JPS62179675A - System for measuring three-dimensional position of vehicle - Google Patents

System for measuring three-dimensional position of vehicle

Info

Publication number
JPS62179675A
JPS62179675A JP2008786A JP2008786A JPS62179675A JP S62179675 A JPS62179675 A JP S62179675A JP 2008786 A JP2008786 A JP 2008786A JP 2008786 A JP2008786 A JP 2008786A JP S62179675 A JPS62179675 A JP S62179675A
Authority
JP
Japan
Prior art keywords
vehicle
laser
laser beam
pulse
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008786A
Other languages
Japanese (ja)
Other versions
JPH07122666B2 (en
Inventor
Shoichi Sakanishi
坂西 昇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP61020087A priority Critical patent/JPH07122666B2/en
Publication of JPS62179675A publication Critical patent/JPS62179675A/en
Publication of JPH07122666B2 publication Critical patent/JPH07122666B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the position of a vehicle, by a method wherein a non-directional pulse transmitter and a laser beam emitter rotating at a constant speed in synchronous relation to said transmitter are arranged at reference positions of two places so as to be set at the same height above the ground and laser beam is received at the almost center on the surface of the square pillar shaped laser beam receiver which is arranged on the vehicle and of which an axis is always kept vertical. CONSTITUTION:Laser beam emits a pulse when it turns to north. When times required in drawing receiving laser beam wave forms after the reception of the pulse are set to ta1, ta2 and the time up to the reception of the next pulse to Ta, a y-axis is directed to north and azimuth angles alpha, beta at positions A, B can be calculated. If the azimuth angles alpha, beta are known, the coordinates x, y of a vehicle position P can be calculated. The coordinates (z) of a point P is set to the center h0 of a beam receiving part in a height direction and laser beams from points A, B having the same height from the ground are regulated by the posture control apparatus of a beam receiver to calculate z=h0+h. By this constitution, the positions of a plurality of construction vehicles frequency changing a running road and present on the spot of an unlevelled area are measured to enable the allocation of vehicles.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は車両位置の計測方式に係り、特に車両の走行
路が頻繁に変り、かつ路面が整地でない土木作業現場に
おける建設車両の位置計測に用いて好適なものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for measuring the position of a vehicle, and is particularly suitable for measuring the position of a construction vehicle at a civil engineering work site where the vehicle travel path changes frequently and the road surface is not leveled. It is suitable for use.

(従来の技術) 従来の走行車両の位置計測方法は次のように分類される
。すなわち (A)走行車両が外部の支援施設を利用して位置を検出
する方式。
(Prior Art) Conventional methods for measuring the position of a running vehicle are classified as follows. That is, (A) a method in which a traveling vehicle detects its position using an external support facility.

(A)−(1)固定径路方式・・・・・・走行車両の走
路に埋設したケーブルまたは走路面上に固定した光学テ
ープにより走行車両を誘導、あるいは走路に沿って放射
されるレーザビームにより走行車両を誘導する方式。
(A)-(1) Fixed route method: Guides the vehicle using a cable buried in the running track or an optical tape fixed on the running track, or by a laser beam emitted along the running track. A method of guiding moving vehicles.

(A)−(2)半固定径路方式・・・・・・走行車両の
走路面上に置いたマークを利用して走行車両を誘導する
方式。
(A)-(2) Semi-fixed route method: A method in which the vehicle is guided using marks placed on the road surface of the vehicle.

(A)−(3)自由径路方式・・・・・・外部支援施設
の基準点から走行車両に至る方角及び距離を計測しなが
ら、自由な径路を誘導する方式であって、計測手段とし
ては電波、レーザまたは超音波が用いられ、計測方式と
しては次の2方式がある。すなわち (A)−(3)−<i)円弧方式・・・・・・第8図(
a)においてa及びbは地上の2基準点であり、pは位
置計測の対象である走行車両の位置である。
(A)-(3) Free route method: A method that guides a free route while measuring the direction and distance from the reference point of an external support facility to the traveling vehicle. Radio waves, lasers, or ultrasonic waves are used, and there are the following two measurement methods. In other words, (A)-(3)-<i) Arc method...Figure 8 (
In a), a and b are two reference points on the ground, and p is the position of the vehicle whose position is to be measured.

−例として電波を用いた場合について説明する。- As an example, a case using radio waves will be explained.

p点から電波を送信し、a点及びb点で受信し。Radio waves are transmitted from point P and received at points A and B.

