WO2003044463A1 - Cross-section measuring equipment - Google Patents

Cross-section measuring equipment Download PDF

Info

Publication number
WO2003044463A1
WO2003044463A1 PCT/JP2001/010072 JP0110072W WO03044463A1 WO 2003044463 A1 WO2003044463 A1 WO 2003044463A1 JP 0110072 W JP0110072 W JP 0110072W WO 03044463 A1 WO03044463 A1 WO 03044463A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
section
slider
laser
tunnel
Prior art date
Application number
PCT/JP2001/010072
Other languages
French (fr)
Japanese (ja)
Inventor
Takaharu Tomii
Original Assignee
Develo Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Develo Inc. filed Critical Develo Inc.
Priority to PCT/JP2001/010072 priority Critical patent/WO2003044463A1/en
Publication of WO2003044463A1 publication Critical patent/WO2003044463A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/06Tracing profiles of cavities, e.g. tunnels

Definitions

  • the present invention relates to a cross-section measuring device for measuring a cross-sectional shape of a space.
  • the present invention relates to a cross-section measurement device that can accurately measure an existing tunnel cross section (interior cross section).
  • the cross section of the tunnel and the displacement in the sky or the amount of settlement of the top, etc. the displacement of a plurality of targets fixed to a predetermined tunnel cross section is measured by a surveying device such as a transit. I have.
  • the surveying instrument must be installed at a position away from the cross section where the target is fixed, and the target must be collimated diagonally.
  • the measured values of the amount of displacement in the interior sky fluctuated significantly due to slight reading errors in the horizontal angle and vertical angle, and the obtained results were of low reliability. Disclosure of the invention
  • An object of the present invention is to provide a cross-section measuring apparatus that can easily and highly reliably measure a cross section of an inner space such as a tunnel.
  • the cross-section measuring device of the present invention comprises a slider (50) supported by a surveying device (12), and a slider (50) which is arranged in a predetermined horizontal direction orthogonal to a vertical axis (16) of the surveying device (12). And a horizontal moving mechanism (40) for moving the slider in a direction perpendicular to the horizontal axis (58) supported by the slider (50) via a horizontal axis (58) extending in parallel with the predetermined horizontal direction.
  • the laser range finder (60) for measurement and the rotation mechanism (62, 64, 66) that rotates the laser range finder (60) about the horizontal axis (58) Thus, it is configured.
  • the shape of the vertical cross-section including the measurement position can be accurately and reliably measured at the measurement position.
  • FIG. 1 is a perspective view of a cross-section measuring device according to the present invention.
  • FIG. 2 is a perspective view of a driving mechanism included in the cross-section measuring device of FIG.
  • FIG. 3 is a front view illustrating the operation of the laser range finder.
  • Figure 4 is an explanatory diagram of a method for measuring the inner slash surface of a tunnel. Preferred embodiments of the invention
  • FIG. 1 shows an oblique view of a spatial cross-section measuring device according to the present invention.
  • the spatial cross-sectional measuring device 10 shown therein includes a surveying device 12 and a distance measuring device 14.
  • the surveying device 12 uses a total station incorporating a microcomputer, and includes a surveying device main body 20 including a vertical axis 16 and an Eihei axis 18, and a vertical axis A telescope 24 including a collimating axis 22 passing through the intersection of the horizontal axis 18 and the horizontal axis 18, wherein the telescope 24 is located around the horizontal axis 18. It is supported rotatably.
  • the distance measuring device 14 has a lower structure (lower housing) 26 fixed to the upper part of the surveying device main body 2 ⁇ and an upper structure (upper housing) 28 supported by the lower structure 26.
  • the upper structure 28 is movable relative to the lower structure 26 in a direction parallel to the horizontal axis 18.
  • the lower structure 26 and the upper structure 28 have a shape in which a cylindrical body having hemispherical portions at both ends is cut along a plane parallel to the center axis thereof, but is limited to such a shape. Not something.
  • the upper structure 28 is formed with two light-transmitting windows 30 and 32 extending in the circumferential direction, so that light can be emitted and received through these light-transmitting windows. It is.
  • the moving mechanism 40 includes two guide rods 42 arranged in parallel with the horizontal axis 18 (see FIG. 1), and these two guide rods. It has a pair of support bases 44 for fixing both ends of 42 to the lower structure 26.
  • One screw rod (screw shaft) 46 is further disposed between the two guide rods 42, and the screw rod 46 is rotatably supported by the support base 44. .
  • the screw rod 46 is mounted on the support base 44.
  • the front and rear are fixed to the lower structure 26.
  • the rotary motor (horizontal movement motor) 48 is indirect or directly via a reduction mechanism (not shown). Is drivingly connected.
  • the upper structure 28 has a slider 50, and the housing of the upper structure 28 is supported by the slider 50.
  • the slider 50 has a guide hole 52 corresponding to the two guide holes 42 and a screw hole 54 corresponding to the screw rod 46.
  • a screw rod 46 is fitted to 4 so that it can move in the horizontal direction based on the rotation of the screw rod 46.
  • the slider 50 has a flange 56 fixedly supported on the end face from which the guide rod 42 and the screw rod 46 project. These flanges 56 rotatably support a rotating shaft 58 arranged parallel to the horizontal shaft 18 (see FIG. 1), and the laser ranging device 60 is fixed to the rotating shaft 58. ing.
