JPH04309809A - Inside tunnel measuring method in tunnel excavation work - Google Patents
Inside tunnel measuring method in tunnel excavation workInfo
- Publication number
- JPH04309809A JPH04309809A JP10051791A JP10051791A JPH04309809A JP H04309809 A JPH04309809 A JP H04309809A JP 10051791 A JP10051791 A JP 10051791A JP 10051791 A JP10051791 A JP 10051791A JP H04309809 A JPH04309809 A JP H04309809A
- Authority
- JP
- Japan
- Prior art keywords
- tunnel
- measuring
- measured
- measuring device
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 15
- 238000009412 basement excavation Methods 0.000 title claims description 12
- 238000005259 measurement Methods 0.000 abstract description 33
- 101100366942 Mus musculus Ston1 gene Proteins 0.000 abstract 1
- 230000000007 visual effect Effects 0.000 abstract 1
- 230000007246 mechanism Effects 0.000 description 7
- 230000005641 tunneling Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
Landscapes
- Excavating Of Shafts Or Tunnels (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は主としてシールドトンネ
ル掘進工事における坑内測量方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates primarily to a method for underground surveying in shield tunnel excavation work.
【0002】0002
【従来の技術】一般にシールド工法によるトンネル掘進
工事に伴う坑内測量としては、シールド掘進機の計画路
線からの変位量を把握するためのシールド掘進機位置(
平面及びレベル)・姿勢測量があり、そのためには、シ
ールド掘進にともない測点を順次移設するための測量及
び測量精度をあげるためにそれらの測点に狂いが生じて
いないかを確認するためのチェック測量等が必要になる
。[Prior Art] In general, underground surveys associated with tunnel excavation work using the shield method are conducted to determine the position of the shield machine (
Plane and level) and attitude surveys are carried out, and for this purpose, surveys are carried out to sequentially relocate survey points as shield excavation is carried out, and to confirm that there are no deviations in the survey points in order to improve survey accuracy. Check surveying etc. will be required.
【0003】これらの測量は、従来、測量員がトンネル
内に入り、トンネル端部の既知の基準点をもとに計測装
置位置を計測し、その計測位置を起点にして更に内方の
計測位置を順次計測し、トンネル中間位置の各点及び最
終端のシールド掘進機位置及びその姿勢を計測するよう
にしていた。Conventionally, in these surveys, a surveyor enters a tunnel, measures the position of a measuring device based on a known reference point at the end of the tunnel, and then uses that measurement position as a starting point to measure further inward. were sequentially measured, and the position and attitude of the shield excavator at each point in the middle of the tunnel and at the final end were measured.
【0004】また近年において、計測装置をトンネル坑
内の天井に各測点毎に固定し、無人にてシールド掘進機
の位置及び姿勢を計測する方法が開発されている。(特
開平2−171611号公報)。Furthermore, in recent years, a method has been developed in which a measuring device is fixed to the ceiling of a tunnel at each measuring point, and the position and attitude of a shield tunneling machine can be measured unmanned. (Unexamined Japanese Patent Publication No. 171611/1999).
【0005】[0005]
【発明が解決しようとする課題】上述した従来の測量員
による計測においては、現在、自動的に計測できる光学
式測量機器が使用可能であるが、その場合も測量員によ
る測量機器の盛り替え作業が必要であり、その盛り替え
作業にともない誤差が生じ、その誤差が累積される等の
問題があった。[Problems to be Solved by the Invention] Currently, optical surveying equipment that can automatically measure can be used for the conventional measurements by surveyors as described above, but even in that case, the surveyor has to replace the surveying equipment. However, there were problems such as errors occurring during the rearrangement work, and the errors being accumulated.
【0006】また、測点の移設やチェック測量について
は、いづれも自動的に測量できる装置はなく、トンネル
掘進距離が長くなると測量累積誤差が大きくなる上、測
量員の拘束時間が長くなる等の問題があった。[0006] Furthermore, with regard to the relocation of measuring points and check surveys, there is no equipment that can perform automatic surveying, and as the distance of tunnel excavation increases, the cumulative error in surveying increases, and the time required for surveyors to work becomes longer. There was a problem.