受信と同時に返信しこれをp点で受信すれば。If you reply at the same time as receiving and receive this at point p.

電波がpa間及びpb間を往復する時間を測定すること
により、p点の位置が決定されるものである。
The position of point p is determined by measuring the time taken for the radio waves to travel back and forth between pa and pb.

(A) −(3)   (ii)双曲線方式・・・・・
・第8図(b)において、a、b及びCは地上の3基準
点であり、pは位置計測の対象である走行車両の位置で
ある。−例として電波を用いた場合について説明する。
(A) - (3) (ii) Hyperbolic method...
- In FIG. 8(b), a, b, and C are three reference points on the ground, and p is the position of the vehicle whose position is to be measured. - As an example, a case using radio waves will be explained.

a点及びb点で同時刻T0に電波を送信し、p点におい
て時刻T、及びTbに受信したとすれば、■を電波の伝
播速度として次式が成り立つ。
If radio waves are transmitted at points a and b at the same time T0 and received at point p at times T and Tb, the following equation holds true, where ■ is the propagation speed of the radio waves.

pa間の距離 L、=V(T、To)−−−−−11)
pb間の距離 Lb=V(T、−T、)・−・−・・(
2)故に   L、−Lb=V(T、−Tb) −・・
(3)(3)式によりT、−T、を測定すればり、−L
Distance between pa L, = V (T, To)---11)
Distance between pb Lb=V(T, -T,)・−・−・・(
2) Therefore, L, -Lb=V(T, -Tb) -...
(3) If we measure T, -T, using equation (3), -L
.

が計算できる。そして2定点からの距離の差が一定であ
る点の軌跡は、その2定点を焦点とする双曲線であるこ
とから、p点はa点及びb点を焦点とする一つの双曲線
(第8図(b)の5abp)上に在ることになる。a点
及びC点についても同様の測定を行なえば、p点はa点
及びC点を焦点とする双曲線(第8図(b)の811)
上に在ることになり、p点の位置は双曲線S ahp及
びS acpの交点として決定される。(但し、2つの
双曲線の交点は2点あるが、測定者が推定位置に近い一
点を選択すれば良い。) (B)外部支援施設を用いず走行車両の車輪の回転、及
び走行車両に搭載したジャイロによって、走行車両が独
自に自立して距離と方向を計測する方式 (発明が解決しようとする問題点) 建設車両が稼働する土木作業現場では、(a)建設車両
の走路が頻繁に変る9(b)建設車両の走路面が整地で
ない、という悪条件があり、上記(従来の技術)で述べ
た位置計測方式のうち。
can be calculated. Since the locus of a point whose distance from two fixed points is constant is a hyperbola with the two fixed points as focal points, point p is one hyperbola with focal points at points a and b (see Figure 8). 5abp) of b). If similar measurements are made for points a and C, point p will be a hyperbola with focal points at points a and C (811 in Figure 8(b)).
The position of point p is determined as the intersection of the hyperbolas S ahp and S acp. (However, there are two points of intersection between the two hyperbolas, but the measurer only has to select one point that is close to the estimated position.) (B) Rotation of the wheels of the traveling vehicle without using external support facilities and mounting on the traveling vehicle A system in which a traveling vehicle independently measures distance and direction using a gyro (problem to be solved by the invention) At a civil engineering work site where construction vehicles are operated, (a) the route of the construction vehicle changes frequently; 9(b) Among the position measurement methods described above (prior art), there is an adverse condition that the road surface for construction vehicles is not leveled.

(A)−(1)固定径路方式及び(A)−(2)半固定
径路方式は、前記(a)建設車両の走路が頻繁に変ると
いう条件により使えない。また、上記(B)外部支援施
設を用いず、走行車両の自立による位置計測方式、は、
誤差が累積されるので、前記(b)建設車両の走路面が
整地でないという条件から、土木作業現場への適用は非
常に困難である。
The (A)-(1) fixed route method and the (A)-(2) semi-fixed route method cannot be used due to the condition (a) that the route of the construction vehicle changes frequently. In addition, the above (B) position measurement method in which the running vehicle is independent without using external support facilities,
Since the errors are accumulated, it is very difficult to apply this method to civil engineering work sites due to the condition (b) that the road surface for construction vehicles is not leveled.

