JP2002174519A - Automatically measuring system for tunnel section - Google Patents

Automatically measuring system for tunnel section

Info

Publication number
JP2002174519A
JP2002174519A JP2000372607A JP2000372607A JP2002174519A JP 2002174519 A JP2002174519 A JP 2002174519A JP 2000372607 A JP2000372607 A JP 2000372607A JP 2000372607 A JP2000372607 A JP 2000372607A JP 2002174519 A JP2002174519 A JP 2002174519A
Authority
JP
Japan
Prior art keywords
section
dimensional
tunnel
cross
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000372607A
Other languages
Japanese (ja)
Inventor
Takashi Okada
喬 岡田
Yutaka Tokorozawa
豊 所沢
Hideo Kamiyama
英雄 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2000372607A priority Critical patent/JP2002174519A/en
Publication of JP2002174519A publication Critical patent/JP2002174519A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an automatically measuring system for a tunnel section that can safely and accurately measure a tunnel section by remote control. SOLUTION: A three-dimensional section measuring instrument body 10 with an automatic section measurement function is mounted on a movement carriage 20 with a free unmanned drive by the remote control by wireless or wire induction through an automatic level adjusting mechanism 30, and a shape of the tunnel section is automatically measured by a remote control from a total station 40 placed outside the tunnel. A position detecting target 12 and a scale plate 13 for swivel angle detection are installed on the three-dimensional section measuring instrument body 10, and a position detecting target 11 and the scale plate 13 for the swivel angle detection are collimated by the total station 40 under horizontal leveling at an arbitraty stop position of the movement carriage 20. Then a direction angle α' and a swivel angle θ are calculated and a position and a direction of the three-dimensional section measuring instrument body 10 are determined by these direction angle α' and swivel angle θ.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばトンネル建
設あるいはトンネル改修工事等に適用されるトンネル断
面の自動測定システムに関し、更に詳しくは、トンネル
内の断面形態の測定をトンネル外からの遠隔操作にて行
えるようにしてなるトンネル断面の自動測定システムに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for automatically measuring a cross section of a tunnel applied to, for example, construction of a tunnel or repair of a tunnel, and more particularly, to measurement of a cross section of a tunnel by remote control from outside the tunnel. The present invention relates to an automatic system for measuring a cross section of a tunnel, which can be performed by using the method.

【0002】[0002]

【従来の技術】従来、この種のトンネル断面の自動測定
システムにおいては、図6に示すように、トンネル1の
掘削中心線O−O上に、自動断面測定機能を有する三次
元断面測定器本体10を地盤2に対して水平整準状態で
位置決め設置し、この三次元断面測定器本体10の位置
と方位を決定することにより、予め地盤2上の任意の位
置に設定された基準線l−nに対する直角方向の輪切り
断面形態を自動的に測定してなる構成を有するものがあ
る。
2. Description of the Related Art Conventionally, in an automatic measuring system for a tunnel section of this kind, as shown in FIG. 6, a three-dimensional section measuring device having an automatic section measuring function is provided on an excavation center line OO of a tunnel 1. 10 is positioned and installed with respect to the ground 2 in a horizontal leveling state, and the position and orientation of the main body 10 of the three-dimensional cross-section measuring device are determined, whereby a reference line l− previously set at an arbitrary position on the ground 2 is obtained. There is a configuration having a configuration in which a cross-sectional configuration in a direction perpendicular to n is automatically measured.

【0003】このようなトンネル断面の自動測定システ
ムは、例えばトンネル建設途上の掘削工程において、ト
ンネル径の1.5〜2倍の前方または後方の測定距離範
囲内で、トンネル1の輪切り断面形態を一定のピッチ
(例えば5m、または10m間隔)で測定することによ
り、この測定データを基にパーソナルコンピュータにて
画像処理を施し、この測定断面形態を、図7に示すよう
に、ディスプレイ100に表示して、予め設定されたト
ンネル断面の設計断面形態とを重合せ分析し管理するよ
うになっている。
[0003] Such an automatic system for measuring the cross section of a tunnel, for example, in the excavation process during the construction of a tunnel, the cross section of the tunnel 1 is cut within a range of a measurement distance in front or rear 1.5 to 2 times the diameter of the tunnel. By measuring at a constant pitch (for example, at 5 m or 10 m intervals), image processing is performed by a personal computer based on the measured data, and the measured cross-sectional form is displayed on the display 100 as shown in FIG. In addition, a preset cross-sectional configuration of a tunnel cross-section is superimposed, analyzed, and managed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来のトンネル断面の自動測定システムにあっては、
トンネル1内に三次元断面測定器本体10を位置決めす
る際に、通常のトランシット測量のように、三脚台上に
三次元断面測定器本体10を設置して、地盤2に対して
水平整準することにより行われている。
However, in the above-mentioned conventional automatic measuring system of the cross section of the tunnel,
When positioning the three-dimensional measuring apparatus main body 10 in the tunnel 1, the three-dimensional measuring apparatus main body 10 is installed on a tripod base and leveled with respect to the ground 2 as in normal transit surveying. It is done by that.

【0005】このため、トンネル1内における切羽近傍
のような人の立ち入れない危険な場所での測定が安全に
行うことができず、しかも、曲線区間のトンネル断面の
測定も正確に行えない。
[0005] For this reason, it is not possible to measure safely in a dangerous place where no one can enter, such as near the face in the tunnel 1, and it is not possible to accurately measure the tunnel cross section in the curved section.