  • the flange 56 also supports a forward / reverse rotating motor (rotating motor) 62, and its drive shaft (output shaft) 64 and rotating shaft 58 use a pulley or gear. It is drive-coupled through.
  • the laser range finder 60 has a housing 68, and the housing 68 is supported by a rotating shaft 58.
  • the housing 68 includes a laser oscillator 72 that emits a visible light laser 70 in a direction perpendicular to the horizontal axis 18 (see FIG. 1) and the rotation axis 58, and a laser 70 that is emitted from the laser oscillator 72.
  • a laser distance sensor (LASERVI EW LZ-203, LZ208, LZ210, LZ220) provided by Motoii Electric Co., Ltd. is available. It can be suitably used.
  • the measuring device 10 When measuring the inner cross section of a tunnel using the measuring device 10 having such a configuration, as shown in Fig. 4, the measuring device 10 is installed near the target tunneling line 80. I do. At this time, there is no need to accurately align the measuring device 10 with the target measurement line 80. Next, the coordinates (own position) at which the surveying device 10 is installed are determined using the existing reference points (not shown). Then, a displacement ( ⁇ ) between the position of the surveying device 10 and the survey line 80 in the direction along the center line 84 of the tunnel 82 is calculated. Next, the surveying instrument main body 20 is rotated, and the horizontal axis 18 (see Fig. 1) of the surveying instrument 10 is set parallel to the center of the tunnel f spring 84.
  • the horizontal movement motor 48 (see FIG. 2) is driven based on a command from the input unit 86 of the surveying device 12 shown in FIG. 1 or a portable computer 88 connected to the surveying device 12. Then, the slider 50 is moved to make the center of the laser oscillator 72 (the emission position of the laser 70) coincide with the measurement line 80. The above operation completes the preparation for the measurement of the cross-section inside the tunnel.
  • the measurement of the inner space section is performed based on an instruction from the input unit 86 of the surveying device 12 or a portable computer 88 connected thereto.
  • the rotary motor 62 is driven to set the laser range finder 60 to the initial position (the position shown by the one-dot chain line in FIG. 3).
  • the laser range finder 60 is rotated to the end position (the position P 2 shown by a two-dot chain line in FIG. 3) in the embodiment 2.
  • the laser range finder 60 is moved right and left around the vertical axis.
  • Each angle can be rotated up to 135 °, however, this angle is not limited, while the laser rangefinder 60 is rotating, the laser oscillator 72 of this laser rangefinder 60 is visible. Emit light laser 70. Emitted visible light laser 70 hits the inner surface of tunnel on measurement line 80, and generates a laser spot.These laser spots are sequentially imaged by image receiving unit 74, and laser ranging is performed. The distance from the predetermined position of the heater 60 to the laser spot is The calculation result (data) is stored in a built-in memory (not shown) of the surveying instrument 12. The calculation result is transmitted to the portable computer 88 and, if necessary, the portable computer is used. It may be stored in the memory of the computer 88.
  • the portable computer 88 is communicably or wirelessly connected to a central management computer 90 installed at a remote location, the de taken into mold computer 8 8 -. data can also be stored and transmitted to the central management computer 9 0, if necessary, based on the obtained data, the display 9 2 central computer 9 0
  • the cross section of the inside of the tunnel may be displayed. It is preferable to display it in comparison with the cross section.
  • the measuring device 10 of the present invention even if the surveying device 12 does not exactly match the survey line, the surveying device and the surveying device are measured by the ranging device 14.
  • the position of the tunnel can be easily corrected, and the target cross section in the tunnel can be measured on the cross section. Therefore, the shape of the inner cross section obtained is extremely accurate and highly reliable.
  • the cross section inside the tunnel is measured using the cross section measuring device of the present invention.
  • the inside cross section other than the tunnel can be measured in the same manner.
  • the cross-section measuring device of the present invention can measure not only a tunnel cross-section but also a vertical cross-section.
  • data is transmitted / received to / from another computer using the portable computer 88.
  • the communication card can be attached to / detached from the surveying instrument 12 and the data can be transmitted / received using this communication card. May be transmitted and received.
  • another laser oscillator 94 is provided in the lower structure (lower housing) 26 or the upper structure (upper housing) 28 of the distance measuring device 14.
  • the laser light 96 oscillated from side to side may be oscillated in parallel with the collimating axis 22.
  • the corresponding tunnel side wall can be marked by irradiating the laser beam 96 in a direction orthogonal to this. It is preferable that the laser light 96 oscillated from the laser oscillator 94 crosses the vertical axis 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A cross-section measuring equipment (10) comprising a slider (50) supported by an measuring device (12), a mechanism (40) for moving the slider (50) in a specified horizontal direction orthogonal to the vertical axis (16) of the measuring device (12), a laser range finder (60) supported by the slider (50) through a shaft (58) extending in parallel with the specified horizontal direction and measuring the distance in a direction orthogonal to the shaft (58), and mechanisms (62, 64, 66) for rotating the laser range finder (60) about the shaft (58). Inner hollow cross-section of a tunnel can be measured easily with high reliability using this equipment.

