JPS62187270A - Position measuring method for vehicle - Google Patents

Position measuring method for vehicle

Info

Publication number
JPS62187270A
JPS62187270A JP2887486A JP2887486A JPS62187270A JP S62187270 A JPS62187270 A JP S62187270A JP 2887486 A JP2887486 A JP 2887486A JP 2887486 A JP2887486 A JP 2887486A JP S62187270 A JPS62187270 A JP S62187270A
Authority
JP
Japan
Prior art keywords
laser light
vehicle
vehicles
laser
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2887486A
Other languages
Japanese (ja)
Inventor
Yasuhiko Ichimura
市村 泰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2887486A priority Critical patent/JPS62187270A/en
Publication of JPS62187270A publication Critical patent/JPS62187270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)

Abstract

PURPOSE:To measure the positions of plural vehicles based upon one reference position with high accuracy by sending azimuth information together with laser light emitted by a laser light emitting element placed at the one reference position and rotating it in a horizontal plane at a constant speed. CONSTITUTION:The laser light emitting device 40 rotates in the horizontal plane at a constant speed at the prescribed reference position in a limited area and emits a laser light beam which is pulse-modulated with the azimuth information. Laser light receivers 63 and 64, and 65 and 66 capable of receiving light in every direction are placed at prescribed positions on vehicles 61 and 62 whose positions are to be measured. Those light receives 63 and 64, and 65 and 66 receive laser light beams to obtain two pieces of azimuth information on the veicles 61 and 62. Further, azimuth measuring instruments mounted on the vehicles 61 and 62 obtain information on directions connecting the light receivers 63 and 64, and 65 and 66. The obtained pieces of information are processed by CPUs on the vehicles and sent as position information on the vehicles 61 and 62 to a vehicle position controller 71 from radio equipments 67 and 68.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は車両位置の計測方法に係り、特に車両の走行
路が頻繁に変り、かつ路面が整地でない土木作業現場に
おける建設車両の位置計測に用いて好適なものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a method for measuring the position of a vehicle, and is particularly suitable for measuring the position of a construction vehicle at a civil engineering work site where the vehicle travel path changes frequently and the road surface is not leveled. It is suitable for use.

(従来の技術) 従来の走行車両の位置計測方式は次のように分類される
。すなわち (A)走行車両が外部の支援施設を利用して位置を検出
する方法。
(Prior Art) Conventional position measurement methods for running vehicles are classified as follows. That is, (A) a method in which a traveling vehicle detects its position using an external support facility.

(A)−(1)固定径路方法・・・・・・走行車両の走
路に埋設したケーブルまたは走路面上に固定した光学テ
ープにより走行車両を誘導、あるいは走路に沿って放射
されるレーザビームにより走行車両を誘導する方法。
(A)-(1) Fixed route method...Guiding the vehicle by a cable buried in the running track or optical tape fixed on the running track, or by a laser beam emitted along the running track. A method of guiding a moving vehicle.

(A)−(2)半固定径路方法・・・・・・走行車両の
走路面上に置いたマークを利用して走行車両を誘導する
方法。
(A)-(2) Semi-fixed route method: A method of guiding the vehicle using marks placed on the road surface of the vehicle.

(A)−(3)自由径路方法・・・・・・外部支援施設
の基準点から走行車両に至る方角及び距離を計測しなが
ら、自由な径路を誘導する方式であって、計測手段とし
ては電波、レーザまたは超音波が用いられ、計測方法と
しては次の2方式がある。すなわち (A)−(3)−(i)円弧方法・・・・・・第8図(
alにおいてa及びbは地上の2基準点であり、pは位
置計測の対象である走行車両の位置である。
(A)-(3) Free route method: A method that guides a free route while measuring the direction and distance from the reference point of an external support facility to the traveling vehicle. Radio waves, lasers, or ultrasonic waves are used, and there are two measurement methods: That is, (A)-(3)-(i) Arc method...Figure 8 (
In al, a and b are two reference points on the ground, and p is the position of the vehicle whose position is to be measured.

−例として電波を用いた場合について説明する。- As an example, a case using radio waves will be explained.

p点から電波を送信し、a点及びb点で受信し。Radio waves are transmitted from point P and received at points A and B.

゛ 受信と同時に返信しこれをp点で受信すれば。゛If you reply at the same time as receiving and receive this at point p.

電波がpa間及びpb間を往復する時間を測定すること
により、p点の位置が決定されるものである。
The position of point p is determined by measuring the time taken for the radio waves to travel back and forth between pa and pb.

(A)   (3)   (ii)双曲線方法・・・・
・・第8図(b)において、a、b及びCは地上の3基
準点であり、pは位置計測の対象である走行車両の位置
である。−例として電波を用いた場合について説明する
。a点及びb点で同時刻T0に電波を送信し、p点にお
いて時刻T、及びTbに受信したとすれば、■を電波の
伝播速度として次式が成り立つ。
(A) (3) (ii) Hyperbolic method...
In FIG. 8(b), a, b, and C are three reference points on the ground, and p is the position of the vehicle whose position is to be measured. - As an example, a case using radio waves will be explained. If radio waves are transmitted at points a and b at the same time T0 and received at point p at times T and Tb, the following equation holds true, where ■ is the propagation speed of the radio waves.

pa間の距離 L 、 = V (T 、T o) −
−−−−−(1)pb間の距ML b = V (T 
b −T o )−・−・(2)故に   L −t、
 b = v (T −T b )・−−−−(31(
3)式によりT、−T、を測定すればり、−L。
Distance between pa L, = V (T, T o) −
-----(1) Distance between pb ML b = V (T
b −T o )−・−・(2) Therefore L −t,
b = v (T − T b )・----(31(
3) If T, -T, is measured by the formula, -L.

が計算できる。そして2定点からの距離の差が一定であ
る点の軌跡は、その2定点を焦点とする双曲線であるこ
とから、p点はa点及びb点を焦点とする一つの双曲線
(第8図(b)の5−bp)上に在ることになる。a点
及びC点についても同様の測定を行なえば、p点はa点
及びC点を焦点とする双曲線(第8図(b)のS、cp
)上に在ることになり、p点の位置は双曲線5sbp及
び5llcl、の交点として決定される。(但し、2つ
の双曲線の交点は2点あるが、測定者が推定位置に近い
一点を選択すれば良い。) (B)外部支援施設を用いず走行車両の車輪の回転、及
び走行車両に搭載したジャイロによって、走行車両が独
自に自立して距離と方向を計測する方法 (発明が解決しようとする問題点) 建設車両が稼働する土木作業現場では、(a)建設車両
の走路が頻繁に変る。(b)建設車両の走路面が整地で
ない、という悪条件があり、上記(従来の技術)で述べ
た位置計測方法のうち。
can be calculated. Since the locus of a point whose distance from two fixed points is constant is a hyperbola with the two fixed points as focal points, point p is one hyperbola with focal points at points a and b (see Figure 8). 5-bp) above b). If similar measurements are made for points a and C, point p will be a hyperbola with focal points at points a and C (S, cp in Figure 8(b)).
), and the position of point p is determined as the intersection of the hyperbolas 5sbp and 5llcl. (However, there are two points of intersection between the two hyperbolas, but the measurer only has to select one point that is close to the estimated position.) (B) Rotation of the wheels of the traveling vehicle without using external support facilities and mounting on the traveling vehicle A method for a traveling vehicle to independently measure distance and direction using a gyro (problem to be solved by the invention) At a civil engineering work site where construction vehicles are operated, (a) the route of the construction vehicle changes frequently; . (b) Among the position measurement methods described above (prior art), there is an adverse condition that the road surface for construction vehicles is not leveled.

(A)−(1)固定径路方法及び(A)−(2)半固定
径路方法は、前記(a)建設車両の走路が頻繁に変ると
いう条件により使えない。また、上記(B)外部支援施
設を用いず、走行車両の自立による位置計−測方法は、
誤差が累積されるので、前記(bl建設車両の走路面が
整地でないという条件から、土木作業現場への適用は非
常に困難である。
The (A)-(1) fixed route method and the (A)-(2) semi-fixed route method cannot be used due to the condition (a) that the route of the construction vehicle changes frequently. In addition, the above (B) method of position measurement by autonomous vehicle without using external support facilities is as follows:
Since the errors accumulate, it is very difficult to apply this method to civil engineering work sites due to the condition that the road surface for construction vehicles is not leveled.

土木作業現場で実用可能なのは、上記(従来の技術)で
述べた位置計測方法のうちの(A)−(3)自由径路方
法であるが、計測手段のうち従来の電波を用いた方式の
ものは船舶用など長距離かつ大規模なものには適するが
、高価であり、測位精度もあまり良くない。また、計測
方法については次の問題点がある。
Of the position measurement methods described above (prior technology), the free path method (A)-(3) is practical at civil engineering work sites, but among the measurement methods, conventional methods using radio waves are Although it is suitable for long-distance and large-scale applications such as ships, it is expensive and its positioning accuracy is not very good. Additionally, there are the following problems with the measurement method.

(A)−(3)−(i)円弧方法は、2基準点に対し、
建設車両1台の測位しか行なえない。
(A)-(3)-(i) In the arc method, for two reference points,
Only one construction vehicle can be positioned.

(A) −(3)   (ii)双曲線方法は複数台の
建設車両の測位が可能であるが、3基準点を必要とし、
かつ基準点相互間(第8図(b)のa点とb点及びa点
とC点)で同期をとる必要があり複雑かつ高価になると
いう問題点を有するものである。
(A) - (3) (ii) The hyperbolic method is capable of positioning multiple construction vehicles, but requires three reference points;
Furthermore, it is necessary to synchronize between the reference points (points a and b and points a and C in FIG. 8(b)), which is complicated and expensive.

また、レーザ光を利用して位置計測する方法は、レーザ
光を測位媒体として利用し、レーザ受光器の幾何学的構
造を利用して測位を行なうため、該レーザ受光器の機械
的精度に対する要求が非常にきびしく、実用性が困難で
あるという問題点がある。
In addition, the method of position measurement using laser light uses the laser light as a positioning medium and uses the geometric structure of the laser receiver to perform positioning, so there are requirements for the mechanical accuracy of the laser receiver. The problem is that the method is very strict and difficult to put into practical use.

(問題点を解決するための手段及び作用)この発明は上
記の点に鑑みなされたものであって、1箇所の基準位置
に置かれたレーザ発光器から発するレーザ光に方位情報
をのせて水平面内に定速回転させる。該レーザ光にのせ
る方位情報は例えば360°を2″分割したnビットの
2進数で表現したものである。
(Means and effects for solving the problems) This invention has been made in view of the above points, and is based on the invention by adding azimuth information to a laser beam emitted from a laser emitter placed at one reference position. Rotate at a constant speed within the range. The azimuth information placed on the laser beam is expressed, for example, as an n-bit binary number obtained by dividing 360° into 2''.

また1位置計測をしようとする車両上に2台の全方向受
光可能なレーザ受光器を搭載して上記レーザ光を受光す
ることにより、上記基準位置の基準方位例えば北位から
の角度α及びβを。
In addition, by mounting two laser receivers capable of receiving light in all directions on the vehicle that is attempting to measure one position and receiving the laser beam, the angles α and β from the reference direction of the reference position, for example, the north direction, can be measured. of.

360°/2″の精度で得ることができる。更に。It can be obtained with an accuracy of 360°/2″.

上記車両に方位計測装置(例えば磁石)を搭載し、これ
により上記2台のレーザ受光器を結ぶ方向が北位となす
角度θを得ることができ、これらα、β及びθの3つの
データから上記車両の位置を計算する。
The above vehicle is equipped with an azimuth measuring device (for example, a magnet), which makes it possible to obtain the angle θ between the north direction and the direction connecting the two laser receivers, and from these three data α, β, and θ. Calculate the position of the vehicle.

このようにしてこの発明によれば、1箇所の基準位置に
対し複数台の車両の位置計測が可能になるものであり、
またレーザ受光器はレーザ光を受光できればよく、従来
技術のように受光器の幾何学的構造には依存しないで高
精度の車両の位置計測が可能となるものである。
In this way, according to the present invention, it is possible to measure the positions of multiple vehicles with respect to one reference position,
Further, the laser receiver only needs to be able to receive laser light, and it is possible to measure the position of the vehicle with high precision without depending on the geometrical structure of the receiver as in the prior art.

(実施例) 以下図面に基づいてこの発明の実施例について説明する
(Example) Examples of the present invention will be described below based on the drawings.

第4図はレーザ発光装置40の一具体例の概略図であり
2脚45を有する筺体44にはモータ43によって定速
回転されるターンテーブル42を介して、レーザ発光器
41が回転可能なように枢着される。Oはレーザ発光器
41の回転中心線を示す。
FIG. 4 is a schematic diagram of a specific example of a laser emitting device 40. A laser emitting device 41 is rotatably mounted on a housing 44 having two legs 45 via a turntable 42 rotated at a constant speed by a motor 43. It is pivoted to. O indicates the rotation center line of the laser emitter 41.

またレーザ発光器41はレーザ光変調器(図示していな
い)を内蔵している。このレーザ発光装置40は、腓4
5の長さを調節することによりレーザ発光器41の回転
中心線Oが垂直になるように地上に設置され゛るので1
回転するレーザ光線は一つの水平面を形成することにな
る。
Further, the laser emitter 41 has a built-in laser light modulator (not shown). This laser emitting device 40 is
By adjusting the length of 5, the laser emitter 41 can be installed on the ground so that its rotational center line O is vertical.
The rotating laser beam will form one horizontal plane.

第2図は上記レーザ光変調器内蔵レーザ発光器41から
発光される変調レーザ光に方位情報をのせる方法の一具
体例の説明図である。図において上方のN方向は北位を
示し、N方向から左回りに360度を2″等分(以下に
おいては2111等分の場合について説明する)シ、そ
れぞれの等分角について、N方向から始めて左回りに1
0ビツトの2進数で表現する。例えばO度〜360/ 
216度の範囲は(0000000000) 、  3
60/2IO度〜2 X 360/ 2 ”度の範囲は
(0000000001)となり、以下同様にしてN方
向からの角度が10ビツトの2進数と対応することにな
る。従ってそれぞれの等分角の範囲は360/ 210
度#Q、352度となり、この0.352度の精度でレ
ーザ光に方位角情報を与えることができるものである。
FIG. 2 is an explanatory diagram of a specific example of a method for adding azimuth information to the modulated laser light emitted from the laser light modulator built-in laser emitter 41. In the figure, the upper N direction indicates north, and 360 degrees counterclockwise from the N direction is divided into 2" equal parts (the case of 2111 equal parts will be explained below). For each equal division angle, from the N direction Starting counterclockwise 1
Expressed as a 0-bit binary number. For example, O degrees ~ 360/
The range of 216 degrees is (0000000000), 3
The range from 60/2IO degrees to 2 x 360/2'' degrees is (0000000001), and in the same way, the angle from the N direction corresponds to a 10-bit binary number.Therefore, the range of each equidistant angle is is 360/210
degree #Q, 352 degrees, and it is possible to give azimuth information to the laser beam with an accuracy of 0.352 degrees.

第3図はレーザ光変調器内蔵レーザ発光器41から発光
される変調レーザ光に与えられるパルス信号及び発光レ
ーザ光のタイムチャート(時刻表)の−具体例であって
、横軸はいずれも時間を示す。図において(1)は上記
変調器の一部分を成す水晶発振器からのクロックパルス
を示し。
FIG. 3 is a concrete example of a time chart (timetable) of the pulse signal and the emitted laser light given to the modulated laser light emitted from the laser light emitter 41 with a built-in laser light modulator, and the horizontal axis is the time in both cases. shows. In the figure, (1) shows a clock pulse from a crystal oscillator forming a part of the modulator.

(2)はレーザ発光部に与えられるスタートパルスで、
このスタートパルス間にはさまれるクロックパルス(1
)の個数は、この具体例では10箇である(スタートパ
ルスと重畳するクロックパルスは除外して勘定する)。
(2) is the start pulse given to the laser emitting part,
The clock pulse (1
) is 10 in this specific example (clock pulses that overlap with the start pulse are excluded from the count).

(3)は第2図で説明した。(3) was explained in FIG.

方位角に対応する10ビツトの2進数を表わすパルスで
あり、この例では(1010010001) 、すなわ
ち北位から左回りに(657〜658) x 360/
1024度= (230,977〜231.328)度
の角度を表現するものである。(4)は発光される変調
レーザ光であって。
It is a pulse representing a 10-bit binary number corresponding to the azimuth angle, in this example (1010010001), that is, (657 to 658) x 360/counterclockwise from north.
This represents an angle of 1024 degrees = (230,977 to 231.328) degrees. (4) is a modulated laser beam that is emitted.

(3)の方位情報を演算するパルス位置を規定するため
に、(3)の方位情報パルスに(2)のスタートパルス
を合成した変調レーザ光を示すものである。
In order to define the pulse position for calculating the azimuth information in (3), a modulated laser beam is shown in which the azimuth information pulse in (3) is combined with the start pulse in (2).

第5図は、レーザ受光装置50の一具体例の概略図であ
る。図においてレーザ受光部51は9例えばアモルファ
スシリコンから成る受光素子を板状に形成して正n角柱
(n≧3)に構成したものであり1図では正3角柱に構
成したものを示す。このレーザ受光部51は全方向受光
可能な形状であれば良いので、正n角柱の他に円筒形状
でも良いことは言うまでもない。このレーザ受光部51
を構成する受光面は、レーザ受光装置50が車両に搭載
されたときに該車両の傾斜、地面の凹凸に関係なく、常
に垂直になるように。
FIG. 5 is a schematic diagram of a specific example of the laser light receiving device 50. In the figure, the laser light receiving section 51 is constructed by forming nine light receiving elements made of, for example, amorphous silicon into a plate shape into a regular n-prismatic prism (n≧3), and FIG. 1 shows a regular triangular prism. Since this laser light receiving section 51 may have any shape as long as it can receive light in all directions, it goes without saying that it may have a cylindrical shape in addition to a regular n-prism. This laser light receiving section 51
The light-receiving surface constituting the laser light-receiving device 50 is always vertical when mounted on a vehicle, regardless of the inclination of the vehicle or the unevenness of the ground.

姿勢制御装置52に載置される。It is placed on the attitude control device 52.

第1図はこの発明の車両位置計算方法の説明図である。FIG. 1 is an explanatory diagram of the vehicle position calculation method of the present invention.

図においてOは地上の基準となる地点に設置されたレー
ザ発光装置40の位置を示し。
In the figure, O indicates the position of the laser emitting device 40 installed at a reference point on the ground.

第4図のOに対応する。Pl及びP2はそれぞれ1位置
を計測しようとする車両上に設置された2台のレーザ受
光装置50の位置を示し、第5図のレーザ受光部51の
正3角柱の軸中心に対応する。第1図において0点を原
点とし北位をy軸とする直角座標軸を0−xyとし、P
+Pzの長さをり、P、P2の中点をp、、op、の長
さをRとし、線分OP、、OP2.OPO及びP、P2
がy軸となす角度をそれぞれα、β、ψ及びθとすれば
2次式が成り立つ。
Corresponds to O in FIG. Pl and P2 each indicate the positions of the two laser light receiving devices 50 installed on the vehicle whose position is to be measured, and correspond to the axial center of the regular triangular prism of the laser light receiving section 51 in FIG. 5. In Figure 1, the rectangular coordinate axis with the 0 point as the origin and the north position as the y axis is 0-xy, and P
+Pz is the length, the midpoint of P and P2 is p, the length of op is R, and the line segments OP, OP2. OPO and P, P2
A quadratic equation holds true if the angles formed by x with the y-axis are α, β, ψ, and θ, respectively.

但しく5)式において、RはLに比して非常に大きいと
した。
However, in formula 5), R is much larger than L.

(4)式及び(5)式より20点の座標x、  yは次
式で求められる。すなわち (4)式及び(5)式においてLは既知であり1 α及
びβは第2図及び第3図で説明した方法で求められ、ま
たθは車両に搭載した方位計測装置(例えば磁石)によ
り求めることができるので。
From equations (4) and (5), the coordinates x and y of the 20 points can be calculated using the following equations. That is, in equations (4) and (5), L is known, 1 α and β are obtained by the method explained in Figs. Since it can be found by

R及びψが計算でき、(6)式で車両の位置X及びyを
求めることができるものである。
R and ψ can be calculated, and the positions X and y of the vehicle can be determined using equation (6).

第6図はこの発明を土木作業現場に適用した一具体例の
概要説明図である。図において61及び62はいずれも
土木作業中の建設車両、 63.64゜65及び66は
いずれも第5図で説明したレーザ受光装置50であって
、いずれも地上の位置計測の基準となる地点に設置され
たレーザ発光装置40からのレーザ光を受光する。67
及び68はそれぞれ建設車両61及び62に搭載された
無線機であって2作業現場管理事務所70内に設置され
た車両位置管理装置71に接続された無線機69との間
で通信連絡をするようになっている。
FIG. 6 is a schematic explanatory diagram of a specific example in which the present invention is applied to a civil engineering work site. In the figure, 61 and 62 are both construction vehicles undergoing civil engineering work, 63.64° 65 and 66 are the laser receivers 50 explained in FIG. 5, and both are points that serve as reference points for position measurement on the ground. receives laser light from a laser emitting device 40 installed at 67
and 68 are radios mounted on construction vehicles 61 and 62, respectively, and communicate with a radio 69 connected to a vehicle position management device 71 installed in the second work site management office 70. It looks like this.

第7図は1例として第6図の建設車両61の位置計測を
する場合の一具体例のブロック図であって、レーザ受光
器63及び64ならびに方位計測装置72でそれぞれ得
られたα、β及びθ(第1図参照)に関する測定値が車
載CPU73で演算されて車両位置P0の座標X及びy
(第1図参照)になり、無線機67から無線機69を介
して車両位置管理装置71へ入るように成っている。
FIG. 7 is a block diagram of a specific example of measuring the position of the construction vehicle 61 shown in FIG. and θ (see Fig. 1) are calculated by the on-vehicle CPU 73 to determine the coordinates X and y of the vehicle position P0.
(See FIG. 1), and is configured to enter the vehicle position management device 71 from the radio device 67 via the radio device 69.

(発明の効果) この発明は上述のようにして成るので、建設車両が稼働
する土木作業現場のように、(a)車両の走路が頻繁に
変り、(b)車両の走路面が不整地。
(Effects of the Invention) Since the present invention is constructed as described above, it is possible to avoid problems such as at a civil engineering work site where construction vehicles operate (a) where the vehicle travels frequently, and (b) where the vehicle travels on an uneven surface.

