG. 5 fb) shows laser emitting devices 53 and 5.
4 is an explanatory diagram of the timing at which the laser light receiving device 57 receives the laser light from the laser beam receiving device 57. FIG. Laser emitting devices 53 and 54 (
points A and B in FIG. 1), and the laser receiver 57
If (point P in Figure 1) is arranged as shown in Figure 1, α
>β, so in Fig. 5 (bl), the laser beam from point B reaches the laser receiver 5 before the laser beam from point A.
The light is received at 7. In Fig. 1, if point P is below one block, α<β, and in Fig. 5 (the timing of light reception at bl is opposite from that from point A and from point B. To explain it with a diagram, the vehicle 51 is at the position of point P in FIG. 1, and the vehicle 52 is at the bottom of the first street in FIG. 1. If you set the position of the car so that it runs only above or below the 1st block in Figure 1.

第5図(blにおける2本の受光レーザ光が、A点及び
B点からの発光レーザ光と容易に対応がつけられる。第
5図(a)及び(b)を参照して第1図の角度α及びβ
は次式で求められる。
The two received laser beams in Fig. 5 (bl) can be easily correlated with the emitted laser beams from points A and B. Referring to Fig. 5 (a) and (b), angles α and β
is calculated using the following formula.

尚、この実施例では第5図(a)に示すように直線的に
変化する周波数を用いたが、この代りに直線的に変化す
る電波強度やパルス符号を用いても差支えない。
In this embodiment, a linearly changing frequency was used as shown in FIG. 5(a), but a linearly changing radio wave intensity or pulse sign may be used instead.

第6図(a)及び(blは、前記(4)式及び(5)式
における角度α及びβを求める方法の別の一興体例の説
明図である。レーザ発光装置53の発射レーザ光が北位
を向いたことを検出する近接スイッチ43からの信号を
無指向性送信機装置55から発信し、無線機59で受信
した受信電波の時間に対する波形を第6図(a)に示す
。周期Tは第5図(alで説明したTと同じものである
。第6図(blは第5図(b)と同じものであるので説
明は省略する。第6図(a)、 (b)を参照して9時
間tα及びtβを計測すれば、第1図の角度α及びβは
次式で求められる。
6(a) and (bl) are explanatory diagrams of another example of a method for determining the angles α and β in the above equations (4) and (5).The emitted laser light from the laser emitting device 53 is A signal from the proximity switch 43 that detects that the user is facing the camera is transmitted from the omnidirectional transmitter device 55, and the waveform of the received radio wave received by the radio 59 with respect to time is shown in FIG. 6(a).Period T is the same as T explained in Fig. 5 (al). Fig. 6 (bl is the same as Fig. 5 (b), so the explanation is omitted. Fig. 6 (a) and (b) If tα and tβ are measured for 9 hours with reference, the angles α and β in FIG. 1 can be obtained by the following equations.

第7図は1例として第4図の車両51の位置計測をする
場合の一具体例のブロック図である。
FIG. 7 is a block diagram of a specific example in which the position of the vehicle 51 shown in FIG. 4 is measured.

車両51が路面の傾斜、凹凸により傾斜すると傾斜計7
1(車両の前後方向用と左右方向用の2セツトから成る
)からの信号が、演算回路72を介して姿勢制御装置3
2の作動部材を作用させて。
When the vehicle 51 tilts due to the slope or unevenness of the road surface, the inclinometer 7
1 (consisting of two sets, one for the front and rear directions of the vehicle and one for the left and right directions) is sent to the attitude control device 3 via the arithmetic circuit 72.
2 actuate the actuating member.