Description

明 細 書 断面計測装置 技術分野  Description Cross-section measurement device Technical field
本発明は、 空間の断面形状を計測する断面計測装置に関する。 特に、 本発明は、 既設のトンネル断面 (内空断面) を精密に測定することができる断面計測装置に 関する。 背景技術  The present invention relates to a cross-section measuring device for measuring a cross-sectional shape of a space. In particular, the present invention relates to a cross-section measurement device that can accurately measure an existing tunnel cross section (interior cross section). Background art
特に、 山岳トンネル工事では、 トンネル掘削直後の断面を速やかに測定してそ の変形を確認し、 変形の程度に応じて適当な対策を講じることが必要である。 そ のため、 トンネル断面及び内空変位若しくは天端沈下量等を測量する方法として、 所定のトンネル断面に固定された複数のターゲットの変位量をトランシットなど の測量装置で測定することが行われている。  Especially in mountain tunnel construction, it is necessary to measure the cross section immediately after the tunnel excavation and confirm its deformation, and take appropriate measures according to the degree of deformation. Therefore, as a method of measuring the cross section of the tunnel and the displacement in the sky or the amount of settlement of the top, etc., the displacement of a plurality of targets fixed to a predetermined tunnel cross section is measured by a surveying device such as a transit. I have.
しかしながら、 この方法は、 ターゲットが固定された断面から離れた位置に測 量装置を設置し、 斜めにターゲットを視準しなければならない。 そのため、 水平 角及び鉛直角の僅かな読取誤差によって内空変位量の測定値が大きく変動し、 得 られた結果は信頼性の低 Vヽものであつた。 発明の開示  However, in this method, the surveying instrument must be installed at a position away from the cross section where the target is fixed, and the target must be collimated diagonally. As a result, the measured values of the amount of displacement in the interior sky fluctuated significantly due to slight reading errors in the horizontal angle and vertical angle, and the obtained results were of low reliability. Disclosure of the invention
本願発明は、 トンネルなどの内空断面を簡単に且つ高い信頼性をもって計測で きる断面計測装置を提供することを目的とする。  SUMMARY OF THE INVENTION An object of the present invention is to provide a cross-section measuring apparatus that can easily and highly reliably measure a cross section of an inner space such as a tunnel.
具体的に、 本発明の断面計測装置は、 測量装置 (12) に支持されたスライダ (50) と、 スライダ (50) を測量装置 (12) の鉛直軸 (16) と直交する 所定の水平方向に移動させる水平移動機構 (40) と、 この所定の水平方向と平 行に延びる水平軸 (58) を介してスライダ (50) に支持され且つ水平軸 (5 8) に直交する方向の距離を測定するレーザ測距計 (60) と、 水平軸 (58) を中心としてレーザ測距計 (60) を回転する回転機構 (62、 64、 66) に よって構成したものである。 このように構成された断面計測装置によれば、 計測 位置を含む鉛直断面の形状をその計測位置で正確に且つ信頼性をもって計測でき る。 図面の簡単な説明 Specifically, the cross-section measuring device of the present invention comprises a slider (50) supported by a surveying device (12), and a slider (50) which is arranged in a predetermined horizontal direction orthogonal to a vertical axis (16) of the surveying device (12). And a horizontal moving mechanism (40) for moving the slider in a direction perpendicular to the horizontal axis (58) supported by the slider (50) via a horizontal axis (58) extending in parallel with the predetermined horizontal direction. The laser range finder (60) for measurement and the rotation mechanism (62, 64, 66) that rotates the laser range finder (60) about the horizontal axis (58) Thus, it is configured. According to the cross-section measurement device configured as described above, the shape of the vertical cross-section including the measurement position can be accurately and reliably measured at the measurement position. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る断面計測装置の斜視図である。  FIG. 1 is a perspective view of a cross-section measuring device according to the present invention.