【0007】一方、前述した各測量点に計測装置を固設
する従来法の場合には、前述した作業員による測量法の
問題点が大幅に改善されるが、トンネルが長く、しかも
複雑に曲がりくねっている場合には中間測定点が多くな
り、高精度で高価な自動計測装置が多数必要になり、不
経済となるとともにトンネル掘進のための後方作業の邪
魔になり、損傷され易い等の問題があった。On the other hand, in the case of the conventional method in which a measuring device is fixedly installed at each survey point, the problems of the above-mentioned surveying method by workers are greatly improved, but the tunnel is long and complicatedly winding. In the case of a tunnel excavation, there are many intermediate measurement points, and a large number of high-precision and expensive automatic measuring devices are required, which is not only uneconomical but also obstructs the rear work for tunnel excavation and causes problems such as being easily damaged. there were.
【0008】本発明はこれらの問題にかんがみ、測量員
を置くことなく、少い計測装置にて複雑に曲がりくねっ
たトンネルの坑内測量を自動的に、かつ、高精度で行う
ことができるトンネル掘進工事における坑内測量方法の
提供を目的としたものである。[0008] In view of these problems, the present invention provides a tunnel excavation work that allows underground surveying of a complex winding tunnel to be carried out automatically and with high accuracy using a small number of measuring devices without the need for surveyors. The aim is to provide an underground surveying method for
【0009】[0009]
【課題を達成するための手段】上述の如き従来の問題を
解決し、所期の目的を達成するための本発明の要旨とす
るところは、トンネル内に二本の軌条を布設し、その各
軌条に自走式走行架台を介してそれぞれ別々の計測装置
を支持させ、該両計測装置のいずれか一方を既知の基準
点をもとに計測した後、両計測装置を交互にトンネル内
に進行させて位置計測済側の計測装置の位置をもとに未
計測側の計測装置の位置を順次計測し、トンネル掘進機
視準可能位置にて位置計測済側の計測装置によりトンネ
ル掘進機位置を計測することを特徴としてなるトンネル
掘進工事における坑内測量方法に存する。[Means for achieving the object] The gist of the present invention for solving the above-mentioned conventional problems and achieving the intended purpose is to install two rails in a tunnel, and to Separate measuring devices are supported on the rail via a self-propelled traveling frame, and after measuring one of the two measuring devices based on a known reference point, both measuring devices are alternately advanced into the tunnel. Then, based on the position of the measuring device on the side whose position has been measured, the position of the measuring device on the unmeasured side is sequentially measured, and at the position where the tunneling machine can be sighted, the position of the tunnel excavator is determined by the measuring device on the side whose position has been measured. It consists in an underground surveying method in tunnel excavation work, which is characterized by measurements.
【0010】0010
【作用】この坑内測量方法では、二条の軌条を、例えば
トンネルの天井に敷設し、これにそれぞれ自走式走行架
台を介して支持させた計測装置を交互に中間の測点に進
行させ、測点毎に既計測位置を基準にして未計測位置の
計測装置位置を計測するものであるため、測量の度に坑
内の測点位置が正確に割り出され、トンネルが経時的に
変形しても常に正確な測量がなされる。[Operation] In this underground surveying method, two rails are laid, for example, on the ceiling of a tunnel, and measuring devices supported by each rail via a self-propelled traveling frame are advanced alternately to an intermediate measurement point to make measurements. Since the measurement device position of unmeasured positions is measured for each point based on the measured position, the position of the measuring point inside the mine is accurately determined every time a survey is carried out, and even if the tunnel deforms over time, Accurate measurements are always taken.
【0011】[0011]
【実施例】次に本発明の実施例を図面について説明する
。Embodiments Next, embodiments of the present invention will be described with reference to the drawings.
【0012】図において、1A,1Bは本発明方法に使
用する計測装置を示している。この計測装置1A及び1
Bは図1〜図3に示すように、それぞれ自走式走行架台
2に支持されている。各架台2はトンネル3の天井部分
に平行配置に敷設した一対のラック式軌条4A,4Bに
歯車状の駆動輪5を介して吊持支持されている。車輪5
は電動式駆動機構6によって駆動されるようになってい
る。また架台2には軌条4A又は4Bの両側面を挾持す
るストッパー7,7が備えられ、任意の位置で軌条4A
又は4Bに対し固定できるようになっている。In the figure, 1A and 1B indicate measuring devices used in the method of the present invention. These measuring devices 1A and 1
As shown in FIGS. 1 to 3, B is supported by a self-propelled traveling frame 2, respectively. Each frame 2 is suspended and supported by a pair of rack-type rails 4A and 4B laid in parallel on the ceiling of the tunnel 3 via gear-shaped drive wheels 5. wheel 5
is adapted to be driven by an electric drive mechanism 6. The frame 2 is also equipped with stoppers 7, 7 that clamp both sides of the rail 4A or 4B.