【0006】本発明は、上記した事情に鑑みてなされた
もので、トンネル断面の測定が遠隔操作にて安全にかつ
正確に行うことができるようにしたトンネル断面の自動
測定システムを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides an automatic tunnel cross-section measurement system capable of remotely and safely measuring a tunnel cross-section. Aim.

【0007】[0007]

【課題を解決するための手段】上記した課題を解決する
ために、本発明の請求項1に記載の発明は、トンネルの
掘削中心線上の任意位置に自動断面測定機能を有する三
次元断面測定器本体を地盤に対して水平整準状態で位置
決め設置し、該三次元断面測定器本体の位置と方位を決
定することにより、予め地盤上の任意の位置に設定され
た基準線に対する直角方向の輪切り断面を自動的に測定
可能にしてなるとともに、該輪切り断面の測定データを
基に画像処理を施して、該測定断面形態を分析し管理し
てなるトンネル断面の自動測定システムにおいて、前記
三次元断面測定器本体を無線または有線誘導による遠隔
操作にて無人走行自在な移動台車上に自動レベル調整機
構を介して搭載し、前記トンネル外部の所定位置に設置
されたトータルステーションからの遠隔操作にて、前記
移動台車の移動及び三次元断面測定器本体による自動測
定を可能にしてなることを特徴とする。
In order to solve the above-mentioned problems, the invention according to the first aspect of the present invention is directed to a three-dimensional section measuring instrument having an automatic section measuring function at an arbitrary position on a tunnel excavation center line. By positioning and installing the main body in a horizontal leveling state with respect to the ground, and determining the position and orientation of the main body of the three-dimensional cross-section measuring instrument, a cross section in a direction perpendicular to a reference line previously set at an arbitrary position on the ground is obtained. A cross section can be automatically measured, and an image processing is performed on the basis of the measurement data of the ring cross section. The measuring instrument body is mounted on an unmanned mobile carriage by remote control by wireless or wired guidance via an automatic level adjustment mechanism, and the total meter installed at a predetermined position outside the tunnel is installed. By remote control from Shon, characterized by comprising enabling automatic measurements by the mobile and the three-dimensional cross-section measuring device main body of the mobile carriage.

【0008】これによって、トータルステーションによ
る遠隔操作にてトンネル断面の測定を無人にて行うこと
が可能になり、従前のような人の立ち入れない危険な場
所での測定が安全かつ容易に行える。
[0008] This makes it possible to measure the cross section of the tunnel unattended by remote control by the total station, and it is possible to safely and easily perform the measurement in a dangerous place where no person can enter as in the past.

【0009】請求項2に記載の発明は、請求項1に記載
の発明において、前記三次元断面測定器本体を前記移動
台車上にそれらの中心軸を一致させて水平方向に旋回制
御可能に搭載し、前記三次元断面測定器本体に位置検出
用ターゲットと旋回角検出用目盛板とを設け、該位置検
出用ターゲットを、前記移動台車の任意の停止位置にお
ける水平整準の下で、前記トータルステーションからの
レーザ光の照射にて視準して、該トータルステーション
の位置座標に対する前記三次元断面測定器本体の位置座
標を測定することにより、該位置座標の測定データに基
づいて方向角を算出してなるとともに、前記旋回角検出
用目盛板を、前記トータルステーションにて視準して、
前記三次元断面測定器本体の旋回角の概略値を測定し、
該旋回角の概略値に応じて前記三次元断面測定器本体を
旋回させて、前記トータルステーションに設置した受光
ターゲットに合わせることにより、詳細な旋回角を決定
し、該旋回角の詳細値と前記方向角とで前記三次元断面
測定器本体の方位を算出してなる一方、前記基準線の掘
削中心線に対する基線方向の角度と前記方向角との差に
応じた旋回角で前記三次元断面測定器本体を旋回させ
て、前記基線方向を視準することにより、前記三次元断
面測定器本体の中心からの前記基準線の離間距離を算出
して、前記三次元断面測定器本体の位置及び方位を決定
してなることを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention, the main body of the three-dimensional section measuring instrument is mounted on the movable carriage such that their central axes coincide with each other so as to be capable of turning in the horizontal direction. A position detection target and a turning angle detection scale plate are provided on the three-dimensional section measuring device main body, and the position detection target is moved to the total station under horizontal leveling at an arbitrary stop position of the movable carriage. By collimating with the irradiation of laser light from, by measuring the position coordinates of the three-dimensional section measuring instrument body with respect to the position coordinates of the total station, to calculate the direction angle based on the measurement data of the position coordinates At the same time, the turning angle detection scale plate is collimated at the total station,
Measure the approximate value of the turning angle of the three-dimensional section measuring instrument body,
By turning the main body of the three-dimensional cross-section measuring device in accordance with the approximate value of the turning angle, and adjusting to the light receiving target installed in the total station, a detailed turning angle is determined, and the detailed value of the turning angle and the direction are determined. While the azimuth of the main body of the three-dimensional cross-section measuring instrument is calculated by an angle, the three-dimensional cross-sectional measuring instrument is turned at a turning angle according to a difference between an angle of the reference line with respect to the excavation center line in the baseline direction and the direction angle. By rotating the main body and collimating the base line direction, the distance of the reference line from the center of the three-dimensional cross-section measuring device main body is calculated, and the position and orientation of the three-dimensional cross-sectional measuring device main body are calculated. It is characterized by being decided.