図 2は、 図 1の断面計測装置に含まれる駆動機構の斜視図である。  FIG. 2 is a perspective view of a driving mechanism included in the cross-section measuring device of FIG.
図 3は、 レーザ測距器の動作を説明する正面図である。  FIG. 3 is a front view illustrating the operation of the laser range finder.
図 4は、 トンネルの内空斬面を計測する方法の説明図である。 好適な発明の実施形態  Figure 4 is an explanatory diagram of a method for measuring the inner slash surface of a tunnel. Preferred embodiments of the invention
図 1は本発明に係る空間断面計測装置を斜めから見た状態を示し、 そこに示す 空間断面計測装置 1 0は測量装置 1 2と測距装置 1 4からなる。 本実施形態にお いて、.測量装置 1 2は、 マイクロコンピュータを内蔵したトータルステーション が利用されており、 鉛直軸 1 6と永平軸 1 8とを含む測量装置本体 2 0と、 これ ら鉛直軸 1 6と水平軸 1 8の交点を通り且つ水平軸 1 8に直交する視準軸 2 2を 含む望遠鏡 2 4とを有し、 望遠鏡 2 4が水平軸 1 8を中心に測量装置本体 2 0に 回転自在に支持されている。  FIG. 1 shows an oblique view of a spatial cross-section measuring device according to the present invention. The spatial cross-sectional measuring device 10 shown therein includes a surveying device 12 and a distance measuring device 14. In the present embodiment, the surveying device 12 uses a total station incorporating a microcomputer, and includes a surveying device main body 20 including a vertical axis 16 and an Eihei axis 18, and a vertical axis A telescope 24 including a collimating axis 22 passing through the intersection of the horizontal axis 18 and the horizontal axis 18, wherein the telescope 24 is located around the horizontal axis 18. It is supported rotatably.
測距装置 1 4は、 測量装置本体 2◦の上部に固定された下部構造 (下部ハウジ ング) 2 6と、 この下部構造 2 6に支持された上部構造 (上部ハウジング) 2 8 とを有し、 上部構造 2 8は下部構造 2 6に対して水平軸 1 8と平行な方向に移動 可能としてある。 本実施形態において、 下部構造 2 6と上部構造 2 8は、 両端に 半球状の部分を有する円筒体をその中心軸と平行な面に沿って切断した形として あるが、 そのような形状に限るものでない。 また、 本実施形態において、 上部構 造 2 8には、 周方向に延びる 2つの透光窓 3 0 , 3 2が形成されており、 これら の透光窓を介して光が出射、 受像できるようにしてある。  The distance measuring device 14 has a lower structure (lower housing) 26 fixed to the upper part of the surveying device main body 2 ◦ and an upper structure (upper housing) 28 supported by the lower structure 26. The upper structure 28 is movable relative to the lower structure 26 in a direction parallel to the horizontal axis 18. In the present embodiment, the lower structure 26 and the upper structure 28 have a shape in which a cylindrical body having hemispherical portions at both ends is cut along a plane parallel to the center axis thereof, but is limited to such a shape. Not something. Further, in the present embodiment, the upper structure 28 is formed with two light-transmitting windows 30 and 32 extending in the circumferential direction, so that light can be emitted and received through these light-transmitting windows. It is.
上部構造 2 8を下部構造 2 6に対して移動可能に支持するために、 下部構造 2 6は図 2に示す移動機構 4 0を有する。 移動機構 4 0は、 水平軸 1 8 (図 1参 照) と平行に配置された 2本のガイドロッド 4 2と、 これら 2本のガイドロッド 4 2の両端を下部構造 2 6に対して固定する一対の支持台 4 4を有する。 2本の ガイドロッド 4 2の間には更に 1本のスクリユーロッド (ねじ軸) 4 6が配置さ れており、 このスクリユーロッド 4 6は支持台 4 4に回転自在に支持されている。 また、 スクリューロッド 4 6は、 支持台 4 4文は下部構造 2 6に固定された正逆. 回転モータ (水平移動モータ) 4 8に直接又は減速機構 (図示せず) を介して間 接的に駆動連結されている。 In order to movably support the upper structure 28 with respect to the lower structure 26, the lower structure 26 has a moving mechanism 40 shown in FIG. The moving mechanism 40 includes two guide rods 42 arranged in parallel with the horizontal axis 18 (see FIG. 1), and these two guide rods. It has a pair of support bases 44 for fixing both ends of 42 to the lower structure 26. One screw rod (screw shaft) 46 is further disposed between the two guide rods 42, and the screw rod 46 is rotatably supported by the support base 44. . In addition, the screw rod 46 is mounted on the support base 44. The front and rear are fixed to the lower structure 26. The rotary motor (horizontal movement motor) 48 is indirect or directly via a reduction mechanism (not shown). Is drivingly connected.