土木作業現場で実用可能なのは、上記(従来の技術)で
述べた位−置針測方式のうちの(A)−(3)自由径路
方式であるが、計測手段のうち従来の電波を用いた方式
のものは船舶用など長距離かつ大規模なものには適する
が、高価であり、測位精度もあまり良くない。また、計
測方式については次の問題点がある。
Of the position needle measurement methods mentioned above (prior technology), the free path method (A)-(3) is practical at civil engineering work sites, but among the measurement methods, the conventional method using radio waves is This type is suitable for long-distance and large-scale applications such as ships, but it is expensive and its positioning accuracy is not very good. Additionally, there are the following problems with the measurement method.

(A) −(3)−(i)円弧方式は、2基準点に対し
、建設車両1台の測位しか行なえない。
(A) - (3) - (i) The arc method can only perform positioning of one construction vehicle with respect to two reference points.

(A) −(3) −(ii)双曲線方式は複数台の建
設車両の測位が可能であるが、3基準点を必要とし、か
つ基準点相互間(第8図(b)のa点とb点及びa点と
C点)で同期をとる必要があり複雑かつ高価になるとい
う問題点を有するものである。
(A) - (3) - (ii) The hyperbolic method is capable of positioning multiple construction vehicles, but it requires three reference points, and between the reference points (point a in Figure 8(b) and This method has the problem of being complicated and expensive because it requires synchronization at point b, point a, and point C).

更に高さ方向の位置を計測するには別の測定手段が必要
であり、全体の構成が複雑になるという問題点もある。
Furthermore, another problem is that another measuring means is required to measure the position in the height direction, making the overall configuration complicated.

(問題点を解決するための手段及び作用)地上の基準と
なる2箇所の地点に、無指向性のパルス信号を発信する
無線発信器と、該パルス信号に同期して定速回転するレ
ーザ発光器を。
(Means and effects for solving the problem) A wireless transmitter that transmits omnidirectional pulse signals to two reference points on the ground, and a laser that emits light that rotates at a constant speed in synchronization with the pulse signals. A vessel.

該2箇所からのレーザ光の地上からの高さが同一になる
ように設置する。このようにして2例えばレーザ光が北
位を向いたときにパルス信号を発信すれば、レーザ光に
北位からの角度情+aを付与したことになる。
The two locations are installed so that the heights of the laser beams from the ground are the same. In this way, for example, if a pulse signal is transmitted when the laser beam is directed north, the angle information +a from the north is imparted to the laser beam.

位置を計測しようとする車両上の見通°しのきく位置に
、全方向性1例えば正多角柱面の受光面を持つレーザ受
光器を設置し、該受光面は車両の傾斜によらず常に垂直
になるように、かつレーザ光の受光位置は、受光面のほ
ぼ中央の高さになるように、姿勢制御装置を介してレー
ザ受光器を該車両上に設置する。
A laser receiver with an omnidirectional 1, for example, a regular polygonal prism light-receiving surface is installed in a clear line-of-sight position on the vehicle whose position is to be measured, and the light-receiving surface is always fixed regardless of the vehicle's inclination. A laser receiver is installed on the vehicle via an attitude control device so that it is vertical and the laser light receiving position is at a height approximately at the center of the light receiving surface.

このようにして、車載のレーザ受光器が受光する2本の
レーザ光線から、2箇の方位角データを得ることができ
、これと2箇所のレーザ発光器の距離とから該車両の位
置を決定することができる。また、該レーザ受光器が載
置させる姿勢制御装置の脚長を測定することにより、該
車両の高さを決定することができる。
In this way, two azimuth angle data can be obtained from the two laser beams received by the on-vehicle laser receiver, and the position of the vehicle can be determined from this and the distances between the two laser emitters. can do. Furthermore, the height of the vehicle can be determined by measuring the leg length of the attitude control device on which the laser receiver is placed.

以上のようにしてこの発明では2箇所の基準点に対し、
複数台の移動車両の3次元の位置を計測できるものであ
る。
As described above, in this invention, for two reference points,
It is capable of measuring the three-dimensional positions of multiple moving vehicles.

(実施例) 以下図面に基づいてこの発明の実施例について説明する
(Example) Examples of the present invention will be described below based on the drawings.