【0010】これによって、三次元断面測定器本体の位
置及び方位を容易に決定することが可能になり、曲線区
間におけるトンネル断面の測定が正確に行える。
[0010] This makes it possible to easily determine the position and orientation of the three-dimensional section measuring instrument main body, and to accurately measure the tunnel section in the curved section.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図1
から図5に示す図面を参照しながら詳細に説明する。な
お、本発明に係る図示の実施形態において、図6及び図
7に示す従来のトンネル断面の自動測定システムと構成
が重複する部分は同一符号を用いて説明する。
FIG. 1 is a block diagram showing an embodiment of the present invention.
5 will be described in detail with reference to the drawings shown in FIG. In the illustrated embodiment according to the present invention, portions having the same configuration as the conventional automatic system for measuring the cross section of a tunnel shown in FIGS. 6 and 7 will be described using the same reference numerals.

【0012】図1に示すように、符号20は移動台車
で、この移動台車20は、推進手段としてのクローラ2
1にてトンネル1内の地盤2上を走行自在な搭載台22
上に、無線アンテナ23、電源装置24、無線受信発信
装置25、クローラ21の駆動にて移動台車20を前後
左右方向(X−Y方向)に走行させるクローラ駆動制御
装置26及び搭載台22の前後左右方向(X−Y方向)
及び上下方向(Z方向)の傾斜状態を検出する傾斜計2
7が搭載されている。
As shown in FIG. 1, reference numeral 20 denotes a mobile trolley, which is a crawler 2 as a propulsion means.
A mounting platform 22 that can run on the ground 2 in the tunnel 1 at 1
A crawler drive control device 26 that drives the mobile trolley 20 in the front-rear and left-right directions (X-Y directions) by driving the wireless antenna 23, the power supply device 24, the wireless reception / transmission device 25, and the crawler 21, Right and left direction (X-Y direction)
Inclinometer 2 for detecting the tilt state in the vertical direction (Z direction)
7 is mounted.

【0013】また、移動台車20の搭載台22は、その
前後左右の各々の偶部にアウトリガ駆動装置28にて昇
降可能なアウトリガ(支脚)29が設けられ、これら各
々のアウトリガ(支脚)29は、移動台車20の所定の
停止位置で地盤2上に向け下降動作させて接地させるこ
とにより、移動台車20を地盤2上に固定し得るように
なっている。
An outrigger (supporting leg) 29 which can be moved up and down by an outrigger driving device 28 is provided at each of the front, rear, left and right even portions of the mounting platform 22 of the movable carriage 20, and each of these outriggers (supporting leg) 29 The mobile trolley 20 can be fixed on the ground 2 by moving down to the ground 2 at a predetermined stop position of the mobile trolley 20 and touching the ground.

【0014】さらに、移動台車20の搭載台22には、
自動レベル調整機構30が設置されていて、この自動レ
ベル調整機構30は、水平架台31と、この水平架台3
1の前後左右の各々の偶部に振動吸収体32を介して設
けた伸縮ロッド33と、これら各々の伸縮ロッド33の
長さ調整を行うロッド駆動制御装置34とを有し、この
ロッド駆動制御装置34にて水平架台31の水平整準を
可能にしている。
Further, the mounting platform 22 of the movable vehicle 20 includes
An automatic level adjustment mechanism 30 is provided. The automatic level adjustment mechanism 30 includes a horizontal mount 31 and a horizontal mount 3.
1 includes a telescopic rod 33 provided on each of the front, rear, left and right even portions via a vibration absorber 32, and a rod drive control device 34 for adjusting the length of each of the telescopic rods 33. The device 34 enables the horizontal mount 31 to be leveled horizontally.

【0015】なお、図1において、符号35は、移動台
車20の搭載台22の前後に設置したタッチセンサで、
これらのタッチセンサ35にて、移動台車20のトンネ
ル内壁面への衝突を検知し、移動台車20をトンネル内
壁面から回避するように走行制御してなるものである。
In FIG. 1, reference numeral 35 denotes a touch sensor installed before and after the mounting platform 22 of the movable vehicle 20.
These touch sensors 35 detect collision of the mobile trolley 20 with the inner wall surface of the tunnel, and control the traveling of the mobile trolley 20 so as to avoid the mobile trolley 20 from the inner wall surface of the tunnel.

【0016】そして、移動台車20の搭載台22上に設
置した自動レベル調整機構30の水平架台31上には、
自動断面測定機能を有する三次元断面測定器本体10が
搭載されていて、この三次元断面測定器本体10は、移
動台車20の中心軸Mと一致させて、この中心軸Mを中
心に水平方向に旋回制御可能になっている。
Then, on a horizontal gantry 31 of an automatic level adjustment mechanism 30 installed on the mounting gantry 22 of the movable trolley 20,
A three-dimensional section measuring instrument main body 10 having an automatic cross-section measuring function is mounted, and the three-dimensional section measuring instrument main body 10 is aligned with the center axis M of the movable carriage 20 and is horizontally oriented around the center axis M. Turn control is possible.

【0017】また、三次元断面測定器本体10には、ト
ンネル1内の周囲の画像を撮像可能なCCDカメラ11
が搭載されている一方、その中心軸M上の上部側には、
例えばプリズムからなる位置検出用ターゲット12が設
置され、その下部側には、旋回角検出用目盛板13が中
心軸Mを旋回中心軸として設置されている。
The main body 10 of the three-dimensional section measuring device has a CCD camera 11 capable of capturing an image of the surroundings inside the tunnel 1.
Is mounted on the upper side of the central axis M,
For example, a position detection target 12 formed of a prism is provided, and a turning angle detection scale plate 13 is provided below the target 12 with the center axis M as the turning center axis.