上部構造 2 8はスライダ 5 0を有し、 このスライダ 5 0に上部構造 2 8のハウ ジングが支持されている。 スライダ 5 0は、 図 3に示すように、 2本のガイド口 ッド 4 2に対応するガイド孔 5 2と、 スクリユーロッド 4 6に対応するねじ孔 5 4を有し、 ガイド孔 5 2にそれぞれガイドロッド 4 2を揷通すると共にねじ孔 5 The upper structure 28 has a slider 50, and the housing of the upper structure 28 is supported by the slider 50. As shown in FIG. 3, the slider 50 has a guide hole 52 corresponding to the two guide holes 42 and a screw hole 54 corresponding to the screw rod 46. Through guide rods 4 2 and screw holes 5
4にスクリユーロッド 4 6を嵌め合わせ、 スクリユーロッド 4 6の回転に基づい て水平方向に移動できるようにしてある。 図 2に戻り、 スライダ 5 0は、 ガイド ロッド 4 2とスクリユーロッド 4 6が突出する端面にそれぞれフランジ 5 6を固 定的に支持している。 これらフランジ 5 6は水平軸.1 8 (図 1参照) と平行に配 置された回転軸 5 8を回転自在に支持しており、 この回転軸 5 8にレーザ測距器 6 0が固定されている。 フランジ 5 6はまた正逆回転モータ (回転モータ) 6 2 を支持しており、 その駆動軸 (出力軸) 6 4と回転軸 5 8がプーリ又は歯車を用 V、た回転伝達機構 6 6を介して駆動連結されている。 A screw rod 46 is fitted to 4 so that it can move in the horizontal direction based on the rotation of the screw rod 46. Returning to FIG. 2, the slider 50 has a flange 56 fixedly supported on the end face from which the guide rod 42 and the screw rod 46 project. These flanges 56 rotatably support a rotating shaft 58 arranged parallel to the horizontal shaft 18 (see FIG. 1), and the laser ranging device 60 is fixed to the rotating shaft 58. ing. The flange 56 also supports a forward / reverse rotating motor (rotating motor) 62, and its drive shaft (output shaft) 64 and rotating shaft 58 use a pulley or gear. It is drive-coupled through.
レーザ測距器 6 0はハゥジング 6 8を有し、 このハゥジング 6 8が回転軸 5 8 に支持されている。 ハウジング 6 8は、 水平軸 1 8 (図 1参照) 及び回転軸 5 8 と直交する方向に可視光レーザ 7 0を出射するレーザ発振器 7 2と、 レーザ発振 器 7 2から出射されたレーザ 7 0の照射位置 (レーザスポット ) を撮像する受像 部 7 4と、 受像部 7 4で受像したレーザスポット像からレーザ測距器 6 0の所定 位置から照射位置までの距離を演算する演算部 (図示せず) とを有する。 このレ 一ザ測距器 6 0としては、 モトイ電気有限会社から提供されているレーザ距離セ ンサー (L A S E R V I EW L Z— 2 0 3、 L Z 2 0 8、 L Z 2 1 0、 L Z 2 2 0 ) が好適に利用できる。  The laser range finder 60 has a housing 68, and the housing 68 is supported by a rotating shaft 58. The housing 68 includes a laser oscillator 72 that emits a visible light laser 70 in a direction perpendicular to the horizontal axis 18 (see FIG. 1) and the rotation axis 58, and a laser 70 that is emitted from the laser oscillator 72. Receiving unit 74 for imaging the irradiation position (laser spot) of the laser, and a calculating unit (not shown) for calculating the distance from a predetermined position of the laser range finder 60 to the irradiation position from the laser spot image received by the image receiving unit 74. Z) As the laser range finder 60, a laser distance sensor (LASERVI EW LZ-203, LZ208, LZ210, LZ220) provided by Motoii Electric Co., Ltd. is available. It can be suitably used.