Or it can be fixed to 4B.
【0013】計測装置1A,1Bは、発光計測部10と
受光計測部11とを有している。The measuring devices 1A and 1B have a light emission measurement section 10 and a light reception measurement section 11.
【0014】発光計測部10は、架台2に対して水平方
向の角度を任意に調整できる水平台13aと、水平台1
3aに対して水平方向の角度を任意に調整できる旋回台
13bからなる角度調整機構13に、トータルステーシ
ョン14を介してレーザー光発射器15及び光波測距儀
16を支持させて構成されている。また、トータルステ
ーション14には視準カメラ17が固定され、無線にて
映像信号を送信するようになっている。受光計測部11
は前述と同様の水平台18a及び旋回台18bからなる
角度調整機構18にレーザーターゲット20及び光波反
射プリズム21が支持されて構成されている。レーザー
ターゲット20はレーザービームがその前面に照射され
ることにより、その光軸の角度が三次元的に検出できる
ものであり、また光波反射プリズム21は光波測距儀よ
り発射された光波を入射角と平行に反射させるものであ
る。The luminescence measuring section 10 includes a horizontal table 13a whose horizontal angle can be arbitrarily adjusted with respect to the pedestal 2;
A laser beam emitter 15 and a light wave rangefinder 16 are supported via a total station 14 on an angle adjustment mechanism 13 consisting of a swivel base 13b that can arbitrarily adjust the angle in the horizontal direction with respect to 3a. Further, a collimating camera 17 is fixed to the total station 14 and transmits a video signal wirelessly. Light reception measuring section 11
A laser target 20 and a light wave reflecting prism 21 are supported by an angle adjustment mechanism 18 consisting of a horizontal table 18a and a rotating table 18b similar to those described above. The laser target 20 is capable of three-dimensionally detecting the angle of its optical axis by irradiating a laser beam onto its front surface, and the light wave reflecting prism 21 adjusts the incident angle of the light wave emitted from the light wave range finder. It reflects the light parallel to the
【0015】更に架台2にはバッテリーからなる電源2
2、無線信号伝送装置23及びコントローラー24が搭
載されており、架台2の駆動機構6、ストッパー7,7
、両角度調整機構13,18の動作のコントロール信号
及び測距儀17、レーザーターゲット20の計測データ
ー信号を送受信するようになっている。Furthermore, the pedestal 2 is equipped with a power source 2 consisting of a battery.
2. A wireless signal transmission device 23 and a controller 24 are installed, and a drive mechanism 6 of the pedestal 2 and stoppers 7, 7 are installed.
, control signals for the operations of both angle adjustment mechanisms 13 and 18, and measurement data signals for the rangefinder 17 and laser target 20 are transmitted and received.
【0016】また、トンネル掘進先端部のシールド掘進
機25(図1に示す)には、前述と同じレーザーターゲ
ット26及び光波反射プリズム27及び傾斜計28を備
えている。Further, the shield excavator 25 (shown in FIG. 1) at the tip of tunnel excavation is equipped with the same laser target 26, light wave reflecting prism 27, and inclinometer 28 as described above.
【0017】一方監視室には、図1に示すようにトンネ
ル内の前記各装置の動作部にコントロール信号を送ると
ともに、各計器類からの信号を受ける信号伝送装置30
A,30B,30C及び各種データを演算処理する演算
処理装置31、視準カメラ17からの映像を写し出す視
準モニタ32が備えられている。On the other hand, in the monitoring room, as shown in FIG. 1, there is a signal transmission device 30 that sends control signals to the operating parts of each of the devices in the tunnel and receives signals from each instrument.
A, 30B, 30C and an arithmetic processing unit 31 that processes various data, and a collimation monitor 32 that displays images from the collimation camera 17 are provided.
【0018】次に上述した装置による測量方法について
説明する。Next, a surveying method using the above-mentioned apparatus will be explained.