レーザ受光器31の受光面を常に垂直に保持するように
成っている。またレーザ受光器31へ入ったレーザ光に
よる信号は9受光処理回路73において受光タイミング
tα、tβ及びレーザ受光器における受光高さ位置のデ
ータとなって演算回路72へ入り、該受光高さ位置のデ
ータを処理することにより受光位置をレーザ受光器31
の高さ方向中央位置に位置するように、姿勢制御装置3
2へ制御指令を出す。また、送信機装置55からの電波
を車載の無線機59の一部材である59゜で受信し、第
5図(a)で説明した周波数fα及びfβ、または第6
図(a)で説明した北位を示すパルス信号のデータとし
て、演算回路72へ入る。
The light receiving surface of the laser receiver 31 is always held vertically. In addition, the signal from the laser beam that has entered the laser receiver 31 is transmitted to the arithmetic circuit 72 as data on the light reception timing tα, tβ and the light reception height position in the laser receiver in the 9 light reception processing circuit 73. The laser receiver 31 determines the light receiving position by processing the data.
Attitude control device 3
Issue a control command to 2. Further, the radio waves from the transmitter device 55 are received at 59°, which is a part of the vehicle-mounted radio device 59, and the frequencies fα and fβ explained in FIG.
It enters the arithmetic circuit 72 as pulse signal data indicating the north direction explained in FIG.

演算回路72では車両の三次元位置x、y及び2が計算
されて、無線機59の一部材59□から作業現場管理事
務所61内に設置された無線a63へ送られるように成
っている。
The arithmetic circuit 72 calculates the three-dimensional positions x, y, and 2 of the vehicle and sends them from a member 59□ of the radio device 59 to a radio a63 installed in the work site management office 61.

(発明の効果) この発明は上述のようにして成るので、建設車両が稼働
する土木作業現場のように、(a)車両の走路が頻繁に
変り、(b)車両の走路面が不整地。
(Effects of the Invention) Since the present invention is constructed as described above, it is possible to avoid problems such as at a civil engineering work site where construction vehicles operate (a) where the vehicle travels frequently, and (b) where the vehicle travels on an uneven surface.

という悪条件のもとでも、2箇所の基準点にレーザ発光
装置を設置するだけで、レーザ受光装置を搭載した複数
台の走行車両の位置計測が容易かつ安価に可能になる。
Even under these adverse conditions, simply installing laser emitting devices at two reference points makes it possible to easily and inexpensively measure the positions of a plurality of vehicles equipped with laser light receiving devices.

更に作業車両の高さ方向の情報は、特に土木作業におけ
る整地面の平坦性に直接関係し9作業の進捗状況が把握
できるので、配車作業の効率化が期待できる。更に、1
箇所の作業現場管理事務所において、広範囲にわたる複
数台の作業車両の位置を把握できるので、適切な作業指
示を出すことができて。
Furthermore, the information in the height direction of the work vehicle is directly related to the flatness of the leveled surface especially in civil engineering work, and the progress status of the work can be grasped, so it can be expected to improve the efficiency of vehicle allocation work. Furthermore, 1
At each work site management office, we can grasp the location of multiple work vehicles over a wide area, so we can issue appropriate work instructions.

作業の大幅な能率向上及び安全確保が可能となり、更に
は作業の無人化も期待できるというすぐれた効果を奏す
るものである。
This has excellent effects in that it is possible to significantly improve work efficiency and ensure safety, and furthermore, unmanned work can be expected.

また1発明者は先にこの発明と同じ目的を達成する「車
両の三次元位置計測方式」 (特願昭61−02008
7号)を出願しているが、この発明が先に出願した上記
発明に比較して2次のようなすぐれた効果を奏するもの
である。すなわち。
In addition, one inventor previously proposed a "three-dimensional vehicle position measurement system" (patent application No. 61-02008) that achieves the same purpose as this invention.
No. 7), this invention has the following superior effects compared to the previously filed invention. Namely.

先の発明は2箇所のレーザ発光装置からのレーザ光を弁
別するために、それぞれのレーザ光に別々の変調をかけ
ていたが、この発明では2本のレーザ光が同一方向を向
くように同期をとって回転させることにしたので、2本
のレーザ光を幾何学的に弁別でき1発光装置、受光装薗
共非常に簡単な構造になった。また前記と同じ理由でレ
ーザ光の回転方位を示す方位信号を送信する無線機も、
先の発明では別々の周波数で電波を発信する2台の無線
機が必要であったが。
In the previous invention, in order to distinguish between the laser beams from two laser emitting devices, each laser beam was modulated separately, but in this invention, the two laser beams are synchronized so that they point in the same direction. Since we decided to take and rotate the two laser beams, we were able to geometrically distinguish between the two laser beams, resulting in a very simple structure for both the light-emitting device and the light-receiving device. Also, for the same reason as mentioned above, a radio device that transmits a direction signal indicating the rotational direction of the laser beam is also used.
The previous invention required two radios that emitted radio waves at different frequencies.

