JPS62187271A - Position measuring method for vehicle - Google Patents

Position measuring method for vehicle

Info

Publication number
JPS62187271A
JPS62187271A JP2887586A JP2887586A JPS62187271A JP S62187271 A JPS62187271 A JP S62187271A JP 2887586 A JP2887586 A JP 2887586A JP 2887586 A JP2887586 A JP 2887586A JP S62187271 A JPS62187271 A JP S62187271A
Authority
JP
Japan
Prior art keywords
laser light
vehicle
vehicles
positions
azimuth information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2887586A
Other languages
Japanese (ja)
Inventor
Yasuhiko Ichimura
市村 泰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2887586A priority Critical patent/JPS62187271A/en
Publication of JPS62187271A publication Critical patent/JPS62187271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To measure the positions of plural vehicles based upon two reference positions with high accuracy by transmitting azimuth information along with laser light emitted by laser light emitting devices placed at the two reference positions and rotating them in a horizontal plane at a constant speed. CONSTITUTION:The laser light emitting devices 65 and 66 rotate in the horizontal plane at the constant speed at the two reference positions in such a limited area that the direction of a line connecting the two reference position faces in a reference direction, e.g. north, and also emit laser beams which are pulse- modulated with the azimuth information. Then, laser light receivers 63 and 64 which are mounted at prescribed positions on the vehicles 61 and 62 whose positioned are to be measured receive the laser light beams to obtain two pieces of azimuth information on the vehicles 61 and 62. The positions of the vehicles are computed by position arithmetic units mounted on the vehicles from the pieces of azimuth information and obtained position coordinates are sent from radio communication equipments 67 and 68 to a vehicle position controller 71.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は車両位置の計測方法に係り、特に車両の走行
路が頻繁に変り、かつ路面が整地でない土木作業現場に
おける建設車両の位置計測に用いて好適なものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a method for measuring the position of a vehicle, and is particularly suitable for measuring the position of a construction vehicle at a civil engineering work site where the vehicle travel path changes frequently and the road surface is not leveled. It is suitable for use.

(従来の技術) 従来の走行車両の位置計測方式は次のように分類される
。すなわち (A)走行車両が外部の支援施設を利用して位置を検出
する方法。
(Prior Art) Conventional position measurement methods for running vehicles are classified as follows. That is, (A) a method in which a traveling vehicle detects its position using an external support facility.

(A)−(1)固定径路方法・・・・・・走行車両の走
路に埋設したケーブルまたは走路面上に固定した光学テ
ープにより走行車両を誘導、あるいは走路に沿って放射
されるレーザビームにより走行車両を誘導する方法。
(A)-(1) Fixed route method...Guiding the vehicle by a cable buried in the running track or optical tape fixed on the running track, or by a laser beam emitted along the running track. A method of guiding a moving vehicle.

(A) −(2)半固定径路方法・旧・・走行車両の走
路面上に置いたマークを利用して走行車両を誘導する方
法。
(A) - (2) Semi-fixed route method (old): A method of guiding vehicles using marks placed on the road surface of the vehicle.

(A)−(3)自由径路方法・旧・・外部支援施設の基
準点から走行車両に至る方角及び距離を計測しながら、
自由な径路を誘導する方式であって、計測手段としては
電波、レーザまたは超音波が用いられ、計測方法として
は次の2方式がある。すなわち (A) =(3)−(i)円弧方法・・・・・・第8図
(a)においてa及びbは地上の2基準点であり、pは
位置計測の対象である走行車両の位置である。
(A)-(3) Free route method - Old method: While measuring the direction and distance from the reference point of the external support facility to the traveling vehicle,
It is a method of guiding a free path, and uses radio waves, lasers, or ultrasonic waves as the measuring means, and there are the following two methods of measuring. That is, (A) = (3) - (i) Arc method...In Figure 8 (a), a and b are two reference points on the ground, and p is the point of the moving vehicle whose position is being measured. It's the location.

−例として電波を用いた場合について説明する。- As an example, a case using radio waves will be explained.

p点から電波を送信し、a点及びb点で受信し。Radio waves are transmitted from point P and received at points A and B.

受信と同時に返信しこれをp点で受信すれば。If you reply at the same time as receiving and receive this at point p.