【0019】図4はシールド掘進機25により立坑35
からなるトンネル3を掘進した場合を示している。この
トンネル3内に立坑35より両計測装置1A,1Bを搬
入し、両軌条4A,4Bにそれぞれ走行可能に支持させ
る。この状態で一方の計測装置1Aを任意の位置の第1
の測点a1 まで送り込み、立坑35下に設置した2
点の測量基準点a,bを該計測装置1Aにて視準し、光
波測距儀16にて両点a,bまでの距離及び角度を計測
し、測点a1 における三次元座標(X,Y,Z)を
計測する。次いで計測装置1Bを次の任意の測点b1
まで移動させ、計測装置1Aより計測装置1Bのレー
ザーターゲット20及び光波反射プリズム21を視準し
て測点a1 を中心とした基準点a又はbから測点b
1 までの角度及び測点a1 ,b1 間の距離
から測点b1 の水平座標(X,Y)を計測するとと
もに計測装置1Bのレーザーターゲット20に照射され
るレーザービームの角度により測点b1 の垂直方向
座標(Z)を計測する。次いで計測装置1Aを次の任意
の測点a2 まで前進させ計測装置1Bから1Aを視
準し、同様にして測点a2 の三次元座標(X,Y,
Z)を計測する。FIG. 4 shows the shaft 35 being opened by the shield tunneling machine 25.
This shows the case where tunnel 3 consisting of Both measurement devices 1A and 1B are carried into this tunnel 3 through a shaft 35, and are supported on both rails 4A and 4B so that they can travel, respectively. In this state, move one measuring device 1A to the first measuring device at an arbitrary position.
2 was sent to measuring point a1 and installed under shaft 35.
The measuring device 1A is used to sight the measurement reference points a and b, and the light wave rangefinder 16 measures the distance and angle to both points a and b, and the three-dimensional coordinates (X, Y, Z). Next, move the measuring device 1B to the next arbitrary measurement point b1.
The laser target 20 and light wave reflecting prism 21 of the measuring device 1B are collimated from the measuring device 1A to the measuring point B from the reference point a or b centered on the measuring point a1.
1 and the distance between measurement points a1 and b1, and at the same time measure the horizontal coordinates (X, Y) of measurement point b1 from the angle of the laser beam irradiated to the laser target 20 of measurement device 1B. Measure the direction coordinate (Z). Next, the measuring device 1A is advanced to the next arbitrary measuring point a2, and the measuring device 1A is sighted from the measuring device 1B, and the three-dimensional coordinates (X, Y,
Measure Z).
【0020】このようにして先に三次元的位置を計測し
た測点から次の未計測測点を交互に順次計測し、シール
ド掘進機25のレーザーターゲット26及び光波反射プ
リズム27を視準する適当な位置の測点まで計測した後
、その測点bn (場合によってはan )からシ
ールド掘進機25を視準し、そのレーザーターゲット2
6及び光波反射プリズム27にレーザービーム及び光波
をそれぞれ照射してシールド掘進機25の三次元座標(
X,Y,Z)を計測するとともに、レーザーターゲット
26及び傾斜計28からの信号によりシールド掘進機2
5の軸心の向きを計測する。In this way, measurements are made alternately and sequentially from the measurement point whose three-dimensional position was previously measured to the next unmeasured measurement point, and the laser target 26 and the light wave reflecting prism 27 of the shield excavator 25 are collimated in an appropriate manner. After measuring up to a measurement point at a certain position, aim the shield excavator 25 from that measurement point bn (or an in some cases), and aim at the laser target 2.
6 and the light wave reflecting prism 27 respectively with a laser beam and a light wave to determine the three-dimensional coordinates of the shield excavator 25 (
X, Y, Z), and the shield excavator 2
Measure the direction of the axis of 5.
【0021】なお上述の実施例では、相手側の計測装置
の視準を視準カメラ及び視準モニタを使用して行ってい
るが、この他、視準カメラを使用せずに走行架台2の走
行距離を駆動輪5の回転数を計数することによって計測
し、これによって計測装置の概略位置を割り出し、トー
タルステーション及びレーザーターゲットの角度を調整
することとしてもよい。In the above-mentioned embodiment, the measuring device on the other side is collimated using the collimating camera and the collimating monitor. The distance traveled may be measured by counting the number of revolutions of the drive wheels 5, and the approximate position of the measuring device may be determined based on this, and the angles of the total station and the laser target may be adjusted.