この発明では一台の無線機で済むことになった。With this invention, only one radio device is required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の車両位置計算方法の説明図、第2図
はレーザ発光装置の一具体例の概略図、第3図はレーザ
受光装置の一具体例の概略図、第4図はこの発明の土木
作業現場における一興体例の概略説明図、第5図(al
及び(b)は受光レーザ光及び車載無線機の受信する電
波の周波数と時刻との関係を示す説明図、第6図(a)
及びfb)は、受光レーザ光及び車載無線機の受信する
パルス信号と時刻との関係を示す説明図、第7図は第4
図における建設車両51の位置計測をする場合の一具体
例のブロック図、第8図(a)及び(b)はそれぞれ従
来技術の位置計測方法のうちの自由径路方法の円弧方法
及び双曲線方法の説明図である。 20、53.54・・・レーザ発光装置。 21・・・レーデ発光器、22・・・ターンテーブル。 25・・・脚、   30,57.58・・・レーザ受
光装置。 31・・・レーザ受光器、32・・・姿勢制御装置。 41・・・無指向性送信機、43・・・近接スイッチ。 55・・・無指向性送信機装置、56・・・発振器。 59、60・・・(車載の)無線機。 特許出願人 株式会社小松製作所 代理人 (弁理士)松 澤  統 w 1  図 第 2 図 @ 8 図(a) 第8図(b)
FIG. 1 is an explanatory diagram of the vehicle position calculation method of the present invention, FIG. 2 is a schematic diagram of a specific example of a laser emitting device, FIG. 3 is a schematic diagram of a specific example of a laser receiving device, and FIG. 4 is a schematic diagram of a specific example of a laser light receiving device. A schematic explanatory diagram of an example of the invention at a civil engineering work site, Figure 5 (al
and (b) is an explanatory diagram showing the relationship between the received laser beam and the frequency of radio waves received by the in-vehicle radio and time, and FIG. 6(a)
and fb) are explanatory diagrams showing the relationship between the received laser beam, the pulse signal received by the in-vehicle radio, and time, and FIG.
FIGS. 8(a) and 8(b), which are block diagrams of a specific example of position measurement for the construction vehicle 51 shown in the figure, show the free path method, the arc method, and the hyperbolic method, respectively, among the position measurement methods of the prior art. It is an explanatory diagram. 20, 53.54...Laser light emitting device. 21... Rede light emitter, 22... Turntable. 25...Legs, 30,57.58...Laser light receiving device. 31... Laser receiver, 32... Attitude control device. 41... Omnidirectional transmitter, 43... Proximity switch. 55... Omnidirectional transmitter device, 56... Oscillator. 59, 60... (in-vehicle) radio. Patent Applicant Komatsu Ltd. Agent (Patent Attorney) Osamu Matsuzawa 1 Figure 2 @ 8 Figure (a) Figure 8 (b)

Claims (3)

