JP2001091249A - Hollow cross section measuring device - Google Patents

Hollow cross section measuring device

Info

Publication number
JP2001091249A
JP2001091249A JP27197899A JP27197899A JP2001091249A JP 2001091249 A JP2001091249 A JP 2001091249A JP 27197899 A JP27197899 A JP 27197899A JP 27197899 A JP27197899 A JP 27197899A JP 2001091249 A JP2001091249 A JP 2001091249A
Authority
JP
Japan
Prior art keywords
distance
inner space
measuring
measuring device
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27197899A
Other languages
Japanese (ja)
Inventor
Ryoji Saito
良二 斉藤
Osamu Tsunekawa
修 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEKKU C KK
WALL NATSUTO KK
C Tech Corp
Walnut Ltd
Original Assignee
TEKKU C KK
WALL NATSUTO KK
C Tech Corp
Walnut Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEKKU C KK, WALL NATSUTO KK, C Tech Corp, Walnut Ltd filed Critical TEKKU C KK
Priority to JP27197899A priority Critical patent/JP2001091249A/en
Publication of JP2001091249A publication Critical patent/JP2001091249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hollow cross section measuring device capable of measuring a hollow cross section with ease and high accuracy. SOLUTION: A hollow cross section measuring device 3 is disposed in a tunnel, and the hollow cross section measuring device 3 is leveled by adjusting a free tripod 2 in accordance with levels 11, 12. A laser distance measuring instrument 8 is leveled by finely rotating an electromagnetic motor 6 in accordance with a level 13, and an irradiating angle of a laser beam is set at 0 deg.. While the electromagnetic motor 6 is being rotated a distance is measured by the laser distance measuring instrument 8 and is recorded. The cross-sectional shape and the cross-sectional area of the tunnel T are computed by a microcomputer 6 from the angle of the hollow cross section measuring device 3, when the range is found and distance data and the like when the range is found.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内空断面を測定す
る内空断面測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner space section measuring device for measuring an inner space section.

【0002】[0002]

【従来の技術】従来、この種の内空断面としてトンネル
の内空断面を計測する場合、たとえば距離目盛りが記し
てある伸縮可能な棒で測定できる方法が知られている。
この伸縮可能な棒で測定する方法は、測定ポイントとな
る部分を基準位置となる水平もしくは垂直の軸方向を決
めて、記録している。
2. Description of the Related Art Heretofore, there has been known a method of measuring an inner cross section of a tunnel as this kind of inner cross section by using, for example, an extensible rod having a distance scale.
In the method of measuring with a telescopic bar, a portion serving as a measurement point is recorded by determining a horizontal or vertical axis direction serving as a reference position.

【0003】ところが、測定は簡易にできるものの、測
定の基準位置を正確に得ることが困難であり、正確な形
状を採寸することは難しい。特に、大きな形状の採寸は
非常に困難で精度維持が難しい。
[0003] However, although the measurement can be easily performed, it is difficult to accurately obtain a reference position for the measurement, and it is difficult to measure an accurate shape. In particular, it is very difficult to measure a large shape, and it is difficult to maintain accuracy.

【0004】また、光波測距器と角度が測定できるセオ
ドライト測量器の組み合わせにより測定する方法も知ら
れている。この光波測距器と角度が測定できるセオドラ
イト測量器の組み合わせたものは、測定断面から所定の
距離を介して光波測定器を設置し、内空断面の採寸点を
任意に決定し、光波測距器で内空断面の測定点までの距
離を測定し、セオドライト測量器により光波測距器の角
度を測定し、三角法で内空断面の形状を採取している。
There is also known a method of performing measurement using a combination of an optical distance measuring device and a theodolite measuring device capable of measuring an angle. The combination of this light wave distance measuring instrument and the theodolite measuring instrument that can measure the angle, installs a light wave measuring instrument at a predetermined distance from the measurement cross section, arbitrarily determines the measuring point of the inner space cross section, The distance to the measuring point of the inner space section is measured with a measuring instrument, the angle of the light wave distance measuring instrument is measured with a theodolite surveying instrument, and the shape of the inner space section is collected by trigonometry.