第2図はレーザ発光装置20の一具体例の概略図であり
2脚25を有する筺体24には、モータ23によって定
速回転されるターンテーブル22を介して、レーザ発光
器21が回転可能なように枢着される。0はレーザ発光
器21の回転中心線を示す。28は近接スイッチで、レ
ーザ発光器21から発するレーザ光が基準方位例えば北
位を向いたとき、近接スイッチ28がONになるように
設定し、そのとき無指向性送信機26に対してパルス送
信トリガを与えるように成っている。27は近接スイッ
チ28と無指向性送信器26を連結する電気ケーブルで
ある。尚、2箇所の基準位置に設定される2台のレーザ
発光装置から発せられるレーザ光及びパルス信号は、そ
れぞれ弁別できるように周波数9位相、波長9強度を変
えておく。また、該2台のレーザ発光装置20の脚25
を調節して、レーザ発光器21の回転中心線Oがそれぞ
れ垂直になるように、かつ、2本のレーザ光線の地上か
らの高さが同一になるように、2台のレーザ発光装置2
0を地上に設置する。
FIG. 2 is a schematic diagram of a specific example of a laser emitting device 20. A laser emitting device 21 is rotatable in a housing 24 having two legs 25 via a turntable 22 rotated at a constant speed by a motor 23. It is pivoted like this. 0 indicates the rotation center line of the laser emitter 21. Reference numeral 28 denotes a proximity switch, which is set so that when the laser beam emitted from the laser emitter 21 faces a reference direction, for example north, the proximity switch 28 is turned on, and at that time it transmits a pulse to the omnidirectional transmitter 26. It is designed to give a trigger. 27 is an electric cable connecting the proximity switch 28 and the omnidirectional transmitter 26. Incidentally, the laser beams and pulse signals emitted from the two laser emitting devices set at two reference positions are changed in frequency (9) phase and wavelength (9) intensity so that they can be discriminated from each other. In addition, the legs 25 of the two laser emitting devices 20
The two laser emitting devices 2 are adjusted so that the rotation center lines O of the laser emitting devices 21 are perpendicular to each other and the heights of the two laser beams from the ground are the same.
0 on the ground.

第3図はレーザ受光装置30の一具体例の概略図である
0図においてレーザ受光部31は1例えばアモルファス
シリコンから成る受光素子を板状に形成して正n角柱(
n≧3)に構成したものであり9図では正3角柱に構成
したものを示す。このレーザ受光部31を構成する受光
面は。
FIG. 3 is a schematic diagram of a specific example of a laser light receiving device 30. In FIG.
n≧3), and FIG. 9 shows a regular triangular prism structure. The light-receiving surface of this laser light-receiving section 31 is as follows.

姿勢制御装!32により、レーザ受光装置30が車両に
搭載されたときに該車両の傾斜、地面の凹凸に関係なく
常に垂直になるように構成されている。
Attitude control device! 32, when the laser light receiving device 30 is mounted on a vehicle, it is configured to always be vertical regardless of the inclination of the vehicle or the unevenness of the ground.

第1図はこの発明の車両位置計算方式の説明図である。FIG. 1 is an explanatory diagram of a vehicle position calculation method according to the present invention.

図においてA及びBは、地上の基準となる2箇所の地点
に設置されたレーザ発光装置20の位置を示し、それぞ
れ第2図のOに対応する。Pは位置を計測しようとする
車両上に設置されたレーザ受光装置30の位置を示し、
第3図のレーザ受光部31の正3角柱の軸中心に対応す
る。第1図において、A点を原点とする直角座標軸をA
−xyとし、X軸の負の方向を北位とし9図のように符
号り、α及びβを定めれば。
In the figure, A and B indicate the positions of the laser emitting device 20 installed at two reference points on the ground, and each corresponds to O in FIG. 2. P indicates the position of the laser light receiving device 30 installed on the vehicle whose position is to be measured;
This corresponds to the axial center of the regular triangular prism of the laser light receiving section 31 in FIG. In Figure 1, the rectangular coordinate axis with the origin at point A is
-xy, the negative direction of the X axis is north, the sign is as shown in Figure 9, and α and β are determined.

P点の座標x、yは次式で求められる。The coordinates x and y of point P are determined by the following equation.