【特許請求の範囲】[Claims] (1)限定領域内の2箇所の基準位置において、同一水
平面内で、かつ同一方向を向くように同期して定速回転
するレーザ光線を発光し、位置計測しようとする車両上
の所定の位置に置かれた全方向受光可能なレーザ受光装
置により、前記レーザ光線を受光することにより、上記
車両に関する水平面における2個の方位情報及び高さ位
置情報を得て、上記2箇所の基準位置に対する上記車両
の三次元位置を計測することを特徴とする、車両の位置
計測方法。
(1) A predetermined position on the vehicle to be measured by emitting laser beams that rotate at a constant speed synchronously in the same horizontal plane and facing the same direction at two reference positions within the limited area. By receiving the laser beam with a laser light receiving device capable of receiving light in all directions placed at A vehicle position measurement method characterized by measuring a three-dimensional position of a vehicle.
(2)上記レーザ光線の発光方位に応じた信号(周波数
、強度または符号)を、無指向性送信機から発信し、位
置を計測しようとする車両上に車載した無線機で受信す
ることにより、上記水平面内における2箇の方位情報を
得ることを特徴とする、特許請求範囲第1項記載の車両
の三次元位置計測方法。
(2) By transmitting a signal (frequency, intensity, or code) corresponding to the emission direction of the laser beam from an omnidirectional transmitter and receiving it with a radio installed on the vehicle whose position is to be measured, A method for measuring a three-dimensional position of a vehicle according to claim 1, characterized in that information on two directions in the horizontal plane is obtained.
(3)上記レーザ光線が基準方位を向いたことを検出す
る装置から得るパルス信号を、無指向性送信機から発信
し、位置を計測しようとする車両上に車載した無線機で
受信することにより、上記水平面内における2箇の方位
情報を得ることを特徴とする、特許請求範囲第1項記載
の車両の三次元位置計測方法。
(3) A pulse signal obtained from a device that detects that the laser beam is directed toward the reference direction is transmitted from an omnidirectional transmitter and received by a radio installed on the vehicle whose position is to be measured. A method for measuring a three-dimensional position of a vehicle according to claim 1, characterized in that information on two directions in the horizontal plane is obtained.
JP6861686A 1986-03-28 1986-03-28 Vehicle three-dimensional position measuring device Expired - Lifetime JPH0721537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6861686A JPH0721537B2 (en) 1986-03-28 1986-03-28 Vehicle three-dimensional position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6861686A JPH0721537B2 (en) 1986-03-28 1986-03-28 Vehicle three-dimensional position measuring device

Publications (2)

Publication Number Publication Date
JPS62226074A true JPS62226074A (en) 1987-10-05
JPH0721537B2 JPH0721537B2 (en) 1995-03-08

Family

ID=13378866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6861686A Expired - Lifetime JPH0721537B2 (en) 1986-03-28 1986-03-28 Vehicle three-dimensional position measuring device

Country Status (1)

Country Link
JP (1) JPH0721537B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170807A (en) * 1987-12-26 1989-07-05 Komatsu Ltd Laser light receiver
JPH0232081U (en) * 1988-08-22 1990-02-28

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170807A (en) * 1987-12-26 1989-07-05 Komatsu Ltd Laser light receiver
JPH0232081U (en) * 1988-08-22 1990-02-28

Also Published As

Publication number Publication date
JPH0721537B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US7110092B2 (en) Measuring device and measuring method for determining distance and/or position
US9407364B2 (en) Laser receiver
EP0717261B1 (en) Spatial positioning system
JPS62226074A (en) Measuring method for three-dimensional position of vehicle
JPS62226073A (en) Measuring method for three-dimensional position of vehicle
JPH0425507B2 (en)
JPH07122666B2 (en) Vehicle three-dimensional position measurement method
JPS62187271A (en) Position measuring method for vehicle
JP2000234929A (en) Interconnecting automatic position/attitude measuring system
JPS62174675A (en) Position measurement system for vehicle
JPS62179676A (en) System for measuring three-dimensional position of vehicle
JPH0262007B2 (en)
JP2689266B2 (en) Three-dimensional position measuring device
JPS62165171A (en) Measuring system for position of vehicle
JPS62187270A (en) Position measuring method for vehicle
JP2000180164A (en) Position determination method and target in mini-shield tunneling method
JPS63281012A (en) Surveying device
Wu et al. Rapid and accurate inter-robot position determination in robot teams
JPH04309809A (en) Inside tunnel measuring method in tunnel excavation work
JP2542257B2 (en) Position and heading measurement system for mobile
JPS62172279A (en) System for measuring position of vehicle
RU2090707C1 (en) Laser control system of road-building machine
JPS62148870A (en) Measuring method for position of moving body
JP2688690B2 (en) Surveying system
JPS62195577A (en) Position measuring method for vehicle