【0022】[0022]
【発明の効果】上述したように本発明のトンネル掘進工
事における坑内測量方法によれば、二本の軌条をトンネ
ル内に敷設しておき、これに沿って一対の計測装置を交
互に前進させながら既知の測点から未計測の測点を順次
計測しつつ前進させ、最終的にシールド掘進機の三次元
座標を計測するようにしたことにより、計測の都度、中
間の各測点の位置を正確に計測することができるため、
トンネル内に経時的変形があっても常に正確な計測が可
能となるとともにトンネルの経時的変形をも計測するこ
とができる。また作業員が計測の都度坑内に立ち入らな
いで計量が可能になり、作業性が著しく向上される等の
効果がある。また精密で高価な計測装置は複雑に曲がり
くねったトンネルであっても2台のみしか必要でなく、
経済性が高いという効果がある。[Effects of the Invention] As described above, according to the underground surveying method for tunnel excavation work of the present invention, two rails are laid in the tunnel, and a pair of measuring devices are advanced alternately along the rails. By sequentially measuring from known measurement points to unmeasured measurement points and moving forward, and finally measuring the three-dimensional coordinates of the shield tunneling machine, the position of each intermediate measurement point can be accurately determined each time a measurement is made. Because it can be measured in
Even if there is deformation in the tunnel over time, accurate measurement is always possible, and the deformation of the tunnel over time can also be measured. In addition, it becomes possible for workers to perform measurements without entering the mine each time measurements are taken, which has the effect of significantly improving work efficiency. In addition, only two precise and expensive measuring devices are required even for complex winding tunnels.
It has the effect of being highly economical.
【図1】本発明方法に使用する装置の概略を示すフロー
チャートである。FIG. 1 is a flowchart schematically showing an apparatus used in the method of the present invention.
【図2】計測装置の正面図である。FIG. 2 is a front view of the measuring device.
【図3】同、側面図である。FIG. 3 is a side view of the same.
【図4】測量工程を示す平面図である。FIG. 4 is a plan view showing the surveying process.
1A,1B 計測装置
2 走行架台
3 トンネル
4A,4B 軌条
5 車輪
6 電動式駆動機構
7 ストッパー
10 発光計測部
11 受光計測部
13,18 角度調整機構
13a,18a 水平台
13b,18b 旋回台
14 トータルステーション
15 レーザー光発射器
16 光波測距儀
17 視準カメラ
20,26 レーザーターゲット
21,27 光波反射プリズム
22 電源
23,30A,30B,30C 信号伝送装置24
コントローラー
25 シールド掘進機
28 傾斜計
31 演算処理装置
32 視準モニタ
35 立坑1A, 1B Measuring device 2 Traveling frame 3 Tunnels 4A, 4B Rails 5 Wheels 6 Electric drive mechanism 7 Stopper 10 Light emission measurement section 11 Light reception measurement section 13, 18 Angle adjustment mechanism 13a, 18a Horizontal platform 13b, 18b Turning platform 14 Total station 15 Laser beam emitter 16 Light wave rangefinder 17 Sighting camera 20, 26 Laser target 21, 27 Light wave reflecting prism 22 Power source 23, 30A, 30B, 30C Signal transmission device 24
Controller 25 Shield tunneling machine 28 Inclinometer 31 Arithmetic processing unit 32 Sighting monitor 35 Shaft
Claims (1)
の各軌条に自走式走行架台を介してそれぞれ別々の計測
装置を支持させ、該両計測装置のいずれか一方を既知の
基準点をもとに計測した後、両計測装置を交互にトンネ
ル内に進行させて位置計測済側の計測装置の位置をもと
に未計測側の計測装置の位置を順次計測し、トンネル掘
進機視準可能位置にて位置計測済側の計測装置によりト
ンネル掘進機位置を計測することを特徴としてなるトン
ネル掘進工事における坑内測量方法。Claim 1: Two rails are laid in a tunnel, each rail supports a separate measuring device via a self-propelled traveling platform, and one of the measuring devices is connected to a known reference point. After measuring based on , both measuring devices are advanced into the tunnel alternately, and the position of the measuring device on the unmeasured side is sequentially measured based on the position of the measuring device on the side where the position has been measured. An underground surveying method for tunnel excavation work characterized by measuring the position of a tunnel excavator at a quasi-possible position using a measuring device on the side that has already measured the position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10051791A JPH04309809A (en) | 1991-04-05 | 1991-04-05 | Inside tunnel measuring method in tunnel excavation work |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10051791A JPH04309809A (en) | 1991-04-05 | 1991-04-05 | Inside tunnel measuring method in tunnel excavation work |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04309809A true JPH04309809A (en) | 1992-11-02 |
Family