L           AP sin  (π−(π−α)−β   sinβ故に。L AP sin (π-(π-α)-β because sin β.

x=AP1cos(g−a) y=τ丁中5in(π−α) 第4図は第1図のA点及びB点からのレーザ光及びパル
ス信号をP点で受けた時刻から、α及びβを計測する方
法の一興体例の説明図である。第4図(a)はA点から
のレーザ光及びパルス信号をP点で受けた時刻を横軸に
とり、レーザ光及びパルス信号の電気的波形を縦軸にと
っている。今、パルス信号を受信してから、受光レーザ
波形の立上り及び立下りまであ時間をそれぞれtll+
及びtmtとし9次のパルス信号を受信するまでの時間
をT、とすれば、第2図で説明したようにT1はA点に
おけるレーザ発光器の回転周期であり、また、この実施
例ではレーザ光が北位に発光されるときに、パルス信号
が発信される。
x = AP1 cos (g-a) y = τ 5 in (π-α) Figure 4 shows α and FIG. 3 is an explanatory diagram of an example of a method for measuring β. In FIG. 4(a), the horizontal axis represents the time when the laser beam and pulse signal from point A are received at point P, and the vertical axis represents the electrical waveforms of the laser beam and pulse signal. Now, the time from receiving the pulse signal to the rise and fall of the received laser waveform is tll +
and tmt, and the time taken to receive the 9th pulse signal is T. As explained in FIG. 2, T1 is the rotation period of the laser emitter at point A, and in this embodiment, the laser When the light is emitted to the north, a pulse signal is emitted.

第4図(b)はB点からのレーザ光及びパルス信号をP
点で受けたものであり+  tbl+  ’bZ及びT
、はそれぞれ第4図+a)のL II+  ta2及び
T。
Figure 4(b) shows the laser beam and pulse signal from point B at P
+ tbl + 'bZ and T
, respectively, are L II+ ta2 and T in FIG. 4+a).

に対応する。corresponds to

以上述べたことにより第1図における方位角α及びβは
次式で求められる。
Based on the above description, the azimuth angles α and β in FIG. 1 can be obtained using the following equations.

従って、P点の座標X及びyは、上記α及びβの値を、
(4)式及び(5)式に入れて求められる。
Therefore, the coordinates X and y of point P are the values of α and β above,
It can be found by putting it into equations (4) and (5).

P点の高さ方向座標値2は9次のようにして求める。す
なわち、あらかじめ、レーザ受光部(第3図の31)の
高さ方向の中央位置をhoに設定しておき、A点及びB
点からの2本の発光レーザ光は、第2図で説明したよう
に地上からの高さが同一であり、P点においては受光レ
ーザをレーザ受光部の高さ方向の中心で受けるように、
姿勢制御装置(第3図の32)の脚長を調節するのでそ
の脚長の変化量をh(詳説すれば姿勢制御装置の4本の
脚の長さの調節量の平均値)とすれば。
The height direction coordinate value 2 of point P is obtained in the 9th order. That is, the center position in the height direction of the laser light receiving part (31 in Fig. 3) is set to ho in advance, and points A and B are set in advance.
The two emitted laser beams from the point are at the same height from the ground as explained in FIG.
Since the leg length of the posture control device (32 in FIG. 3) is adjusted, let the amount of change in the leg length be h (more specifically, the average value of the length adjustment amounts of the four legs of the posture control device).

z=h、+h  −・−m−−−−・・−・・−・−・
−・・−・−・−・−・(8)で求められる。
z=h, +h −・−m−−−−・・−・・−・−・
−・・−・−・−・−・It is obtained by (8).

第5図はこの発明の受光レーザ演算処理ブロック図の一
具体例である。レーザ受光点へ入ったレーザ光は受光素
子により電流に変換され。
FIG. 5 is a specific example of a block diagram of a light-receiving laser arithmetic processing according to the present invention. The laser light that enters the laser light receiving point is converted into electric current by the light receiving element.

レーザ受光部31の上部(H)及び下部(L)の長さに
対応した電流値となってそれぞれ″電流電圧変換器51
及び52へ入り、それぞれ対応した電圧値に変換されて
BPF(バンドパスフィルタ)53、54.55及び5
6へ入る。53及び55はA点からのレーザ光を処理す
るBPFであり、54及び56はB点からのレーザ光を
処理するBPFを示す。
The current values correspond to the lengths of the upper part (H) and lower part (L) of the laser light receiving section 31, respectively, and the "current-voltage converter 51"
and 52, and are converted into corresponding voltage values and sent to BPFs (band pass filters) 53, 54.55 and 5.
Enter 6. 53 and 55 are BPFs that process the laser beam from point A, and 54 and 56 are BPFs that process the laser beam from point B.