【0018】これら位置検出用ターゲット12及び旋回
角検出用目盛板13は、図2及び図3に示すように、ト
ンネル1の外部の所定位置に位置決め設置してなる三次
元位置座標及び旋回角読取り装置(以下、トータルステ
ーションと称す)40からのレーザ光の照射にて視準さ
れるようになっているもので、このトータルステーショ
ン40には、受光ターゲット41が設置されているとと
もに、三次元断面測定器本体10に搭載されたCCDカ
メラ11による画像識別機能を有する。
As shown in FIGS. 2 and 3, the position detecting target 12 and the turning angle detecting scale plate 13 are positioned and installed at predetermined positions outside the tunnel 1 to read the three-dimensional position coordinates and the turning angle. The collimator is collimated by irradiation of a laser beam from a device (hereinafter, referred to as a total station) 40. The total station 40 is provided with a light receiving target 41 and a three-dimensional section measuring device. It has an image identification function by a CCD camera 11 mounted on the main body 10.

【0019】次に、本発明に係るトンネル断面の自動測
定システムを図4及び図5に基づいて説明する。
Next, an automatic system for measuring the cross section of a tunnel according to the present invention will be described with reference to FIGS.

【0020】図4は、三次元断面測定器本体10の位置
及び方位の決定手順を示すフローチャート、図5は、予
め設定されたトンネル1内の掘削方向O−O上に沿う任
意の位置における測点でのトータルステーション40の
三次元方向(X,Y,Z)の原点Tの位置座標(x0,
y0,z0)に対する移動台車20と三次元断面測定器
本体10の中心軸Mの位置座標(x1,y1,z1)と
の平面上における位置関係を示す。
FIG. 4 is a flowchart showing a procedure for determining the position and orientation of the three-dimensional section measuring instrument main body 10, and FIG. 5 is a flowchart showing measurement at an arbitrary position along the excavation direction OO in the tunnel 1 set in advance. The position coordinates (x0, x0) of the origin T in the three-dimensional direction (X, Y, Z) of the total station 40 at a point.
The positional relationship on the plane between the movable trolley 20 and the position coordinates (x1, y1, z1) of the central axis M of the three-dimensional section measuring instrument main body 10 with respect to (y0, z0) is shown.

【0021】図4に示すように、トンネル1内の掘削方
向O−O上に沿って移動台車20を無線誘導にて移動さ
せ(ステップ1:以下、S1と略記する)、予め設定さ
れた任意の位置における測点で移動台車20を停止させ
るとともに、この停止位置でアウトリガ28は、移動台
車20の所定の停止位置で地盤2上に向け下降させて接
地させることにより、移動台車20を地盤2上に固定す
る(S2)。
As shown in FIG. 4, the mobile trolley 20 is moved by radio guidance along the excavation direction OO in the tunnel 1 (Step 1: hereinafter abbreviated as S1), and a predetermined arbitrary The mobile trolley 20 is stopped at the measurement point at the position, and at this stop position, the outrigger 28 is lowered toward the ground 2 at a predetermined stop position of the mobile trolley 20 to be in contact with the ground, thereby moving the mobile trolley 20 to the ground 2. It is fixed on the top (S2).

【0022】この状態で、自動レベル調整機構30にて
移動台車20の水平架台31を水準調整し、三次元断面
測定器本体10の水平整準を行った後(S3)、三次元
断面測定器本体10の位置決定(S4)、方位決定(S
5)及び基準線l−nの基線方向の決定と方向視準を行
う(S6)。
In this state, the level of the horizontal gantry 31 of the movable carriage 20 is adjusted by the automatic level adjustment mechanism 30, and the leveling of the three-dimensional section measuring instrument body 10 is performed (S3). Determination of the position of the main body 10 (S4), determination of the azimuth (S
5) The base line direction of the reference line l-n is determined and the direction is collimated (S6).

【0023】この場合、S4にて上記したような三次元
断面測定器本体10の位置決定を行うには、図5(A)
に示すように、位置検出用ターゲット12をトータルス
テーション40からのレーザ光の照射にて視準して、ト
ータルステーション40の原点Tの位置座標(x0,y
0)に対する三次元断面測定器本体10の中心軸Mの位
置座標(x1,y1)を測定し、これらの位置座標の測
定データに基づいて、下記の計算式にて方向角αを算出
することにより行われる。
In this case, in order to determine the position of the three-dimensional section measuring instrument main body 10 as described above in S4, it is necessary to use FIG.
As shown in the figure, the position detection target 12 is collimated by the irradiation of the laser light from the total station 40, and the position coordinates (x0, y) of the origin T of the total station 40 are obtained.
Measuring the position coordinates (x1, y1) of the central axis M of the three-dimensional section measuring instrument body 10 with respect to 0) and calculating the direction angle α by the following formula based on the measurement data of these position coordinates. It is performed by

【0024】[0024]

【式】α=tan-1(y1−y0)/(x1−x0)[Formula] α = tan -1 (y1-y0) / (x1-x0)