ID=14276149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10051791A Pending JPH04309809A (en) | 1991-04-05 | 1991-04-05 | Inside tunnel measuring method in tunnel excavation work |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04309809A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08189827A (en) * | 1993-05-24 | 1996-07-23 | Nishimatsu Constr Co Ltd | Tunnel surveying method |
JPH08233575A (en) * | 1995-02-24 | 1996-09-13 | Kandenko Co Ltd | Method for automatically measuring position of conduct, etc., by using measuring truck |
WO1996030720A1 (en) * | 1995-03-29 | 1996-10-03 | Komatsu Ltd. | Method and apparatus for measuring position and posture of tunnel excavator |
JP2000234929A (en) * | 1999-02-15 | 2000-08-29 | Berutekusu:Kk | Interconnecting automatic position/attitude measuring system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61155914A (en) * | 1984-12-28 | 1986-07-15 | Toshihiro Tsumura | Method and apparatus for measuring tunnel |
JPS6271814A (en) * | 1985-09-26 | 1987-04-02 | Fuji Electric Co Ltd | Position measuring instrument |
JPH02285199A (en) * | 1989-04-26 | 1990-11-22 | Muramoto Kensetsu Kk | Shield automatic measuring operation controller |
-
1991
- 1991-04-05 JP JP10051791A patent/JPH04309809A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61155914A (en) * | 1984-12-28 | 1986-07-15 | Toshihiro Tsumura | Method and apparatus for measuring tunnel |
JPS6271814A (en) * | 1985-09-26 | 1987-04-02 | Fuji Electric Co Ltd | Position measuring instrument |
JPH02285199A (en) * | 1989-04-26 | 1990-11-22 | Muramoto Kensetsu Kk | Shield automatic measuring operation controller |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08189827A (en) * | 1993-05-24 | 1996-07-23 | Nishimatsu Constr Co Ltd | Tunnel surveying method |
JPH08233575A (en) * | 1995-02-24 | 1996-09-13 | Kandenko Co Ltd | Method for automatically measuring position of conduct, etc., by using measuring truck |
WO1996030720A1 (en) * | 1995-03-29 | 1996-10-03 | Komatsu Ltd. | Method and apparatus for measuring position and posture of tunnel excavator |
GB2314157A (en) * | 1995-03-29 | 1997-12-17 | Komatsu Mfg Co Ltd | Method and apparatus for measuring position and posture of tunnel excavator |
JP2000234929A (en) * | 1999-02-15 | 2000-08-29 | Berutekusu:Kk | Interconnecting automatic position/attitude measuring system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9453729B2 (en) | Layout equipment and layout method | |
US5930904A (en) | Catenary system measurement apparatus and method | |
US4656743A (en) | Arrangement for determining the position of a hollow section system which is pressed forward | |
JP2846950B2 (en) | Apparatus for forming or defining the position of a measuring point | |
EP0401260A1 (en) | A method of and an equipment for determining the position of a track. | |
CN106225779A (en) | Development machine alignment systems based on three laser labelling dot image and localization method | |
JP3390629B2 (en) | Survey method of propulsion method | |
JPH044529B2 (en) | ||
JPH0843084A (en) | Multifunctional measurement vehicle for tunnel | |
JPH04309809A (en) | Inside tunnel measuring method in tunnel excavation work | |
US20240295086A1 (en) | Method of accurately measuring the topography of surfaces in civil engineering and a device for carrying out this method | |
JP2996521B2 (en) | Shield surveying method | |
JP2913512B2 (en) | Target for sending and receiving survey information | |
JP3231386B2 (en) | Shield surveying method | |
JPH04279812A (en) | Shield surveying method | |
JP2002174519A (en) | Automatically measuring system for tunnel section | |
JPH07311040A (en) | Measuring method for three-dimensional coordinate | |
JP2000234929A (en) | Interconnecting automatic position/attitude measuring system | |
JP3295157B2 (en) | Shield surveying method | |
JP2845647B2 (en) | Automatic positioning of moving objects | |
JPH0611344A (en) | Measuring method of position and attitude of moving body | |
JPH06100078B2 (en) | Automatic survey positioning system for tunnel lining machines | |
JP2644151B2 (en) | Automatic surveying method of shield machine | |
JPH06167184A (en) | Irradiator of tunnel section | |
RU2792054C1 (en) | Method for measurement of drive path of heading machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19951017 |