【0005】ところが、この場合条件がよければ測定精
度がいいものの、内空断面の位置と光波測距器との位置
の関係によっては精度が得られない場合があるととも
に、内空の形状によっては光波測距器の設置場所が確保
できない。
However, in this case, the measurement accuracy is good if the conditions are good, but the accuracy may not be obtained depending on the relationship between the position of the inner space cross section and the position of the light wave distance measuring device, and depending on the shape of the inner space, The installation location of the lightwave range finder cannot be secured.

【0006】[0006]

【発明が解決しようとする課題】上述のように、距離目
盛りが記してある伸縮可能な棒で測定できる方法では、
測定は簡易にできるものの、測定の基準位置を正確に得
ることが困難であり、正確な形状を採寸することは難し
い。特に、大きな形状の採寸は非常に困難で精度維持が
難しい。
As described above, in the method which can be measured with an extensible rod having a distance scale,
Although the measurement can be performed easily, it is difficult to accurately obtain a reference position for the measurement, and it is difficult to measure an accurate shape. In particular, it is very difficult to measure a large shape, and it is difficult to maintain accuracy.

【0007】また、光波測距器と角度が測定できるセオ
ドライト測量器の組み合わせにより測定する方法では、
条件がよければ測定精度がいいものの、内空断面の位置
と光波測距器との位置の関係によっては精度が得られな
い場合があるとともに、内空の形状によっては光波測距
器の設置場所が確保できない問題を有している。
Further, in a method of measuring by a combination of a light wave distance measuring device and a theodolite measuring device capable of measuring an angle,
If the conditions are good, the measurement accuracy is good, but accuracy may not be obtained depending on the relationship between the position of the inner space cross section and the position of the light wave distance measuring device, and the installation location of the light wave distance measuring device depending on the shape of the inner space Has a problem that cannot be secured.

【0008】本発明は、上記問題点に鑑みなされたもの
で、内空断面を容易にかつ精度高く測定できる内空断面
測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide an inner space section measuring apparatus capable of easily and accurately measuring an inner space section.

【0009】[0009]

【課題を解決するための手段】請求項1記載の内空断面
測定装置は、可視光レーザを照射して距離を測定する距
離計測手段と、測定する内空断面に対して垂直な軸方向
を中心に前記距離計測手段を回転させる回転手段と、こ
の回転手段の回転角を検知する検知手段と、この検知手
段で検知された回転角に対応して前記距離計測手段で計
測された距離を記憶する記憶手段とを具備したもので、
可視光レーザを照射して距離を測定することにより、測
定対象となる場所が目視可能で、検知手段で検知された
回転角に対応して距離計測手段で計測された距離を記憶
手段で記憶することにより、内空断面を容易にかつ精度
高く測定する。
According to a first aspect of the present invention, there is provided an inner space section measuring apparatus, comprising: a distance measuring means for irradiating a visible light laser to measure a distance; and an axial direction perpendicular to the inner space section to be measured. Rotating means for rotating the distance measuring means at the center, detecting means for detecting the rotation angle of the rotating means, and storing the distance measured by the distance measuring means corresponding to the rotation angle detected by the detecting means Storage means for performing
By irradiating the visible light laser and measuring the distance, the location to be measured can be visually checked, and the distance measured by the distance measuring means corresponding to the rotation angle detected by the detecting means is stored in the storage means. This makes it possible to easily and accurately measure the inner cross section.

【0010】請求項2記載の内空断面測定装置は、請求
項1記載の内空断面測定装置において、記憶手段に記憶
された回転角および距離に基づき内空断面図を演算して
作成する断面図演算手段を具備したもので、記憶手段に
記憶された回転角および距離に基づき断面図演算手段で
内空断面図を演算して作成することにより、内空断面の
形状を容易にかつ精度高く測定する。
A second aspect of the present invention is a cross section measuring apparatus for calculating an inner cross section based on a rotation angle and a distance stored in a storage means. It is provided with a figure calculation means, and calculates and creates an inner space sectional view by the sectional view calculation means based on the rotation angle and the distance stored in the storage means, so that the shape of the inner space cross section can be easily and accurately formed. Measure.