このような構成を有する計測装置 1 0を用いてトンネルの内空断面を計測する 場合、 図 4に示すように、 目的のトンネノレ測線 8 0の近傍に計測装置 1 0を設置 する。 このとき、 計測装置 1 0を目的の測線 8 0に正確に位置合わせする必要は ない。 次に、 測量装置 1 0の設置された座標 (自位置) を、 既設基準点 (図示せ ず) を利用して求める。 そして、 トンネル 8 2の中心線 8 4に沿った方向の、 測 量装置 1 0の位置と測線 8 0との位置ずれ (δ ) を演算する。 続いて、 測量装置 本体 2 0を回転し、 測量装置 1 0の水平軸 1 8 (図 1参照) をトンネル中心 f泉 8 4に平行に設定する。 その後、 図 1に示す測量装置 1 2の入力部 8 6又は該測量 装置 1 2に接続された携帯型コンピュータ 8 8からの指令に基づいて水平移動モ ータ 4 8 (図 2参照) を駆動してスライダ 5 0を移動し、 レーザ発振器 7 2の中 心 (レーザ 7 0の出射位置) を測線 8 0に一致させる。 以上の操作により、 トン ネル内空断面の計測準備が完了する。 When measuring the inner cross section of a tunnel using the measuring device 10 having such a configuration, as shown in Fig. 4, the measuring device 10 is installed near the target tunneling line 80. I do. At this time, there is no need to accurately align the measuring device 10 with the target measurement line 80. Next, the coordinates (own position) at which the surveying device 10 is installed are determined using the existing reference points (not shown). Then, a displacement (δ) between the position of the surveying device 10 and the survey line 80 in the direction along the center line 84 of the tunnel 82 is calculated. Next, the surveying instrument main body 20 is rotated, and the horizontal axis 18 (see Fig. 1) of the surveying instrument 10 is set parallel to the center of the tunnel f spring 84. Thereafter, the horizontal movement motor 48 (see FIG. 2) is driven based on a command from the input unit 86 of the surveying device 12 shown in FIG. 1 or a portable computer 88 connected to the surveying device 12. Then, the slider 50 is moved to make the center of the laser oscillator 72 (the emission position of the laser 70) coincide with the measurement line 80. The above operation completes the preparation for the measurement of the cross-section inside the tunnel.
内空断面の計測は、 測量装置 1 2の入力部 8 6又はこれに接続された携帯型コ ンピュータ 8 8からの指示に基づいて行われる。 いずれかの装置から計測開始が 指示されると、 回転モータ 6 2が駆動してレーザ測距器 6 0を初期位置 (図 3に 一点鎖線で示す位置 に設定し、 この状態から再び回転モータ 6 2を駆動レ てレーザ測距器 6 0を終了位置 (図 3に二点鎖線で示す位置 P 2) まで回転する。 本実施形態では、 レーザ測距器 6 0は、 鉛直軸を中心として左右にそれぞれ 1 3 5 ° まで回転できるようにしてある。 ただし、 この角度は限定的ではない。 レ 一ザ測距器 6 0の回転中、 このレーザ測距器 6 0のレーザ発振器 7 2が可視光レ 一ザ 7 0を出射する。 出射された可視光レーザ 7 0は測線 8 0上のトンネル内面 に当たり、 レーザスポットを生じる。 このレーザスポットは順次受像部 7 4で撮 像され、 レーザ測距器 6 0の所定位置からレーザスポットまでの距離が演算部で 演算される。 演算された結果 (データ) は、 測量装置 1 2の内蔵メモリ (図示せ ず) に保存される。 演算結果は、 携帯型コンピュータ 8 8に送信し、 必要であれ ば該携帯型コンピュータ 8 8のメモリに保存してもよい。 また、 携帯型コンビュ ータ 8 8が遠隔地に設置された中央管理コンピュータ 9 0と無線または有線によ つて通信可能に接続されている場合、 携帯型コンピュータ 8 8に取り込まれたデ —タは中央管理コンピュータ 9 0に送信して保存することもできる。 必要であれ ば、 得られたデータをもとに、 中央コンピュータ 9 0のディスプレイ 9 2にトン ネル内空断面を表示してもよい。 このとき、 計測された断面を以前に計測したと き断面と対比して表示するのが好ましい。 The measurement of the inner space section is performed based on an instruction from the input unit 86 of the surveying device 12 or a portable computer 88 connected thereto. When the start of measurement is instructed by any of the devices, the rotary motor 62 is driven to set the laser range finder 60 to the initial position (the position shown by the one-dot chain line in FIG. 3). Then, the laser range finder 60 is rotated to the end position (the position P 2 shown by a two-dot chain line in FIG. 3) in the embodiment 2. In the present embodiment, the laser range finder 60 is moved right and left around the vertical axis. Each angle can be rotated up to 135 °, however, this angle is not limited, while the laser rangefinder 60 is rotating, the laser oscillator 72 of this laser rangefinder 60 is visible. Emit light laser 70. Emitted visible light laser 70 hits the inner surface of tunnel on measurement line 80, and generates a laser spot.These laser spots are sequentially imaged by image receiving unit 74, and laser ranging is performed. The distance from the predetermined position of the heater 60 to the laser spot is The calculation result (data) is stored in a built-in memory (not shown) of the surveying