電波がpa間及びpb間を往復する時間を測定すること
により、p点の位置が決定されるものである。
The position of point p is determined by measuring the time taken for the radio waves to travel back and forth between pa and pb.

(A) −(3)   (ii)双曲線方法・・・・・
・第8図(blにおいて、a、b及びCは地上の3基準
点であり、pは位置計測の対象である走行車両の位置で
ある。−例として電波を用いた場合について説明する。
(A) - (3) (ii) Hyperbolic method...
- Fig. 8 (In BL, a, b, and C are three reference points on the ground, and p is the position of the traveling vehicle that is the object of position measurement.) - As an example, the case where radio waves are used will be explained.

a点及びb点で同時刻T0に電波を送信し、p点におい
て時刻T、及びTbに受信したとすれば、■を電波の伝
播速度として次式が成り立つ。
If radio waves are transmitted at points a and b at the same time T0 and received at point p at times T and Tb, the following equation holds true, where ■ is the propagation speed of the radio waves.

pa間の距離 L 、 = V (T 、  T O)
 −・−fllpb間の距離 L b = V (T 
b  T a) −・・(2)故に   Lll Lb
=V(T−Tb)−−−−−・(3)(3)式によりT
、−T、を測定すればり、−L。
Distance between pa L, = V (T, T O)
−・−fllpb distance L b = V (T
b T a) -...(2) Therefore Lll Lb
=V(T-Tb)--(3) According to formula (3), T
, -T, and then -L.

が計算できる。そして2定点からの距離の差が一定であ
る点の軌跡は、その2定点を焦点とする双曲線であるこ
とから、p点はa点及びb点を焦点とする一つの双曲線
(第8図(b)の5abp)上に在ることになる。a点
及びC点についても同様の測定を行なえば、p点はa点
及びC点を焦点とする双曲線(第8図(b)のS、cp
)上に在ることになり、p点の位置は双曲線5abp及
びS acpの交点として決定される。(但し、2つの
双曲線の交点は2点あるが、測定者が推定位置に近い一
点を選択すれば良い。) (B)外部支援施設を用いず走行車両の車輪の回転、及
び走行車両に搭載したジャイロによって、走行車両が独
自に自立して距離と方向を計測する方法 (発明が解決しようとする問題点) 建設車両が稼働する土木作業現場では、(a)建設車両
の走路が頻繁に変る。(b)建設車両の走路面が整地で
ない、という悪条件があり、上記(従来の技術)で述べ
た位置計測方法のうち。
can be calculated. Since the locus of a point whose distance from two fixed points is constant is a hyperbola with the two fixed points as focal points, point p is one hyperbola with focal points at points a and b (see Figure 8). 5abp) of b). If similar measurements are made for points a and C, point p will be a hyperbola with focal points at points a and C (S, cp in Figure 8(b)).
), and the position of point p is determined as the intersection of the hyperbolas 5abp and Sacp. (However, there are two points of intersection between the two hyperbolas, but the measurer only has to select one point that is close to the estimated position.) (B) Rotation of the wheels of the traveling vehicle without using external support facilities and mounting on the traveling vehicle A method for a traveling vehicle to independently measure distance and direction using a gyro (problem to be solved by the invention) At a civil engineering work site where construction vehicles are operated, (a) the route of the construction vehicle changes frequently; . (b) Among the position measurement methods described above (prior art), there is an adverse condition that the road surface for construction vehicles is not leveled.

(A)−(1)固定径路方法及び(A)−(2)半固定
径路方法は、前記(a)建設車両の走路が頻繁に変ると
いう条件により使えない。また、上記(B)外部支援施
設を用いず、走行車両の自立による位置計測方法は、誤
差が累積されるので、前記(bl建設車両の走路面が整
地でないという条件から、土木作業現場への適用は非常
に困難である。
The (A)-(1) fixed route method and the (A)-(2) semi-fixed route method cannot be used due to the condition that the route of the construction vehicle (a) changes frequently. In addition, in the above (B) position measurement method in which the traveling vehicle stands alone without using external support facilities, errors accumulate, so it is difficult to reach the civil engineering work site due to the condition that the road surface for construction vehicles is not leveled. Application is very difficult.