【0011】請求項3記載の内空断面測定装置は、請求
項1または2記載の内空断面測定装置において、記憶手
段に記憶された回転角および距離に基づき内空断面積を
演算する断面積演算手段を具備したもので、記憶手段に
記憶された回転角および距離に基づき断面積演算手段で
内空断面積を演算して作成することにより、内空断面積
を容易にかつ精度高く測定する。
According to a third aspect of the present invention, there is provided an inner space cross-section measuring device according to the first or second embodiment, wherein the inner space cross-sectional area is calculated based on the rotation angle and the distance stored in the storage means. It is provided with a calculating means, and by calculating the inner space cross-sectional area by the cross-sectional area calculating means based on the rotation angle and the distance stored in the storage means, the inner space sectional area can be measured easily and with high accuracy. .

【0012】請求項4記載の内空断面測定装置は、請求
項1ないし3いずれか記載の内空断面測定装置におい
て、垂直および水平の少なくともいずれかを測定する測
定手段を具備したもので、測定手段の垂直および水平の
少なくともいずれかを測定する。
According to a fourth aspect of the present invention, there is provided an inner space section measuring apparatus according to any one of the first to third aspects, further comprising a measuring means for measuring at least one of vertical and horizontal. Measure the means vertically and / or horizontally.

【0013】請求項5記載の内空断面測定装置は、請求
項1ないし4いずれか記載の内空断面測定装置におい
て、所定時間を経時し任意の時間に動作させるタイマ手
段を具備したもので、タイマ手段により所定時間ごとあ
るいは任意に設定された時間に動作させることにより、
継続的に測定して、内空断面の経時的変化を測定する。
According to a fifth aspect of the present invention, there is provided an inner space section measuring apparatus according to any one of the first to fourth aspects, further comprising timer means for operating a predetermined time and operating at an arbitrary time. By operating at predetermined time or arbitrarily set time by timer means,
The continuous measurement is performed to measure the change with time of the inner space section.

【0014】[0014]

【発明の実施の形態】以下、本発明の内空断面測定装置
の一実施の形態を図面を参照して説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of an inner space section measuring apparatus according to the present invention.

【0015】図1および図2に示すように、1は設置用
の三脚で、この三脚1は上部に自由雲台2が設けられ、
この自由雲台2上に内空断面測定装置3が配設されてい
る。
As shown in FIGS. 1 and 2, reference numeral 1 denotes a tripod for installation. The tripod 1 is provided with a free head 2 at an upper part thereof.
On the free head 2, an inner space section measuring device 3 is provided.

【0016】この内空断面測定装置3は、自由雲台2上
に平板状の基板4が取り付けられ、この基板4の基端側
の自由雲台2の上方には、記憶手段、断面図演算手段、
断面積演算手段およびタイマ手段などの機能を有するマ
イクロコンピュータ5が配設されている。
In the inner space section measuring apparatus 3, a flat substrate 4 is mounted on the free platform 2 and a storage means and a sectional view calculation device are provided above the free platform 2 on the base end side of the substrate 4. means,
A microcomputer 5 having functions such as a sectional area calculating means and a timer means is provided.

【0017】また、基板4の先端側には回転手段および
角度を検知する検知手段としての機能を有する電磁モー
タ6が配設され、この電磁モータ6は基板4の先端方向
に向けて水平の回転シャフト7が設けられ、この回転シ
ャフト7の先端には距離計測手段としてのレーザ距離測
定器8が取り付けられている。
An electromagnetic motor 6 having a function as a rotating means and a detecting means for detecting an angle is disposed on the leading end side of the substrate 4. The electromagnetic motor 6 rotates horizontally toward the leading end of the substrate 4. A shaft 7 is provided, and a laser distance measuring device 8 as distance measuring means is attached to a tip of the rotating shaft 7.

【0018】さらに、基板4のマイクロコンピュータ5
と電磁モータ6との間には、基板4に沿った方向とこの
基板4の長手方向に対して直交する方向に水平検出用の
測定手段としての水準器11,12が取り付けられている。
また、レーザ距離測定器8にはレーザ光に対して水平な
面を検出する測定手段としての水準器13が取り付けられ
ている。
Further, the microcomputer 5 of the substrate 4
Levels 11 and 12 as measuring means for horizontal detection are mounted between the motor and the electromagnetic motor 6 in a direction along the substrate 4 and in a direction perpendicular to the longitudinal direction of the substrate 4.
The laser distance measuring device 8 is provided with a level 13 as measuring means for detecting a plane horizontal to the laser beam.