尚、付記すれば、前記第2図の説明で述べたように、A
点及びB点から発せられるレーザ光及びパルス信号は、
それぞれ弁別できるように成っているので前記4箇のB
PFへはそれぞれ弁別された電圧のみが入ってゆくよう
に成っている。BPFを出た電圧はそれぞれ電流回路5
7゜58、59.60及びLPF(ローパスフィルタ)
61゜62、63.64で必要な電気的処理をされ、電
圧値vHa+  Vllb+  VLan  V Lb
が得られる。
Additionally, as mentioned in the explanation of Fig. 2 above, A
The laser beam and pulse signal emitted from point and point B are
The above four B items are designed to be able to be distinguished from each other.
Only the differentiated voltages enter the PF. The voltages output from the BPF are respectively connected to the current circuit 5.
7°58, 59.60 and LPF (low pass filter)
The necessary electrical processing is performed at 61°62, 63.64, and the voltage value vHa+ Vllb+ VLan V Lb
is obtained.

第6図はこの発明の土木作業現場における一具体例の概
要説明図である。図において71及び72はいずれも土
木作業中の建設車両、73及び74はいずれも第2図で
説明したレーザ発光装置で。
FIG. 6 is a schematic explanatory diagram of a specific example of the present invention at a civil engineering work site. In the figure, 71 and 72 are both construction vehicles undergoing civil engineering work, and 73 and 74 are the laser emitting devices explained in FIG. 2.

地上の位置計測の基準となる2地点に設置され。It is installed at two points that serve as the reference for position measurement on the ground.

かつ2本の発光レーザの地上高が同一になるようにそれ
ぞれの脚長を調節して設置される。75及び76はいず
れも第2図で説明した無指向性送信機である。77及び
7日はいずれも第3図で説明したレーザ受光装置であり
、79及び80はいずれも無線機であって、送信機75
及び76からのパルス発信を受信、並びに作業現場管理
事務所81内に設置された車両位置管理装置82と結ば
れた無線機83との間で1通信連絡をするように成って
いる。車両管理装置82において1例えば建設車両71
の位置読み出しを完了したら1次に建設車両72の位置
読み出しを実施する。
In addition, the two light emitting lasers are installed with their respective leg lengths adjusted so that their heights above the ground are the same. Both 75 and 76 are the omnidirectional transmitters described in FIG. 77 and 7 are both the laser receivers explained in FIG. 3, and 79 and 80 are both radio devices, and the transmitter 75
and 76, and communicates with a radio device 83 connected to a vehicle position management device 82 installed in a work site management office 81. In the vehicle management device 82, for example, the construction vehicle 71
When the position reading of the construction vehicle 72 is completed, the position reading of the construction vehicle 72 is first carried out.

第7図は第6図における例えば建設車両71の位置計測
をする場合の一興体例のブロック図である。建設車両7
1が路面の傾斜、凹凸により傾斜すると、傾斜計91(
車両の前後方向用と左右方向用の2セツト)からの信号
が演算回路92を介して、姿勢制御装置32の作動部材
を作用させてレーザ受光部31の受光面を常に垂直に保
持するように成っている。これ以外の第7図記載の部分
は既に説明済か乃至は従来技術の組合せから成っている
ので説明は省略する。
FIG. 7 is a block diagram of an example of an integrated system for measuring the position of the construction vehicle 71 in FIG. 6, for example. construction vehicle 7
1 tilts due to the inclination or unevenness of the road surface, the inclinometer 91 (
Signals from two sets (one for the longitudinal direction and one for the lateral direction of the vehicle) are sent via the arithmetic circuit 92 to actuate the actuating member of the attitude control device 32 so that the light-receiving surface of the laser light-receiving section 31 is always maintained vertically. It has become. Since the other parts shown in FIG. 7 have already been explained or consist of a combination of conventional techniques, their explanation will be omitted.

(発明の効果) この発明は上述のようにして成るので、建設車両が稼働
する土木作業現場のように、(a)車両の走路が頻繁に
変り、(b)車両の走路面が不整地。
(Effects of the Invention) Since the present invention is constructed as described above, it is possible to avoid problems such as at a civil engineering work site where construction vehicles operate (a) where the vehicle travels frequently, and (b) where the vehicle travels on an uneven surface.