【0025】また、S5にて三次元断面測定器本体10
の方位決定を行うには、初期の目盛が0度に合わせて固
定された旋回角検出用目盛板13を、トータルステーシ
ョン40にて視準して、三次元断面測定器本体10の旋
回角θを測定し、旋回角θの概略値を読み取った後、旋
回角θの概略値に応じて三次元断面測定器本体10をθ
旋回させて、トータルステーション40に設置した受光
ターゲット41に合わせることにより、詳細な旋回角θ
を決定し、この旋回角θの詳細値と方向角αを基に、下
記の計算式にて方向角αの詳細値α’を決定して、三次
元断面測定器本体10の方位を算出することにより行わ
れる。 α’+θ+(90°−α)=270° α’=180°+(α−θ)
In step S5, the three-dimensional section measuring instrument body 10
In order to determine the azimuth, the turning angle detection scale plate 13 whose initial scale is fixed to 0 degrees is collimated by the total station 40 to determine the turning angle θ of the three-dimensional section measuring instrument body 10. After measuring and reading the approximate value of the turning angle θ, the main body 10 of the three-dimensional cross-section measuring instrument is set to θ according to the approximate value of the turning angle θ.
By turning it and matching it with the light receiving target 41 installed in the total station 40, a detailed turning angle θ
Based on the detailed value of the turning angle θ and the direction angle α, the detailed value α ′ of the direction angle α is determined by the following formula, and the azimuth of the three-dimensional section measuring instrument body 10 is calculated. This is done by: α ′ + θ + (90 ° −α) = 270 ° α ′ = 180 ° + (α−θ)

【0026】さらに、S6にて基準線l−nの基線方向
の決定と方位視準を行うには、図5(B)に示すよう
に、トンネル掘削中心線O−O上における三次元断面測
定器本体10の中心Mを通る基準線l−nの基点Pの位
置座標(x2,y2)を視準して、基線方向の角度βを
下記の座標方程式; x1=(1/tanβ)・y1+Cn ここで、 tanβ=(y2−y1)/(x2−x1) Cn=x2−(1/tanβ)・y2 にて基線方向を算出するとともに、この基線方向の角度
β及び方向角αの詳細値α’の差(β−α’)に応じた
旋回角でもって、三次元断面測定器本体10を旋回させ
ることにより、三次元断面測定器本体10の中心Mから
の基準線l−nの離間距離d; d=x2−x1 すなわち、三次元断面測定器本体10の中心Mと基準線
l−nの離れを算出することにより行われる。
Further, in S6, the determination of the base line direction of the reference line 1-n and the collimation of the azimuth are performed by measuring the three-dimensional cross section on the tunnel excavation center line OO as shown in FIG. By collimating the position coordinates (x2, y2) of the base point P of the reference line l-n passing through the center M of the container body 10, the angle β in the base line direction is calculated by the following coordinate equation; x1 = (1 / tanβ) · y1 + Cn Here, the base line direction is calculated by tanβ = (y2-y1) / (x2-x1) Cn = x2- (1 / tanβ) · y2, and the angle β in the base line direction and the detailed value α of the direction angle α By rotating the three-dimensional measuring apparatus main body 10 at a turning angle corresponding to the difference (β-α '), the distance of the reference line 1-n from the center M of the three-dimensional measuring apparatus main body 10 is increased. d; d = x2-x1, that is, the center M of the three-dimensional section measuring instrument main body 10 and the base It is performed by calculating the separation of the line l-n.

【0027】このようにして、三次元断面測定器本体1
0の位置及び方位を決定した後、予めトンネル1内の地
盤2上の任意の位置に設定された基準線l−nに対する
直角方向の輪切り断面形態の自動測定を開始し(S
7)、このようなトンネル断面の測定が終了すると(S
8)、移動台車20の固定を解除し、次の測点まで移動
台車20を移動させる(S9)。
Thus, the three-dimensional section measuring instrument main body 1
After determining the position and the azimuth of 0, the automatic measurement of the cross-sectional shape in the direction perpendicular to the reference line l-n previously set at an arbitrary position on the ground 2 in the tunnel 1 is started (S).
7) When the measurement of the tunnel cross section is completed (S)
8) Release the fixation of the mobile trolley 20, and move the mobile trolley 20 to the next measurement point (S9).

【0028】これによって、図6及び図7に示す従来の
自動測定システムと同様に、トンネル建設途上の掘削工
程において、トンネル径の1.5〜2倍の前方または後
方の測定距離範囲内で、トンネル1の輪切り断面形態を
一定のピッチ(例えば5m、または10m間隔)で測定
することにより、この測定データを基にパーソナルコン
ピュータにて画像処理を施し、この測定断面形態をディ
スプレイ100に表示して、予め設定されたトンネル断
面の設計断面形態とを重合せ分析し管理するようになっ
ているものである。
As a result, similarly to the conventional automatic measuring system shown in FIGS. 6 and 7, in the excavation process during the construction of the tunnel, within the measurement distance range of 1.5 to 2 times the diameter of the tunnel in front or behind. By measuring the cross section of the tunnel 1 at a constant pitch (for example, at 5 m or 10 m intervals), image processing is performed by a personal computer based on the measurement data, and the measured cross section is displayed on the display 100. In addition, a preset cross section of the tunnel is designed to be superimposed on a design cross section and analyzed and managed.

【0029】なお、上記した本発明の実施形態におい
て、移動台車20を遠隔操作による無線誘導にて無人走
行するようにしたが、有線誘導にて遠隔操作することも
可能である。
In the above-described embodiment of the present invention, the mobile trolley 20 runs unmanned by wireless guidance by remote control. However, it is also possible to remotely control the mobile trolley 20 by wired guidance.

【0030】また、トンネル断面の自動測定システムを
新規のトンネル建設の場合を例にして説明したが、これ
には限定されず、既存の古いトンネルなどのように、設
計断面データが残っていないトンネル改修工事におい
て、改修に必要なトンネル断面のデータを得る場合や、
トンネルチューブ管の断面測定においても適用可能であ
る。
Also, the automatic tunnel section measurement system has been described by taking as an example a case of constructing a new tunnel. However, the present invention is not limited to this, and a tunnel having no design section data, such as an existing old tunnel, is used. In the renovation work, when obtaining the data of the tunnel cross-section necessary for the renovation,
The present invention is also applicable to the measurement of the cross section of a tunnel tube.