土木作業現場で実用可能なのは、上記(従来の技術)で
述べた位置計測方法のうちの(A)−(3)自由径路方
法であるが、計測手段のうち従来の電波を用いた方式の
ものは船舶用など長距離かつ大規模なものには適するが
、高価であり、測位精度もあまり良くない。また、計測
方法については次の問題点がある。
Of the position measurement methods described above (prior technology), the free path method (A)-(3) is practical at civil engineering work sites, but among the measurement methods, conventional methods using radio waves are Although it is suitable for long-distance and large-scale applications such as ships, it is expensive and its positioning accuracy is not very good. Additionally, there are the following problems with the measurement method.

(A)   (3)−(i)円弧方法は、2基準点に対
し、建設車両1台の測位しか行なえない。
(A) (3)-(i) The arc method can only perform positioning of one construction vehicle with respect to two reference points.

(A)   (3)   (ii)双曲線方法は複数台
の建設車両の測位が可能であるが、3基準点を必要とし
、かつ基準点相互間(第8図(b)のa点とb点及びa
点とC点)で同期をとる必要があり複雑かつ高価になる
という問題点を有するものである。
(A) (3) (ii) The hyperbolic method is capable of positioning multiple construction vehicles, but it requires three reference points and between the reference points (points a and b in Figure 8(b)). and a
This method has the problem of being complicated and expensive because it requires synchronization at points (point C and point C).

また、レーザ光を利用して位置計測する方法は、レーザ
光を測位媒体として利用し、レーザ受光器の幾何学的構
造を利用して測位を行なうため、該レーザ受光器の機械
的精度に対する要求が非常にきびしく、実用性が困難で
あるという問題点がある。
In addition, the method of position measurement using laser light uses the laser light as a positioning medium and uses the geometric structure of the laser receiver to perform positioning, so there are requirements for the mechanical accuracy of the laser receiver. The problem is that the method is very strict and difficult to put into practical use.

(問題点を解決するための手段及び作用)この発明は上
記の点に鑑みなされたものであって、2箇所の基準位置
を結ぶ線の方向が基準方位例えば北位を向くような該2
箇所の基準位置に置かれたレーザ発光器から発するレー
ザ光に方位情報をのせて水平面内に定速回転させる。
(Means and effects for solving the problem) The present invention has been made in view of the above points, and the present invention has been made in view of the above-mentioned points.
A laser beam emitted from a laser emitter placed at a reference position is loaded with azimuth information and rotated at a constant speed in a horizontal plane.

該レーザ光にのせる方位情報は例えば360°を2′′
分割したnビットの2進数で表現したものである。
The azimuth information placed on the laser beam is, for example, 2'' for 360°.
It is expressed as a divided n-bit binary number.

また1位置計測をしようとする車両上に1台の全方向受
光可能なレーザ受光器を搭載して上記レーザ光を受光す
ることにより、上記2基準位置を結ぶ線の方向、この場
合は北位からの角度α及びβを、360°/2″の精度
で得ることができて、上記車両の位置を計算することが
できる。
In addition, by installing one laser receiver that can receive light in all directions on the vehicle that is attempting to measure one position and receiving the laser beam, it is possible to measure the direction of the line connecting the two reference positions, in this case north. The angles α and β from can be obtained with an accuracy of 360°/2″ and the position of the vehicle can be calculated.

このようにしてこの発明によれば、上記2箇所の基準位
置に対し複数台の車両の位置計測が可能になるものであ
り、またレーザ受光器はレーザ光を受光できればよく、
従来技術のように受光器の幾何学的構造には依存しない
で高精度の車両の位置計測が可能となるものである。
In this way, according to the present invention, it is possible to measure the positions of a plurality of vehicles with respect to the two reference positions, and the laser receiver only needs to be able to receive laser light.
Unlike the prior art, it is possible to measure the position of the vehicle with high precision without depending on the geometrical structure of the light receiver.

(実施例) 以下図面に基づいてこの発明の実施例について説明する
(Example) Examples of the present invention will be described below based on the drawings.

第4図はレーザ発光装置40の一具体例の概略図であり
2脚45を有する筐体44にはモータ43によって定速
回転されるターンテーブル42を介して、レーザ発光器
41が回転可能なように枢着さ五る。0はレーザ発光器
41の回転中心線を示す。
FIG. 4 is a schematic diagram of a specific example of a laser emitting device 40. A laser emitting device 41 is rotatable in a housing 44 having two legs 45 via a turntable 42 rotated at a constant speed by a motor 43. It's like a pivot point. 0 indicates the center line of rotation of the laser emitter 41.