という悪条件のもとでも、2箇所の基準点にレーザ発光
装置を設置するだけで、レーザ受光装置を搭載した複数
台の走行車両の位置計測が容易かつ安価に可能になる。
Even under these adverse conditions, simply installing laser emitting devices at two reference points makes it possible to easily and inexpensively measure the positions of a plurality of vehicles equipped with laser light receiving devices.

更に作業車の高さ方向の情報は、特に土木作業における
整地面の平坦性に直接関係し9作業の進捗状況が把握で
きるので、配車作業の効率化が期待できる。更に。
Furthermore, the information in the height direction of the work vehicle is directly related to the flatness of the leveled surface especially in civil engineering work, and the progress status of the work can be grasped, so it can be expected to improve the efficiency of vehicle allocation work. Furthermore.

1箇所の作業現場管理事務所において、広範囲にわたる
複数台の作業車両の位置を把握できるので、適切な作業
指示を出すことができて1作業の大幅な能率向上及び安
全確保が可能となり。
Since a single work site management office can grasp the location of multiple work vehicles over a wide area, it is possible to issue appropriate work instructions, greatly improving the efficiency and ensuring safety of a single work.

更には作業の無人化も期待できるとい”うすぐれた効果
を奏するものである。
Furthermore, it is expected that the work will become unmanned, which is an excellent result.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の車両位置計算方式の説明図、第2図
はレーザ発光装置の一具体例の概略図、第3図はレーザ
受光装置の一興体例の概略図、第4図(a)及び(b)
は1位置を計測しようとする車両において、レーザ光及
びパルス信号の電気的波形と、受信時刻との関係を示す
説明図。 第5図は受光レーザ演算処理ブロック図の一具体例、第
6図はこの発明の土木作業現場における一具体例の概要
説明図、第7図は第6図における建設車両71の位置計
測をする場合の一具体例のブロック図、第8図(al及
び(blはそれぞれ従来技術の位置計測方式のうちの自
由径路方式の円弧方式及び双曲線方式の説明図である。 20・・・レーザ発光装置、21・・・レーザ発光器。 22・・・ターンテーブル、25・・・脚。 26・・・無指向性送信機、30・・・レーザ受光装置
。 31・・・レーザ受光部、32・・・姿勢制御装置。 特許出願人 株式会社小松製作所 代理人 (弁理士)松 澤  統 第1図 第2図 第 3 図 第 4 図(Q) 第 4  WJ(b) Q、壱、さ中ごと 填 8 図(0) 第 8 図(b)
Fig. 1 is an explanatory diagram of the vehicle position calculation method of the present invention, Fig. 2 is a schematic diagram of a specific example of a laser emitting device, Fig. 3 is a schematic diagram of an example of a laser receiving device, and Fig. 4 (a) and (b)
FIG. 2 is an explanatory diagram showing the relationship between the electrical waveforms of laser light and pulse signals and reception times in a vehicle that attempts to measure one position. FIG. 5 is a specific example of a light receiving laser calculation processing block diagram, FIG. 6 is a schematic explanatory diagram of a specific example of the present invention at a civil engineering work site, and FIG. 7 is a position measurement of the construction vehicle 71 in FIG. 6. FIG. 8 is a block diagram of a specific example of the case (al and (bl are explanatory diagrams of the arc method and hyperbolic method of the free path method, respectively, among the position measurement methods of the prior art. 20... Laser emitting device , 21... Laser emitter. 22... Turntable, 25... Legs. 26... Omnidirectional transmitter, 30... Laser receiver. 31... Laser receiver, 32... ...Attitude control device. Patent applicant Komatsu Ltd. Agent (patent attorney) Osamu Matsuzawa Figure 1 Figure 2 Figure 3 Figure 4 (Q) 4th WJ (b) Q, 1, Sachugoto Filling 8 Figure (0) Figure 8 (b)

Claims (1)