【0031】さらに、本発明に係る自動測定システムを
移動物体の方位位置検出装置として採用することも可能
であり、本発明の要旨を免脱しない範囲で種々変更実施
可能なことは云うまでもない。
Further, the automatic measurement system according to the present invention can be employed as a device for detecting the azimuth position of a moving object, and it goes without saying that various changes can be made without departing from the gist of the present invention. .

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
に係るトンネル断面の自動測定システムによれば、自動
断面測定機能を有する三次元断面測定器本体を無線また
は有線誘導による遠隔操作にて無人走行自在な移動台車
上に自動レベル調整機構を介して搭載し、トンネル外部
の所定位置に設置されたトータルステーションからの遠
隔操作にて、移動台車の移動及び三次元断面測定器本体
による自動測定を可能にしてなることから、トータルス
テーションによる遠隔操作にてトンネル断面の測定を無
人にて行うことができ、従前のような人の立ち入れない
危険な場所での測定を安全かつ容易に行うことができ
る。
As is clear from the above description, according to the automatic tunnel section measuring system according to the present invention, the main body of the three-dimensional section measuring instrument having the automatic section measuring function can be remotely operated by wireless or wired guidance. It is mounted on an unmanned mobile carriage via an automatic level adjustment mechanism, and can be moved remotely and automatically measured by the 3D cross-section measuring instrument by remote control from a total station installed at a predetermined position outside the tunnel. Since it becomes possible, tunnel section measurement can be performed unmanned by remote control by the total station, and measurement in dangerous places where people can not enter such as before can be performed safely and easily .

【0033】また、移動台車上に三次元断面測定器本体
を水平方向に旋回可能に搭載し、この三次元断面測定器
本体に位置検出用ターゲットと旋回角検出用目盛板とを
設けて、移動台車の任意の停止位置における水平整準の
下で、位置検出用ターゲット及び旋回角検出用目盛板を
トータルステーションからのレーザ光の照射にて視準し
て、方向角及び旋回角を算出し、これら方位角と旋回角
とで三次元断面測定器本体の位置及び方位を決定してな
ることから、三次元断面測定器本体の位置及び方位を容
易に決定することができ、曲線区間におけるトンネル断
面の測定を正確に行うことができる。
The three-dimensional section measuring instrument main body is mounted on the movable carriage so as to be pivotable in the horizontal direction, and the three-dimensional section measuring instrument main body is provided with a position detecting target and a turning angle detecting scale plate. Under horizontal leveling at an arbitrary stop position of the bogie, the position detection target and the turning angle detection scale plate are collimated by irradiation of laser light from the total station, and the direction angle and the turning angle are calculated. Since the position and orientation of the main body of the three-dimensional cross-section measuring instrument are determined based on the azimuth and the turning angle, the position and orientation of the main body of the three-dimensional cross-sectional measuring instrument can be easily determined. Measurement can be performed accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るトンネル断面の自動測定システム
に用いられる三次元断面測定器本体が搭載された移動台
車の一実施形態を概略的に示す説明図である。
FIG. 1 is an explanatory view schematically showing an embodiment of a movable trolley equipped with a three-dimensional section measuring instrument main body used in an automatic tunnel section measuring system according to the present invention.

【図2】同じく三次元断面測定器本体の位置検出用ター
ゲット及び旋回角検出用目盛板のトータルステーション
による視準状態を概略的に示す説明図である。
FIG. 2 is an explanatory view schematically showing a collimating state of a position detecting target and a turning angle detecting scale plate of a three-dimensional section measuring instrument main body by a total station.

【図3】同じく三次元断面測定器本体の位置検出用ター
ゲット及び旋回角検出用目盛板のトータルステーション
による視準状態を概略的に示す説明図である。
FIG. 3 is an explanatory view schematically showing a collimating state of a position detection target and a turning angle detection scale plate of a three-dimensional section measuring instrument main body by a total station.

【図4】同じく三次元断面測定器本体の位置及び方位の
決定手順を示すフローチャートである。
FIG. 4 is a flowchart showing a procedure for determining the position and orientation of the main body of the three-dimensional measuring device.

【図5】同じく予め設定されたトンネル内の掘削方向上
に沿う任意の位置における測点でのトータルステーショ
ンの三次元方向の原点の位置座標に対する移動台車と三
次元断面測定器本体の中心軸の位置座標との平面上にお
ける位置関係を示すもので、図5(A)は三次元断面測
定器本体の位置決定及び方位決定を行うための説明図、
図5(B)は基準線の基線方向の決定と方位視準を行う
ための説明図である。
FIG. 5 shows the position of the center axis of the mobile trolley and the main body of the three-dimensional section measuring instrument with respect to the position coordinates of the origin in the three-dimensional direction of the total station at a measurement point at an arbitrary position along the excavation direction in the tunnel also set in advance. FIG. 5A shows a positional relationship on a plane with coordinates, and FIG. 5A is an explanatory diagram for determining a position and an azimuth of a three-dimensional cross-section measuring instrument main body;
FIG. 5B is an explanatory diagram for determining the baseline direction of the reference line and collimating the azimuth.

【図6】従来のトンネル断面の測定状態を示す説明図で
ある。
FIG. 6 is an explanatory diagram showing a conventional measurement state of a cross section of a tunnel.

【図7】同じく従来におけるトンネル測定断面の画像処
理による管理状態を示す説明図である。
FIG. 7 is an explanatory diagram showing a management state by image processing of a conventional tunnel measurement section.