【0019】次に、上記実施の形態の動作について説明
する。
Next, the operation of the above embodiment will be described.

【0020】まず、図3に示すように、内空断面である
たとえばトンネルT内に、内空断面測定装置3を配置
し、三脚1により内空断面測定装置3がほぼ水平となる
ように配置し、水準器11,12に従い自由雲台2を調整し
て内空断面測定装置3を水平にする。なお、トンネルT
のほぼ中心軸に内空断面測定装置3のレーザ距離測定器
8の回転シャフト7がほぼ一致すれば、測定角度変量が
ほぼ一定でほぼ測定点変位量が一定になるのので好まし
いが、測定各変位量を変化させて十分な採寸分解能が得
られるように測定点の移動距離変化を少なくさせるよう
にしてもよい。
First, as shown in FIG. 3, an inner space section measuring device 3 is arranged in an inner space section, for example, a tunnel T, and the inner space section measuring device 3 is arranged by a tripod 1 so as to be substantially horizontal. Then, the free pan head 2 is adjusted in accordance with the spirit levels 11 and 12 to level the inner space section measuring device 3. The tunnel T
It is preferable that the rotation shaft 7 of the laser distance measuring device 8 of the inner space cross-section measuring device 3 substantially coincides with the substantially central axis because the measurement angle variation is substantially constant and the measurement point displacement is substantially constant. By changing the displacement amount, the change in the moving distance of the measurement point may be reduced so that a sufficient measuring resolution can be obtained.

【0021】次に、水準器13に従い、電磁モータ6を微
小回転させレーザ距離測定器8を水平にし、レーザ光の
照射角度を0°に設定する。
Next, according to the level 13, the electromagnetic motor 6 is slightly rotated to level the laser distance measuring device 8, and the irradiation angle of the laser beam is set to 0 °.

【0022】そして、図3に示すように、電磁モータ6
を回転させながらあるいは回転を停止させて、電磁モー
タ6の角度を電磁モータ6により出力し、レーザ距離測
定器8で、所定角度毎に距離を測定し、記録し、トンネ
ルTの内周、すなわち360°に亘ってこれら測定およ
び記録する。なお、電磁モータ6が回転している際には
レーザ距離測定器8により常にレーザ光を照射し、計測
位置を目視できるように設定してもよく、また、任意角
度αで測距してもよい。
Then, as shown in FIG.
While rotating or stopping the rotation, the angle of the electromagnetic motor 6 is output by the electromagnetic motor 6, the distance is measured and recorded by the laser distance measuring device 8 at each predetermined angle, and the inner circumference of the tunnel T, that is, These are measured and recorded over 360 °. When the electromagnetic motor 6 is rotating, a laser beam may be constantly emitted by the laser distance measuring device 8 so that the measurement position can be set to be visible, or the distance can be measured at an arbitrary angle α. Good.

【0023】また、計測中に線が連続しない角の部分、
たとえば点A、点Bについて測距されないと、大きな誤
差が出やすいため、あらかじめこれら点A、点Bを入力
しておき、これらの部分でかならず測距するように設定
したり、あるいは、測距の際の計測データの面の変化を
捕らえるようにして、面の変化がある点A、点Bを自動
的に追い込み計測するようにしてもよい。
In addition, corner portions where lines are not continuous during measurement,
For example, if the distance is not measured for points A and B, a large error is likely to occur. Therefore, the points A and B are input in advance, and the distance is set to be always measured in these parts. In this case, a change in the surface of the measurement data at that time may be captured, and points A and B at which the surface changes may be automatically driven and measured.

【0024】このようにして、測距の際の内空断面測定
装置3の角度および測距した際の距離データなどから、
トンネルTの断面形状および断面積をマイクロコンピュ
ータ6により演算する。
In this way, from the angle of the inner space section measuring device 3 at the time of distance measurement, the distance data at the time of distance measurement, and the like,
The microcomputer 6 calculates the sectional shape and the sectional area of the tunnel T.

【0025】なお、レーザ距離測定器8の角度分解能を
変化させることにより、たとえば分解能を粗くすれば少
ないデータにすることができるので演算速度を高めるこ
とができ、反対に、分解能を密にすれば誤差を小さくよ
り精度を高めることができる。
By changing the angular resolution of the laser distance measuring device 8, for example, if the resolution is made coarse, less data can be obtained, so that the calculation speed can be increased. The error can be reduced and the accuracy can be increased.

【0026】また、このような動作をタイマ手段により
所定時間ごとあるいは任意に設定された時間ごとに継続
的にすれば、トンネルTの内面の経時的な変化について
計測できる。
If such an operation is continuously performed at predetermined time intervals or at an arbitrarily set time interval by the timer means, it is possible to measure a change with time of the inner surface of the tunnel T.

【0027】上記実施の形態によれば、レーザ距離測定
器8を回転させることにより、高速で高精度に360°
任意の範囲で断面の寸法を測定でき、可視光レーザを用
いることにより測距部分を目視できるため、一人で測距
部分を確認しながら、複雑な内空断面でも断面形状およ
び断面積を確認できる。
According to the above-described embodiment, by rotating the laser distance measuring device 8, high-speed and high-precision 360 °
The cross-sectional dimensions can be measured in an arbitrary range, and the range-measuring part can be visually observed using a visible light laser. .

【0028】また、そのまま設置しておけば、継続的に
内空断面を計測できる。
Further, if it is installed as it is, the inner space section can be continuously measured.

【0029】[0029]

【発明の効果】請求項1記載の内空断面測定装置によれ
ば、可視光レーザを照射して距離を測定することにより
測定対象となる場所が目視可能で、検知手段で検知され
た回転角に対応して距離計測手段で計測された距離を記
憶手段で記憶することにより内空断面を容易にかつ精度
高く測定できる。
According to the inner space section measuring apparatus of the first aspect, the position to be measured can be visually observed by irradiating the visible light laser to measure the distance, and the rotation angle detected by the detecting means. By storing the distance measured by the distance measuring means in the storage means in correspondence with the above, it is possible to easily and accurately measure the inner space section.

【0030】請求項2記載の内空断面測定装置によれ
ば、請求項1記載の内空断面測定装置に加え、記憶手段
に記憶された回転角および距離に基づき断面図演算手段
で内空断面図を演算して作成することにより、内空断面
の形状を容易にかつ精度高く測定できる。
According to a second aspect of the present invention, in addition to the first aspect of the present invention, in addition to the inner space section measuring apparatus of the first aspect, the inner space section is calculated by the sectional view calculating means based on the rotation angle and the distance stored in the storage means. By calculating and creating the figure, the shape of the inner hollow section can be easily and accurately measured.

【0031】請求項3記載の内空断面測定装置によれ
ば、請求項1または2記載の内空断面測定装置に加え、
記憶手段に記憶された回転角および距離に基づき断面積
演算手段で内空断面積を演算して作成することにより、
内空断面積を容易にかつ精度高く測定できる。
According to the inner space section measuring apparatus of the third aspect, in addition to the inner space section measuring apparatus of the first or second aspect,
By calculating and creating the inner space cross-sectional area by the cross-sectional area calculating means based on the rotation angle and the distance stored in the storage means,
The inner cross-sectional area can be easily and accurately measured.

【0032】請求項4記載の内空断面測定装置によれ
ば、請求項1ないし3いずれか記載の内空断面測定装置
に加え、測定手段の垂直および水平の少なくともいずれ
かを測定できる。
According to the inner space section measuring apparatus of the fourth aspect, in addition to the inner space section measuring apparatus of any one of the first to third aspects, at least one of vertical and horizontal of the measuring means can be measured.

【0033】請求項5記載の内空断面測定装置によれ
ば、請求項1ないし4いずれか記載の内空断面測定装置
に加え、タイマ手段により所定時間ごとあるいは任意に
設定された時間に動作させることにより、継続的に測定
して、内空断面の経時的変化を測定できる。
According to the inner space section measuring apparatus of the fifth aspect, in addition to the inner space section measuring apparatus of any one of the first to fourth aspects, the apparatus is operated every predetermined time or at an arbitrarily set time by the timer means. With this, it is possible to continuously measure the change of the inner space section with time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の内空断面測定装置の一実施の形態を示
す側面図である。
FIG. 1 is a side view showing an embodiment of an inner space section measuring apparatus according to the present invention.

【図2】同上平面図である。FIG. 2 is a plan view of the same.