【特許請求の範囲】[Claims] 2箇所の基準位置に設置し、それぞれ、レーザ発光器と
、該レーザ光を水平面内に定速回転させる脚及びターン
テーブル、ならびに基準方位信号を発信する無指向性送
信機とより成るレーザ発光装置と;該レーザ発光装置か
らのレーザ光を全方向受光可能なように、多角柱面上に
レーザ受光板を貼着したレーザ受光部と、該レーザ受光
部を車両の姿勢に関係なく垂直に保ち、かつ該レーザ受
光部の地上からの高さを常に一定に保つ姿勢制御装置と
から成る車載のレーザ発光装置と;から成ることを特徴
とする車両の位置計測方式。
A laser emitting device installed at two reference positions, each consisting of a laser emitting device, legs and a turntable that rotate the laser beam at a constant speed in a horizontal plane, and an omnidirectional transmitter that transmits a reference azimuth signal. and; a laser light receiving part having a laser light receiving plate attached on a polygonal prism surface so that the laser light from the laser emitting device can be received in all directions, and the laser light receiving part is maintained vertically regardless of the posture of the vehicle. 1. A vehicle position measuring method comprising: an on-vehicle laser emitting device comprising: and an attitude control device that always keeps the height of the laser light receiving section from the ground constant.
JP61020087A 1986-02-03 1986-02-03 Vehicle three-dimensional position measurement method Expired - Lifetime JPH07122666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61020087A JPH07122666B2 (en) 1986-02-03 1986-02-03 Vehicle three-dimensional position measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61020087A JPH07122666B2 (en) 1986-02-03 1986-02-03 Vehicle three-dimensional position measurement method

Publications (2)

Publication Number Publication Date
JPS62179675A true JPS62179675A (en) 1987-08-06
JPH07122666B2 JPH07122666B2 (en) 1995-12-25

Family

ID=12017323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61020087A Expired - Lifetime JPH07122666B2 (en) 1986-02-03 1986-02-03 Vehicle three-dimensional position measurement method

Country Status (1)

Country Link
JP (1) JPH07122666B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989003049A1 (en) * 1987-09-30 1989-04-06 Kabushiki Kaisha Komatsu Seisakusho Position meter using laser beam
CN108828520A (en) * 2018-06-15 2018-11-16 深圳草莓创新技术有限公司 The indoor flying method and Related product of unmanned plane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067812A (en) * 1983-09-22 1985-04-18 Toshihiro Tsumura Inclination angle detecting system of moving body
JPS60122410A (en) * 1983-10-25 1985-06-29 ヨット・デ−−テヒノロギ−・ア−・ゲ− Self-measuring apparatus for position coordinate and directional angle for plane constraint type moving object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067812A (en) * 1983-09-22 1985-04-18 Toshihiro Tsumura Inclination angle detecting system of moving body
JPS60122410A (en) * 1983-10-25 1985-06-29 ヨット・デ−−テヒノロギ−・ア−・ゲ− Self-measuring apparatus for position coordinate and directional angle for plane constraint type moving object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989003049A1 (en) * 1987-09-30 1989-04-06 Kabushiki Kaisha Komatsu Seisakusho Position meter using laser beam
CN108828520A (en) * 2018-06-15 2018-11-16 深圳草莓创新技术有限公司 The indoor flying method and Related product of unmanned plane

Also Published As

Publication number Publication date
JPH07122666B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
CN105157697B (en) Indoor mobile robot pose measurement system and measurement method based on optoelectronic scanning
US7610687B2 (en) Method and rotating laser for determining an item of attitude information of at least one object
US7110092B2 (en) Measuring device and measuring method for determining distance and/or position
CA2703620C (en) Distance-measuring method for a device projecting a reference line, and such a device
US3680958A (en) Survey apparatus
CN102436260B (en) Indoor self-positioning and self-directing two-dimensional navigation system
JPS62179675A (en) System for measuring three-dimensional position of vehicle
CN111721262B (en) Automatic guiding method for total station tracking in field elevation measurement
JPS62226073A (en) Measuring method for three-dimensional position of vehicle
JPS62226074A (en) Measuring method for three-dimensional position of vehicle
JPS62187271A (en) Position measuring method for vehicle
JPS62179676A (en) System for measuring three-dimensional position of vehicle
JP2996521B2 (en) Shield surveying method
JPH02216393A (en) Aircraft docking guidance device
JPS62174675A (en) Position measurement system for vehicle
JPH04309809A (en) Inside tunnel measuring method in tunnel excavation work
JPS62187270A (en) Position measuring method for vehicle
JPS62172279A (en) System for measuring position of vehicle
JPS62165171A (en) Measuring system for position of vehicle
JPH0262007B2 (en)
JP2845647B2 (en) Automatic positioning of moving objects
JPS62254085A (en) Detection of position for moving object
JP2524535B2 (en) Position measuring method for shield excavator
JPS62159071A (en) Detecting method for position of moving body
JP2688955B2 (en) Survey method using laser