【符号の説明】[Explanation of symbols]

1 トンネル 2 地盤 10 三次元断面測定器本体 11 CCDカメラ 12 位置検出用ターゲット 13 旋回角検出用目盛板 20 移動台車 21 推進手段(クローラ) 22 搭載台 23 無線アンテナ 24 電源装置 25 無線受信発信装置 26 クローラ駆動制御装置 27 傾斜計 28 アウトリガ駆動装置 29 アウトリガ 30 自動レベル調整機構 31 水平架台 32 振動吸収体 40 トータルステーション 41 受光ターゲット M 三次元断面測定器本体及び移動台車の中心
軸 l−n 基準線 d 三次元断面測定器本体中心からの基準線の
離間距離 O−O トンネル掘削方向 P 基準線の基線方向の基点 T トータルステーションの位置 α 方向角(概略値) α’ 方向角(詳細値) β 基線方向の角度 θ 旋回角(詳細値)
DESCRIPTION OF SYMBOLS 1 Tunnel 2 Ground 10 Main body of 3D cross-section measuring instrument 11 CCD camera 12 Target for position detection 13 Scale plate for turning angle detection 20 Moving trolley 21 Propulsion means (crawler) 22 Mounting stand 23 Wireless antenna 24 Power supply device 25 Wireless reception and transmission device 26 Crawler drive control device 27 Inclinometer 28 Outrigger drive device 29 Outrigger 30 Automatic level adjustment mechanism 31 Horizontal mount 32 Vibration absorber 40 Total station 41 Light receiving target M Central axis of three-dimensional cross-section measuring device main body and movable cart l-n Reference line d Tertiary Separation distance of the reference line from the center of the original cross-section measuring instrument O-O Tunnel excavation direction P Base point in the base line direction of the reference line T Total station position α direction angle (approximate value) α 'direction angle (detail value) β Base line direction Angle θ Turning angle (Detailed value)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】トンネルの掘削中心線上の任意位置に自動
断面測定機能を有する三次元断面測定器本体を地盤に対
して水平整準状態で位置決め設置し、該三次元断面測定
器本体の位置と方位を決定することにより、予め地盤上
の任意の位置に設定された基準線に対する直角方向の輪
切り断面を自動的に測定可能にしてなるとともに、該輪
切り断面の測定データを基に画像処理を施して、該測定
断面形態を分析し管理してなるトンネル断面の自動測定
システムにおいて、 前記三次元断面測定器本体を無線または有線誘導による
遠隔操作にて無人走行自在な移動台車上に自動レベル調
整機構を介して搭載し、前記トンネル外部の所定位置に
設置されたトータルステーションからの遠隔操作にて、
前記移動台車の移動及び三次元断面測定器本体による自
動測定を可能にしてなることを特徴とするトンネル断面
の自動測定システム。
1. A three-dimensional section measuring instrument body having an automatic section measuring function is positioned at an arbitrary position on a tunnel excavation center line in a horizontal leveling state with respect to the ground, and the position of the three-dimensional section measuring instrument body is determined. By determining the azimuth, it becomes possible to automatically measure a cross-section in a direction perpendicular to a reference line previously set at an arbitrary position on the ground, and perform image processing based on the measurement data of the cross-section. An automatic level adjusting mechanism for automatically measuring the cross section of the tunnel by analyzing and managing the cross section of the tunnel, and controlling the three-dimensional cross section measuring instrument body on a movable vehicle that can travel unmanned by remote control by wireless or wired guidance. Mounted via a remote control from a total station installed at a predetermined position outside the tunnel,
An automatic measurement system for a tunnel cross section, wherein the movement of the movable carriage and the automatic measurement by the three-dimensional cross-section measuring device main body are enabled.
【請求項2】前記三次元断面測定器本体を前記移動台車
上にそれらの中心軸を一致させて水平方向に旋回制御可
能に搭載し、前記三次元断面測定器本体に位置検出用タ
ーゲットと旋回角検出用目盛板とを設け、 該位置検出用ターゲットを、前記移動台車の任意の停止
位置における水平整準の下で、前記トータルステーショ
ンからのレーザ光の照射にて視準して、該トータルステ
ーションの位置座標に対する前記三次元断面測定器本体
の位置座標を測定することにより、該位置座標の測定デ
ータに基づいて方向角を算出してなるとともに、 前記旋回角検出用目盛板を、前記トータルステーション
にて視準して、前記三次元断面測定器本体の旋回角の概
略値を測定し、該旋回角の概略値に応じて前記三次元断
面測定器本体を旋回させて、前記トータルステーション
に設置した受光ターゲットに合わせることにより、詳細
な旋回角を決定し、該旋回角の詳細値と前記方向角とで
前記三次元断面測定器本体の方位を算出してなる一方、 前記基準線の掘削中心線に対する基線方向の角度と前記
方向角との差に応じた旋回角で前記三次元断面測定器本
体を旋回させて、前記基線方向を視準することにより、
前記三次元断面測定器本体の中心からの前記基準線の離
間距離を算出して、前記三次元断面測定器本体の位置及
び方位を決定してなることを特徴とする請求項1に記載
のトンネル断面の自動測定システム。
2. The three-dimensional cross-section measuring device main body is mounted on the movable carriage such that their central axes coincide with each other so as to be capable of turning in the horizontal direction, and the three-dimensional cross-sectional measuring device main body is turned with a position detection target. An angle detection scale plate is provided, and the position detection target is collimated by irradiating laser light from the total station under horizontal leveling at an arbitrary stop position of the moving carriage, and By measuring the position coordinates of the three-dimensional section measuring device main body with respect to the position coordinates, the direction angle is calculated based on the measurement data of the position coordinates, and the turning angle detection scale plate is provided at the total station. The collimated collimator is used to measure the approximate value of the turning angle of the three-dimensional section measuring instrument main body, and according to the approximate value of the turning angle, pivots the three-dimensional section measuring instrument main body to obtain By determining the detailed turning angle by adjusting to the light receiving target installed in the tar station, calculating the azimuth of the three-dimensional cross-section measuring instrument main body with the detailed value of the turning angle and the direction angle, By turning the three-dimensional cross-section measuring instrument body at a turning angle according to the difference between the angle of the baseline direction with respect to the excavation center line of the line and the direction angle, and collimating the baseline direction,
The tunnel according to claim 1, wherein a distance between the reference line and a center of the three-dimensional measuring device is calculated to determine a position and an orientation of the three-dimensional measuring device. Automatic section measurement system.
JP2000372607A 2000-12-07 2000-12-07 Automatically measuring system for tunnel section Withdrawn JP2002174519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000372607A JP2002174519A (en) 2000-12-07 2000-12-07 Automatically measuring system for tunnel section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000372607A JP2002174519A (en) 2000-12-07 2000-12-07 Automatically measuring system for tunnel section