【図3】同上使用状態を示す説明図である。FIG. 3 is an explanatory diagram showing a use state of the same.

【符号の説明】[Explanation of symbols]

3 内空断面測定装置 5 記憶手段、断面図演算手段、断面積演算手段およ
びタイマ手段としてのマイクロコンピュータ 6 回転手段および検知手段としての電磁モータ 8 距離計測手段としてのレーザ距離測定器 11,12,13 測定手段としての水準器
3 Internal-air cross-section measuring device 5 Microcomputer as storage means, cross-section calculating means, cross-sectional area calculating means and timer means 6 Electromagnetic motor as rotating means and detecting means 8 Laser distance measuring devices 11 and 12 as distance measuring means 13 Level as a measuring means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 可視光レーザを照射して距離を測定する
距離計測手段と、 測定する内空断面に対して垂直な軸方向を中心に前記距
離計測手段を回転させる回転手段と、 この回転手段の回転角を検知する検知手段と、 この検知手段で検知された回転角に対応して前記距離計
測手段で計測された距離を記憶する記憶手段とを具備し
たことを特徴とする内空断面測定装置。
1. A distance measuring means for measuring a distance by irradiating a visible light laser, a rotating means for rotating the distance measuring means around an axis perpendicular to an inner space section to be measured, and a rotating means. And a storage means for storing a distance measured by the distance measurement means corresponding to the rotation angle detected by the detection means. apparatus.
【請求項2】 記憶手段に記憶された回転角および距離
に基づき内空断面図を演算して作成する断面図演算手段
を具備したことを特徴とする請求項1記載の内空断面測
定装置。
2. The apparatus according to claim 1, further comprising a sectional view calculating means for calculating and creating an inner sectional view based on the rotation angle and the distance stored in the storage means.
【請求項3】 記憶手段に記憶された回転角および距離
に基づき内空断面積を演算する断面積演算手段を具備し
たことを特徴とする請求項1または2記載の内空断面測
定装置。
3. The inner space section measuring device according to claim 1, further comprising a sectional area calculating means for calculating an inner space sectional area based on the rotation angle and the distance stored in the storage means.
【請求項4】 垂直および水平の少なくともいずれかを
測定する測定手段を具備したことを特徴とする請求項1
ないし3いずれか記載の内空断面測定装置。
4. The apparatus according to claim 1, further comprising measuring means for measuring at least one of vertical and horizontal.
4. The apparatus for measuring an inner space section according to any one of claims 1 to 3.
【請求項5】 所定時間を経時し任意の時間に動作させ
るタイマ手段を具備したことを特徴とする請求項1ない
し4いずれか記載の内空断面測定装置。
5. The inner space section measuring device according to claim 1, further comprising timer means for operating a predetermined time and operating at an arbitrary time.
JP27197899A 1999-09-27 1999-09-27 Hollow cross section measuring device Pending JP2001091249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27197899A JP2001091249A (en) 1999-09-27 1999-09-27 Hollow cross section measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27197899A JP2001091249A (en) 1999-09-27 1999-09-27 Hollow cross section measuring device

Publications (1)

Publication Number Publication Date
JP2001091249A true JP2001091249A (en) 2001-04-06

Family

ID=17507457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27197899A Pending JP2001091249A (en) 1999-09-27 1999-09-27 Hollow cross section measuring device

Country Status (1)