instrument 12. The calculation result is transmitted to the portable computer 88 and, if necessary, the portable computer is used. It may be stored in the memory of the computer 88. If the portable computer 88 is communicably or wirelessly connected to a central management computer 90 installed at a remote location, the de taken into mold computer 8 8 -. data can also be stored and transmitted to the central management computer 9 0, if necessary, based on the obtained data, the display 9 2 central computer 9 0 The cross section of the inside of the tunnel may be displayed. It is preferable to display it in comparison with the cross section.
以上の説明から明らかなように、 本発明に係る計測装置 1 0によれば、 測量装 置 1 2が測線に正確に一致していなくても、 測距装置 1 4によつて測線と測量装 置との位置づれを容易に補正し、 目的のトンネル内空断面をその断面上で計測す ることができる。 したがって、 得られた内空断面の形状は極めて正確で信頼性の 高いものである。  As is clear from the above description, according to the measuring device 10 of the present invention, even if the surveying device 12 does not exactly match the survey line, the surveying device and the surveying device are measured by the ranging device 14. The position of the tunnel can be easily corrected, and the target cross section in the tunnel can be measured on the cross section. Therefore, the shape of the inner cross section obtained is extremely accurate and highly reliable.
なお、 以上の説明では本発明の断面計測装置を用いてトンネル内空断面を計測 する場合を説明したが、 トンネル以外の内空断面も同様に計測できる。 また、 ト ンネルの内空断面の測量の場合、 予め決められた測線以外の任意の場所で内空断 面を測量することも当然可能である。 さらに、 本発明の断面計測装置は、 トンネ ル横断面だけでなく、 縦断面も測量可能である。  In the above description, the case where the cross section inside the tunnel is measured using the cross section measuring device of the present invention has been described. However, the inside cross section other than the tunnel can be measured in the same manner. In the case of surveying the inner section of the tunnel, it is of course possible to measure the inner section at an arbitrary location other than the predetermined survey line. Further, the cross-section measuring device of the present invention can measure not only a tunnel cross-section but also a vertical cross-section.
また、 以上の説明では携帯型コンピュータ 8 8を用いて他のコンピュータとの 間でデータを送受信するものとしたが、 通信カードを測量装置 1 2に着脱可能と し、 この通信カードを用いてデータを送受信してもよい。  Further, in the above description, data is transmitted / received to / from another computer using the portable computer 88. However, the communication card can be attached to / detached from the surveying instrument 12 and the data can be transmitted / received using this communication card. May be transmitted and received.
さらに、 図 1に示すように、 測距装置 1 4の下部構造 (下部ハウジング) 2 6 又は上部構造 (上部ハゥジング) 2 8に別のレーザ発振器 9 4を設け、 このレー ザ宪振器 9 4から左右に発振されたレーザ光 9 6を視準軸 2 2と平行に発振する ようにしてもよい。 これにより、 水平軸 1 8をトンネル中心線に平行に設定した 状態で、 これに直交する方向にレーザ光 9 6を照射して対応するトンネル側壁に 印を付けることができる。 なお、 レーザ発振器 9 4から発振されるレーザ光 9 6 が鉛直軸 1 6と交叉するようにするのが好ましい。  Further, as shown in FIG. 1, another laser oscillator 94 is provided in the lower structure (lower housing) 26 or the upper structure (upper housing) 28 of the distance measuring device 14. Alternatively, the laser light 96 oscillated from side to side may be oscillated in parallel with the collimating axis 22. Thus, with the horizontal axis 18 set parallel to the tunnel center line, the corresponding tunnel side wall can be marked by irradiating the laser beam 96 in a direction orthogonal to this. It is preferable that the laser light 96 oscillated from the laser oscillator 94 crosses the vertical axis 16.