またレーザ発光器41はレーザ光変調器(図示していな
い)を内蔵している。このレーザ発光装置40は9脚4
5の長さを調節することによりレーザ発光器41の回転
中心線Oが垂直になるように地上に設置されるので2回
転するレーザ光線は一つの水平面を形成することになる
Further, the laser emitter 41 has a built-in laser light modulator (not shown). This laser emitting device 40 has nine legs 4
By adjusting the length of the laser beam 5, the laser beam emitter 41 is installed on the ground so that its rotational center line O is vertical, so that the laser beam rotating twice forms one horizontal plane.

第2図は上記レーザ光度AI! !3内蔵レーザ発光器
41から発光される変調レーザ光に方位情報をのせる方
法の一具体例の説明図である。図において上方のN方向
は北位を示し、N方向から左回りに360度を211等
分(以下においては210等分の場合について説明する
)シ、それぞれの等分角について、N方向から始めて左
回りに10ビツトの2進数で表現する。例えばO度〜3
60/2I0度の範囲は(0000000000) 、
  360/2”度〜2 X 360/ 2 ”度の範
囲は(0000000001)となり、以下同様にして
N方向からの角度が10ビツトの2進数と対応すること
になる。従ってそれぞれの等分角の範囲は360/21
0度#0.352度となり、この0.352度の精度で
レーザ光に方位角情報を与えることができるものである
Figure 2 shows the above laser luminous intensity AI! ! 3 is an explanatory diagram of a specific example of a method of adding azimuth information to the modulated laser light emitted from the built-in laser emitter 41. FIG. In the figure, the upper N direction indicates north, and 360 degrees counterclockwise from the N direction is divided into 211 equal parts (the case of 210 equal parts will be explained below). For each equal division angle, start from the N direction. Expressed counterclockwise as a 10-bit binary number. For example, O degrees ~ 3
The range of 60/2I0 degrees is (0000000000),
The range from 360/2" degrees to 2 x 360/2" degrees is (0000000001), and in the same way, the angle from the N direction corresponds to a 10-bit binary number. Therefore, the range of each equal angle is 360/21
0 degrees #0.352 degrees, and azimuth information can be given to the laser beam with an accuracy of 0.352 degrees.

第3図はレーザ光変調器内蔵レーザ発光器41から発光
される変調レーザ光に与えられるパルス信号及び発光レ
ーザ光のタイムチャート(時刻表)の−具体例であって
、横軸はいずれも時間を示す。図において(1)は上記
変調器の一部分を成す水晶発振器からのクロックパルス
を示し。
FIG. 3 is a concrete example of a time chart (timetable) of the pulse signal and the emitted laser light given to the modulated laser light emitted from the laser light emitter 41 with a built-in laser light modulator, and the horizontal axis is the time in both cases. shows. In the figure, (1) shows a clock pulse from a crystal oscillator forming a part of the modulator.

(2)はレーザ発光部に与えられるスタートパルスで、
このスタートパルス間にはさまれるクロックパルス(1
)の個数は、この具体例では10箇である(スタートパ
ルスと重畳するクロックパルスは除外して勘定する)。
(2) is the start pulse given to the laser emitting part,
The clock pulse (1
) is 10 in this specific example (clock pulses that overlap with the start pulse are excluded from the count).

(3)は第2図で説明した。(3) was explained in FIG.

方位角に対応する10ビツトの2進数を表わすパルスで
あり、この例では(1010010001) 、すなわ
ち北位から左回りに(657〜658) X 360/
1024度= (230,977〜231.328)度
の角度を表現するものである。(4)は発光される変調
レーザ光であって。
It is a pulse representing a 10-bit binary number corresponding to the azimuth angle, in this example (1010010001), that is, (657 to 658) x 360/counterclockwise from north.
This represents an angle of 1024 degrees = (230,977 to 231.328) degrees. (4) is a modulated laser beam that is emitted.

(3)の方位情報を演算するパルス位置を規定するため
に、(3)の方位情報パルスに(2)のスタートパルス
を合成した変調レーザ光を示すものである。
In order to define the pulse position for calculating the azimuth information in (3), a modulated laser beam is shown in which the azimuth information pulse in (3) is combined with the start pulse in (2).

第5図は、レーザ受光装置50の一具体例の概略図であ
る。図においてレーザ受光部51は1例えばアモルファ
スシリコンから成る受光素子を板状に形成して正n角柱
(n≧3)に構成したものであり9図では正3角柱に構
成したものを示す。このレーザ受光部51は全方向受光
可能な形状であれば良いので、正n角柱の他に円筒形状
でも良いことは言うまでもない。このレーザ受光部51
を構成する受光面は、レーザ受光装置50が車両に搭載
されたときに該車両の傾斜、地面の凹凸に関係なく、常
に垂直になるように。
FIG. 5 is a schematic diagram of a specific example of the laser light receiving device 50. In the figure, the laser light receiving section 51 is constructed by forming a light receiving element made of, for example, amorphous silicon into a plate shape into a regular n-prismatic prism (n≧3), and FIG. 9 shows a regular triangular prism. Since this laser light receiving section 51 may have any shape as long as it can receive light in all directions, it goes without saying that it may have a cylindrical shape in addition to a regular n-prism. This laser light receiving section 51
The light-receiving surface constituting the laser light-receiving device 50 is always vertical when mounted on a vehicle, regardless of the inclination of the vehicle or the unevenness of the ground.

姿勢制御装置52に載置される。It is placed on the attitude control device 52.

第1図はこの発明の車両位置計算方法の説明図である。FIG. 1 is an explanatory diagram of the vehicle position calculation method of the present invention.

図において01及び02は地上の基準となる2つの地点
に設置されたレーザ発光装置40の位置を示し、第4図
のOに対応する。尚。
In the figure, 01 and 02 indicate the positions of the laser emitting device 40 installed at two reference points on the ground, and correspond to O in FIG. 4. still.

01と02を結ぶ線の方向は北位を向くようにOI及び
0!を設定する。Pは位置を計測しようとする車両上に
設置されたレーザ受光装置50の位置を示し、第5図の
レーザ受光部51の正3角柱の軸中心に対応する。第1
図において0,0□の長さをり、0.02の中点をAと
し、Aを原点とし北位をy軸とする直角座標軸をA−x
y。
The direction of the line connecting 01 and 02 is OI and 0! pointing north! Set. P indicates the position of the laser light receiving device 50 installed on the vehicle whose position is to be measured, and corresponds to the axial center of the regular triangular prism of the laser light receiving section 51 in FIG. 5. 1st
In the figure, measure the length of 0,0□, set the midpoint of 0.02 as A, and set the orthogonal coordinate axis A-x with A as the origin and north as the y-axis.
y.

APの長さをRとし、OlP、OzP及びAPがy軸と
なす角度をそれぞれα、β、及びθとすれば9次式が成
り立つ。
If the length of AP is R, and the angles that OlP, OzP, and AP make with the y-axis are α, β, and θ, respectively, a 9th-order equation holds true.

但しく4)式において、RはLに比して非常に大きいと
した。
However, in formula 4), R is much larger than L.

(4)式及び(5)式よりP点の座標x、  yは次式
で求められる。すなわち (4)式及び(5)弐においてLは既知であり、α及び
βは第2図及び第3図で説明した方法で求めることがで
きるので、θ及びRが計算でき、(6)式で車両の位置
x及びyを求めることができる。
From equations (4) and (5), the coordinates x and y of point P can be calculated using the following equations. That is, in equations (4) and (5) 2, L is known, and α and β can be obtained using the method explained in Figures 2 and 3, so θ and R can be calculated, and equation (6) The positions x and y of the vehicle can be determined by

第6図はこの発明を土木作業現場に適用した一具体例の
概要説明図である。図において61及び62はいずれも
土木作業中の建設車両、63及び64はいずれも第5図
で説明したレーザ受光装置50であって、いずれも地上
の位置計測の基準となる2つの地点に設置されたレーザ
発光装置65及び66からのレーザ光を受光する。尚、
レーザ発光装置65及び66の設置される地点は、第1
図におけるOl及び02に対応するものである。
FIG. 6 is a schematic explanatory diagram of a specific example in which the present invention is applied to a civil engineering work site. In the figure, 61 and 62 are both construction vehicles undergoing civil engineering work, and 63 and 64 are the laser receivers 50 explained in FIG. 5, both of which are installed at two points that serve as references for position measurement on the ground. The laser beams from the laser emitting devices 65 and 66 are received. still,
The laser emitting devices 65 and 66 are installed at the first point.
This corresponds to Ol and 02 in the figure.

67及び68はそれぞれ建設車両61及び62に搭載さ
れた無線通信装置であって1作業現場管理事務所70内
に設置された車両位置管理装置71に接続された無線通
信装置69との間で通信連絡をするようになっている。
67 and 68 are wireless communication devices mounted on construction vehicles 61 and 62, respectively, and communicate with a wireless communication device 69 connected to a vehicle position management device 71 installed in one work site management office 70. I am supposed to contact you.

第7図は1例として第6図の建設車両61の位置計測を
する場合の一具体例のブロック図であって、レーザ受光
装置63で得られたα、及びβ(第1図参照)に関する
測定値が車載の位置演算装置72でで計算されて車両位
置Pの座標X及びy(第1図参照)になり、無線通信装
置67から無線通信装置69を介して車両位置管理装置
71へ入るようになっている。
FIG. 7 is a block diagram of a specific example of measuring the position of the construction vehicle 61 shown in FIG. The measured value is calculated by the on-vehicle position calculation device 72 to become the coordinates X and y of the vehicle position P (see FIG. 1), and is input to the vehicle position management device 71 from the wireless communication device 67 via the wireless communication device 69. It looks like this.

(発明の効果) この発明は上述のようにして成るので、建設車両が稼働
する土木作業現場のように、(a)車両の走路が頻繁に
変り、(b)車両の走路面が不整地。
(Effects of the Invention) Since the present invention is constructed as described above, it is possible to avoid problems such as at a civil engineering work site where construction vehicles operate (a) where the vehicle travels frequently, and (b) where the vehicle travels on an uneven surface.

という悪条件のもとでも、2箇所の基準点にレーザ発光
装置を設置するだけで、レーザ受光装置を搭載した複数
台の車両の位置計測が容易かつ安価に可能になる。更に
、1箇所の作業現場管理事務所において、広範囲にわた
る複数台の作業車両の位置を把握できるので、適切な作
業指示を出すことができて1作業の大幅な能率向上及び
安全確保が可能となり、更には作業の無人化も期待でき
るというすぐれた効果を奏するものである。
Even under these adverse conditions, simply installing laser emitting devices at two reference points makes it possible to easily and inexpensively measure the positions of a plurality of vehicles equipped with laser light receiving devices. Furthermore, since a single work site management office can grasp the location of multiple work vehicles over a wide area, it is possible to issue appropriate work instructions, greatly improving efficiency and ensuring safety for each work. Furthermore, it has the excellent effect of allowing unmanned work to be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の車両位置計算方法の説明図、第2図
はレーザ光に方位情報をのせる一具体例の説明図、第3
図はレーザ光に与えられるパルス信号及び発光レーザ光
のタイムチャートの一具体例の説明図、第4図はレーザ
発光装置の一具体例の概略図、第5図はレーザ受光装置
の一具体例の概略図、第6図は土木作業現場における一
具体例の概要説明図、第7図は第6図における建設車両
61の位置計測をする場合の一具体例のブロック図、第
8図(a)及び(b)はそれぞれ従来技術の位置計測方
法のうちの自由径路方法の円弧方法及び双曲線方法の説
明図である。 40・・・レーザ発光装置、 50・・・レーザ受光装
置。 ol、0□・・・基準位置におかれたレーザ発光装置4
0の回転中心線、P・・・車載のレーザ受光装置50の
位置。
FIG. 1 is an explanatory diagram of the vehicle position calculation method of the present invention, FIG. 2 is an explanatory diagram of a specific example of adding azimuth information to laser light, and FIG.
The figure is an explanatory diagram of a specific example of a pulse signal given to a laser beam and a time chart of the emitted laser beam, FIG. 4 is a schematic diagram of a specific example of a laser emitting device, and FIG. 5 is a specific example of a laser light receiving device. , FIG. 6 is a schematic explanatory diagram of a specific example at a civil engineering work site, FIG. 7 is a block diagram of a specific example of measuring the position of the construction vehicle 61 in FIG. 6, and FIG. ) and (b) are explanatory diagrams of the circular arc method and the hyperbolic method, respectively, of the free path method among the position measuring methods of the prior art. 40... Laser light emitting device, 50... Laser light receiving device. ol, 0□... Laser emitting device 4 placed at the reference position
0 rotation center line, P... position of the vehicle-mounted laser light receiving device 50.

Claims (1)

【特許請求の範囲】[Claims] 限定領域内の2箇所の基準位置において、水平面内で定
速回転し、かつ方位情報によってパルス変調をかけられ
たレーザ光線を発光し、位置計測しようとする車両上の
所定の位置に置かれた全方向受光可能なレーザ受光装置
により、前記レーザ光線を受光することにより、上記車
両に関する2個の方位情報を得て、上記2箇所の基準位
置に対する上記車両の位置を計測することを特徴とする
車両の位置計測方法。
At two reference positions within a limited area, it rotates at a constant speed in a horizontal plane and emits a laser beam that is pulse-modulated based on azimuth information, and is placed at a predetermined position on the vehicle whose position is to be measured. By receiving the laser beam with a laser light receiving device capable of receiving light in all directions, two pieces of azimuth information regarding the vehicle are obtained, and the position of the vehicle with respect to the two reference positions is measured. Vehicle position measurement method.
JP2887586A 1986-02-14 1986-02-14 Position measuring method for vehicle Pending JPS62187271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2887586A JPS62187271A (en) 1986-02-14 1986-02-14 Position measuring method for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2887586A JPS62187271A (en) 1986-02-14 1986-02-14 Position measuring method for vehicle

Publications (1)

Publication Number Publication Date
JPS62187271A true JPS62187271A (en) 1987-08-15

Family

ID=12260555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2887586A Pending JPS62187271A (en) 1986-02-14 1986-02-14 Position measuring method for vehicle

Country Status (1)

Country Link
JP (1) JPS62187271A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151496A (en) * 2015-02-18 2016-08-22 ローム株式会社 Position detection device, electric apparatus using the same, and position detection method
WO2017171964A1 (en) * 2016-03-31 2017-10-05 Topcon Positioning Systems, Inc. Three dimensional laser measuring system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151496A (en) * 2015-02-18 2016-08-22 ローム株式会社 Position detection device, electric apparatus using the same, and position detection method
WO2017171964A1 (en) * 2016-03-31 2017-10-05 Topcon Positioning Systems, Inc. Three dimensional laser measuring system and method
US10145671B2 (en) 2016-03-31 2018-12-04 Topcon Positioning Systems, Inc. Three dimensional laser measuring system and method

Similar Documents

Publication Publication Date Title
US7110092B2 (en) Measuring device and measuring method for determining distance and/or position
US7610687B2 (en) Method and rotating laser for determining an item of attitude information of at least one object
McGillem et al. Infra-red location system for navigation of autonomous vehicles
CN102436260B (en) Indoor self-positioning and self-directing two-dimensional navigation system
CN104697489A (en) Plane normal azimuth angle measuring device and method and application thereof
CN104697488A (en) Plane normal azimuth angle measuring method and application thereof
JPS62187271A (en) Position measuring method for vehicle
JP4172882B2 (en) Method and equipment for detecting position of moving object
CN108427116A (en) A kind of position reference net node working method and device
JPS62187270A (en) Position measuring method for vehicle
JPS62226073A (en) Measuring method for three-dimensional position of vehicle
JPS62179675A (en) System for measuring three-dimensional position of vehicle
JPS62226074A (en) Measuring method for three-dimensional position of vehicle
JPS62165171A (en) Measuring system for position of vehicle
CN204575052U (en) A kind of plane normal azimuth measuring device
JP2000234929A (en) Interconnecting automatic position/attitude measuring system
JPS62179676A (en) System for measuring three-dimensional position of vehicle
JPS62174675A (en) Position measurement system for vehicle
JPS62172279A (en) System for measuring position of vehicle
JPH04309809A (en) Inside tunnel measuring method in tunnel excavation work
JPS62148870A (en) Measuring method for position of moving body
JPS62251682A (en) Simple range finding method
JPS62172282A (en) Apparatus for detecting position of vehicle
JPS62172280A (en) Apparatus for detecting position of vehicle
JP2688955B2 (en) Survey method using laser