という悪条件のもとでも、1箇所の基準点にレーザ発光
装置を設置するだけで、2台のレーザ受光装置を搭載し
た複数台の車両の位置計測が容易かつ安価に可能になる
。更に、1箇所の作業現場管理事務所において、広範囲
にわたる複数台の作業車両の位置を把握できるので、適
切な作業指示を出すことができて1作業の大幅な能率向
上及び安全確保が可能となり、更には作業の無人化も期
待できるというすぐれた効果を奏するものである。
Even under such adverse conditions, simply installing a laser emitting device at one reference point makes it possible to easily and inexpensively measure the positions of multiple vehicles equipped with two laser receiving devices. Furthermore, since a single work site management office can grasp the location of multiple work vehicles over a wide area, it is possible to issue appropriate work instructions, greatly improving efficiency and ensuring safety for each work. Furthermore, it has the excellent effect of allowing unmanned work to be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の車両位置計算方法の説明図、第2図
はレーザ光に方位情報をのせる一具体例の説明図、第3
図はレーザ光に与えられるパルス信号及び発光レーザ光
のタイムチャートの一具体例の説明図、第4図はレーザ
発光装置の一具体例の概略図、第5図はレーザ受光装置
の一具体例の概略図、第6図は土木作業現場における一
具体例の概要説明図、第7図は第6図における建設車両
61の位置計測をする場合の一具体例のブロック図、第
8図(a)及び(b)はそれぞれ従来技術の位置計測方
法のうちの自由径路方法の円弧方法及び双曲線方法の説
明図である。 40・・・レーザ発光装置、50・・・レーザ受光装置
。 72・・・方位計測装置、O・・・基準位置及びレーザ
発光装置40の囮転中心線、P+、Pz・・・車載のレ
ーザ受光装置50の位置。 特許出願人 株式会社小松製作所 代理人 (弁理士)松 澤  統 第4図 第5図
FIG. 1 is an explanatory diagram of the vehicle position calculation method of the present invention, FIG. 2 is an explanatory diagram of a specific example of adding azimuth information to a laser beam, and FIG.
The figure is an explanatory diagram of a specific example of a pulse signal given to a laser beam and a time chart of the emitted laser beam, FIG. 4 is a schematic diagram of a specific example of a laser emitting device, and FIG. 5 is a specific example of a laser light receiving device. 6 is a schematic diagram of a specific example at a civil engineering work site, FIG. 7 is a block diagram of a specific example of measuring the position of the construction vehicle 61 in FIG. 6, and FIG. ) and (b) are explanatory diagrams of the circular arc method and the hyperbolic method, respectively, of the free path method among the position measuring methods of the prior art. 40... Laser light emitting device, 50... Laser light receiving device. 72... Orientation measuring device, O... Reference position and decoy center line of the laser emitting device 40, P+, Pz... Position of the vehicle-mounted laser light receiving device 50. Patent applicant Komatsu Ltd. Agent (patent attorney) Osamu Matsuzawa Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 限定領域内の所定の基準位置において、水平面内で定速
回転し、かつ方位情報によってパルス変調をかけられた
レーザ光線を発光し、位置計測しようとする車両上の所
定の位置に置かれた2台の全方向受光可能なレーザ受光
装置により、前記レーザ光線を受光することにより、上
記車両に関する2個の方位情報を得、及び上記車両に車
載した方位計測装置により得られる上記2台のレーザ受
光装置を結ぶ方向の情報を得て、上記基準位置に対する
上記車両の位置を計測することを特徴とする車両の位置
計測方法。
At a predetermined reference position within a limited area, the laser beam rotates at a constant speed in a horizontal plane and emits a laser beam that is pulse-modulated based on azimuth information, and is placed at a predetermined position on the vehicle whose position is to be measured. By receiving the laser beam with a laser light receiving device on the stand capable of receiving light in all directions, two pieces of azimuth information regarding the vehicle are obtained, and the two laser beams are received by a azimuth measuring device mounted on the vehicle. A method for measuring the position of a vehicle, characterized in that information on a direction in which devices are connected is obtained, and the position of the vehicle relative to the reference position is measured.
JP2887486A 1986-02-14 1986-02-14 Position measuring method for vehicle Pending JPS62187270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2887486A JPS62187270A (en) 1986-02-14 1986-02-14 Position measuring method for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2887486A JPS62187270A (en) 1986-02-14 1986-02-14 Position measuring method for vehicle

Publications (1)

Publication Number Publication Date
JPS62187270A true JPS62187270A (en) 1987-08-15

Family

ID=12260525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2887486A Pending JPS62187270A (en) 1986-02-14 1986-02-14 Position measuring method for vehicle

Country Status (1)

Country Link
JP (1) JPS62187270A (en)

Similar Documents

Publication Publication Date Title
AU2005321244B2 (en) Method and rotating laser for determining an item of position information of at least one object
McGillem et al. Infra-red location system for navigation of autonomous vehicles
CN102436260B (en) Indoor self-positioning and self-directing two-dimensional navigation system
CN104697489A (en) Plane normal azimuth angle measuring device and method and application thereof
JPS62187271A (en) Position measuring method for vehicle
JPS62187270A (en) Position measuring method for vehicle
JPS62226073A (en) Measuring method for three-dimensional position of vehicle
JPH11271043A (en) Position measuring device for mobile body
JPH0444961B2 (en)
JPH07122666B2 (en) Vehicle three-dimensional position measurement method
JPH0721537B2 (en) Vehicle three-dimensional position measuring device
CN204575052U (en) A kind of plane normal azimuth measuring device
JPS62174675A (en) Position measurement system for vehicle
JPS62179676A (en) System for measuring three-dimensional position of vehicle
JPS62165171A (en) Measuring system for position of vehicle
JPS62172279A (en) System for measuring position of vehicle
JPS62251682A (en) Simple range finding method
JP2842675B2 (en) Moving object distance measuring device
JPH03223687A (en) Method and apparatus for measuring position
JPS60203808A (en) Automatic measuring instrument
JPH0345769B2 (en)
JP2688955B2 (en) Survey method using laser
JPS62172280A (en) Apparatus for detecting position of vehicle
JPS62195577A (en) Position measuring method for vehicle
JPS62148870A (en) Measuring method for position of moving body