Country Link
JP (1) JP2001091249A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044463A1 (en) * 2001-11-19 2003-05-30 Develo Inc. Cross-section measuring equipment
US20110141464A1 (en) * 2009-12-14 2011-06-16 CBC Engineers & Associates Ltd. Apparatus for measuring the inner surface of a culver or other tunnel defining structure imbedded in the ground
CN102322854A (en) * 2011-08-09 2012-01-18 山东大学 Tunnel monitoring measuring point and TSP (Total Suspended Particulate) blasthole layout device and method
CN102853818A (en) * 2012-08-13 2013-01-02 中铁十九局集团第七工程有限公司 Portable leveling rod support
CN104655038A (en) * 2015-02-13 2015-05-27 山东大学 Non-contact real-time monitoring system and method for deformation of surrounding rock and tunnel face in model test
RU173511U1 (en) * 2016-11-07 2017-08-29 Артур Юрьевич Синев DEVICE FOR MEASURING LINEAR AND ANGULAR VALUES INSIDE THE PREMISES
CN108955583A (en) * 2018-09-10 2018-12-07 华东交通大学 A kind of tunnel tunnel face cross-sectional area measuring instrument and measurement method
CN109029586A (en) * 2018-09-10 2018-12-18 华东交通大学 A kind of synthesis analyzer of localized tunnel face geometry and Geo-informatic Tupu
CN109211137A (en) * 2018-09-11 2019-01-15 华东交通大学 A kind of device and method of quick identification tunnel tunnel face lithology
CN111829441A (en) * 2020-09-03 2020-10-27 东北大学 Roadway surface displacement deformation monitoring method based on laser ranging principle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044463A1 (en) * 2001-11-19 2003-05-30 Develo Inc. Cross-section measuring equipment
US20110141464A1 (en) * 2009-12-14 2011-06-16 CBC Engineers & Associates Ltd. Apparatus for measuring the inner surface of a culver or other tunnel defining structure imbedded in the ground
US8384890B2 (en) * 2009-12-14 2013-02-26 CBC Engineers & Associates Ltd. Apparatus for measuring the inner surface of a culvert or other tunnel defining structure imbedded in the ground
CN102322854A (en) * 2011-08-09 2012-01-18 山东大学 Tunnel monitoring measuring point and TSP (Total Suspended Particulate) blasthole layout device and method
CN102853818A (en) * 2012-08-13 2013-01-02 中铁十九局集团第七工程有限公司 Portable leveling rod support
CN104655038A (en) * 2015-02-13 2015-05-27 山东大学 Non-contact real-time monitoring system and method for deformation of surrounding rock and tunnel face in model test
RU173511U1 (en) * 2016-11-07 2017-08-29 Артур Юрьевич Синев DEVICE FOR MEASURING LINEAR AND ANGULAR VALUES INSIDE THE PREMISES
CN108955583A (en) * 2018-09-10 2018-12-07 华东交通大学 A kind of tunnel tunnel face cross-sectional area measuring instrument and measurement method
CN109029586A (en) * 2018-09-10 2018-12-18 华东交通大学 A kind of synthesis analyzer of localized tunnel face geometry and Geo-informatic Tupu
CN109211137A (en) * 2018-09-11 2019-01-15 华东交通大学 A kind of device and method of quick identification tunnel tunnel face lithology
CN111829441A (en) * 2020-09-03 2020-10-27 东北大学 Roadway surface displacement deformation monitoring method based on laser ranging principle

Similar Documents

Publication Publication Date Title
US7841094B2 (en) Optical instrument with angle indicator and method for operating the same
KR101502880B1 (en) Device for measuring and marking space points along horizontally running contour lines
US8321167B2 (en) Surveying instrument and surveying compensation method
CN108291809B (en) Method for checking and/or calibrating the vertical axis of a rotating laser
JP2846950B2 (en) Apparatus for forming or defining the position of a measuring point
US20130070250A1 (en) Device for optically scanning and measuring an environment
EP3489625B1 (en) Surveying instrument
KR101484528B1 (en) Tilt sensor for a device and method for determining the tilt of a device
JP2001091249A (en) Hollow cross section measuring device
US6384902B1 (en) Surveying apparatus comprising a height measuring device
US20130021618A1 (en) Apparatus and method to indicate a specified position using two or more intersecting lasers lines
JP2007271627A (en) Work position measuring device
KR101291451B1 (en) Level measurement staff having reflection apparatus
JP2002174519A (en) Automatically measuring system for tunnel section
KR200252965Y1 (en) A hand-operated precision level
JP3574505B2 (en) Surveying instrument
JPH01184411A (en) Height and distance measuring meter
JPH0372209A (en) Measuring apparatus of displacement of rail
JPS63153420A (en) Method and device for detecting installing position of cross section measuring instrument
JP2644155B2 (en) Automatic surveying method for position of trailing bogie of shield machine
JP4378217B2 (en) Surveying equipment
JPS63217212A (en) Automatic detector for perpendicularity
GB2217454A (en) Position measurement system
JP2611103B2 (en) Automatic relative position surveying device
JPH08114451A (en) Method for measuring machine height of surveying instrument and measuring instrument