Publications (1)

Publication Number Publication Date
JP2002174519A true JP2002174519A (en) 2002-06-21

Family

ID=18842119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000372607A Withdrawn JP2002174519A (en) 2000-12-07 2000-12-07 Automatically measuring system for tunnel section

Country Status (1)

Country Link
JP (1) JP2002174519A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040021195A (en) * 2002-09-03 2004-03-10 (주)서연정보통신 Gis geographic information data capturing device and method for using remote surveying
CN105571574A (en) * 2015-12-14 2016-05-11 上海市基础工程集团有限公司 Movable total station instrument measuring platform for shield automatic guide system
CN108594821A (en) * 2018-05-08 2018-09-28 陕西同力重工股份有限公司 Unmanned mine car positioning and autonomous tracing in intelligent vehicle
JP2018163063A (en) * 2017-03-27 2018-10-18 西松建設株式会社 Tunnel inner space displacement measurement method
CN110241696A (en) * 2019-04-01 2019-09-17 中建三局集团有限公司 Mobile high-acruracy survey robot system and its measurement method
CN114674296A (en) * 2022-02-21 2022-06-28 中交二航局结构工程有限公司 Steel box girder assembly fine adjustment automatic regulation and control system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040021195A (en) * 2002-09-03 2004-03-10 (주)서연정보통신 Gis geographic information data capturing device and method for using remote surveying
CN105571574A (en) * 2015-12-14 2016-05-11 上海市基础工程集团有限公司 Movable total station instrument measuring platform for shield automatic guide system
JP2018163063A (en) * 2017-03-27 2018-10-18 西松建設株式会社 Tunnel inner space displacement measurement method
JP7076086B2 (en) 2017-03-27 2022-05-27 西松建設株式会社 How to measure the empty displacement in the tunnel
CN108594821A (en) * 2018-05-08 2018-09-28 陕西同力重工股份有限公司 Unmanned mine car positioning and autonomous tracing in intelligent vehicle
CN110241696A (en) * 2019-04-01 2019-09-17 中建三局集团有限公司 Mobile high-acruracy survey robot system and its measurement method
CN114674296A (en) * 2022-02-21 2022-06-28 中交二航局结构工程有限公司 Steel box girder assembly fine adjustment automatic regulation and control system
CN114674296B (en) * 2022-02-21 2024-02-20 中交二航局结构工程有限公司 Steel box girder assembling fine-tuning automatic regulating and controlling system

Similar Documents

Publication Publication Date Title
US9207078B2 (en) Device for measuring and marking space points along horizontally running contour lines
US8699036B2 (en) Device for optically scanning and measuring an environment
US5930904A (en) Catenary system measurement apparatus and method
JP2846950B2 (en) Apparatus for forming or defining the position of a measuring point
US8826553B2 (en) Layout equipment and layout method
JP5538929B2 (en) Three-dimensional position measurement and ink marking system and its usage
CN106767676B (en) Spatial vertical distribution point position measurement method and system
US9279679B2 (en) Construction machine control method and construction machine control system
EP2788715B1 (en) Robotic leveling
KR102626472B1 (en) Self-propelled inspection device and inspection method for metal plates, and manufacturing method of metal plates
JP7355484B2 (en) 3D surveying equipment and 3D surveying method
JP2004502956A (en) Spatial positioning
KR100878890B1 (en) Gis upgrade system
CN111721265A (en) Three-dimensional measuring device of indoor ground gradient
KR101193023B1 (en) A geodetic survey device using a gps for the lay of the road
JPS5825207B2 (en) Device for setting each point and straight line
JP2002174519A (en) Automatically measuring system for tunnel section
JP3198160U (en) Internal cross-sectional shape measuring device
JP3940619B2 (en) Tunnel excavator position measuring device
JP4787435B2 (en) Tunnel excavator position measurement device
JP2001271583A (en) Tunnel inner wall measuring system and measuring method
JP2001091249A (en) Hollow cross section measuring device
JPH0843084A (en) Multifunctional measurement vehicle for tunnel
US20130021618A1 (en) Apparatus and method to indicate a specified position using two or more intersecting lasers lines
JP2019002849A (en) Mobile body, and method, device, and system for inducing and positioning mobile body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304