Claims

請 求 の 範 囲 The scope of the claims
1. 空間断面を計測する装置であって、 1. a device that measures the cross section of a space,
測量装置 (12) に支持されたスライダ (50) と、  A slider (50) supported by a surveying device (12);
スライダ (50) を測量装置 (12) の鉛直軸 (16) と直交する所定の水平 方向に移動させる水平移動機構 (40) と、  A horizontal movement mechanism (40) for moving the slider (50) in a predetermined horizontal direction orthogonal to the vertical axis (16) of the surveying device (12);
この所定の水平方向と平行に延びる水平軸 (58) を介してスライダ (50) に支持され且つ水平軸 (58) に直交する方向の距離を測定するレーザ測距計 (60) と、  A laser range finder (60) supported by the slider (50) via a horizontal axis (58) extending parallel to the predetermined horizontal direction and measuring a distance in a direction perpendicular to the horizontal axis (58);
水平軸 (58) を中心としてレーザ測距計 (60) を回転する回転機構 (62、 64、 66) とを備えたことを特徴とする断面計測装置 (1.0) 。  A cross-section measuring apparatus (1.0), comprising: a rotation mechanism (62, 64, 66) for rotating a laser range finder (60) about a horizontal axis (58).
PCT/JP2001/010072 2001-11-19 2001-11-19 Cross-section measuring equipment WO2003044463A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/010072 WO2003044463A1 (en) 2001-11-19 2001-11-19 Cross-section measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/010072 WO2003044463A1 (en) 2001-11-19 2001-11-19 Cross-section measuring equipment

Publications (1)

Publication Number Publication Date
WO2003044463A1 true WO2003044463A1 (en) 2003-05-30

Family

ID=11737947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010072 WO2003044463A1 (en) 2001-11-19 2001-11-19 Cross-section measuring equipment

Country Status (1)

Country Link
WO (1) WO2003044463A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115904U (en) * 1984-12-28 1986-07-22
JPH03217600A (en) * 1990-01-22 1991-09-25 Kinki Nippon Tetsudo Kk Photography of inside wall surface of tunnel and device therefor
JPH1130521A (en) * 1997-07-11 1999-02-02 Sokkia Co Ltd Surveying machine
JP2001091249A (en) * 1999-09-27 2001-04-06 Wall Natsuto:Kk Hollow cross section measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115904U (en) * 1984-12-28 1986-07-22
JPH03217600A (en) * 1990-01-22 1991-09-25 Kinki Nippon Tetsudo Kk Photography of inside wall surface of tunnel and device therefor
JPH1130521A (en) * 1997-07-11 1999-02-02 Sokkia Co Ltd Surveying machine
JP2001091249A (en) * 1999-09-27 2001-04-06 Wall Natsuto:Kk Hollow cross section measuring device

Similar Documents

Publication Publication Date Title
US5956661A (en) Telemetric spacial data recorder
US10935369B2 (en) Automated layout and point transfer system
JP6560596B2 (en) Surveying equipment
AU2004276459B2 (en) Method and system for determining the spatial position of a hand-held measuring appliance
US7086162B2 (en) Method and apparatus for distance measurement
JP4177765B2 (en) Surveying system
JP2006242755A (en) Surveying system
JP2019117127A (en) Three-dimensional information processing unit, device equipped with three-dimensional information processing unit, unmanned aircraft, notification device, moving object control method using three-dimensional information processing unit, and program for moving body control process
JP7313955B2 (en) Surveying instrument, surveying method and surveying program
US10551188B2 (en) Three-dimensional surveying device and three-dimensional surveying method
JP2004502956A (en) Spatial positioning
JP2018009957A (en) Three-dimensional position measurement system, three-dimensional position measurement method, and measurement module
JP2019105515A (en) Target device, surveying method, surveying device and program
US20180003820A1 (en) Three-dimensional position measuring system, three-dimensional position measuring method, and measuring module
JPH0334805B2 (en)
US20130021618A1 (en) Apparatus and method to indicate a specified position using two or more intersecting lasers lines
WO2003044463A1 (en) Cross-section measuring equipment
JP2017187386A (en) Laser range-finder
JP7289252B2 (en) Scanner system and scanning method
CN111580127B (en) Mapping system with rotating mirror
JP2919273B2 (en) Multifunctional surveying measurement system
JP3574505B2 (en) Surveying instrument
JP3458075B2 (en) Surveying device and surveying method in propulsion method
JPH06100078B2 (en) Automatic survey positioning system for tunnel lining machines
JPS6188105A (en) Instrument for measuring section of tunnel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP