JPS63217212A - Automatic detector for perpendicularity - Google Patents

Automatic detector for perpendicularity

Info

Publication number
JPS63217212A
JPS63217212A JP5111287A JP5111287A JPS63217212A JP S63217212 A JPS63217212 A JP S63217212A JP 5111287 A JP5111287 A JP 5111287A JP 5111287 A JP5111287 A JP 5111287A JP S63217212 A JPS63217212 A JP S63217212A
Authority
JP
Japan
Prior art keywords
telescope
base
perpendicularity
column
verticality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5111287A
Other languages
Japanese (ja)
Other versions
JP2531950B2 (en
Inventor
Makoto Komori
小森 眞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Construction Co Ltd
Original Assignee
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Construction Co Ltd filed Critical Tokyu Construction Co Ltd
Priority to JP62051112A priority Critical patent/JP2531950B2/en
Publication of JPS63217212A publication Critical patent/JPS63217212A/en
Application granted granted Critical
Publication of JP2531950B2 publication Critical patent/JP2531950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To detect perpendicularity speedily through easy operation by driving and rotating an adjusting screw which engages with a telescope base threadably by a servo-motor and generating a signal for servo-motor driving with an inclination signal from a level on the telescope base. CONSTITUTION:An automatic perpendicularity detector 10 is fitted to a base or existent lower-layer steel column 11 and a fixation base 1 is fixed. A target 13, on the other hand, is fitted to the upper part of another steel column 12 built in the column 11. Further, the center position of the vertical cylinder body 5a of the telescope 5 of the device 10 and the position of the collimation point of the target 13 are set to specific positions of the column 11 and 12, e.g. at the same distance from the center points. Then, a perpendicularity correction unit 9 receives inclination signals (a) from levels 8 and 8 to generate a pulse (b) and the servo-motor 2 operates according to the signal to adjust the telescope base 4 horizontal, whose accurate perpendicularity is calculated. Here, the column 12 is adjusted through an ocular 7 so that the collimation point of the target 13 meets a collimation point, thereby obtaining the perpendicularity.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、鉄骨やカーテンウオール等の構築材の建方、
杭打設、スライディング7す一ムその他の型枠の組付、
土留等に於ける鉛直度自動検出装置に関するものである
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to the construction of construction materials such as steel frames and curtain walls;
Pile driving, installation of sliding 7-frame and other formwork,
This invention relates to an automatic verticality detection device for earthworks, etc.

[従来技術とその問題点1 在米、例えば鉄骨柱の建方工法としては、第3図に示す
ように、建込中の鉄骨柱SのX方向とY方向に、それぞ
れトランシラ}Tを設置して、両方向の鉄骨柱Sの傾き
を目視により観測し、鉄骨柱Sの鉛直度を検出していた
[Prior art and its problems 1 In the United States, for example, as a construction method for steel-frame columns, as shown in Fig. 3, a transillar} T is installed in the X direction and Y direction of the steel column S under construction, respectively. The verticality of the steel column S was detected by visually observing the inclination of the steel column S in both directions.

しかしながら、このようなトランシフトによる方法は、 (a)トランシフトが2台必要となって、装置に管用が
かかる。
However, such a method using transshift requires: (a) Two transshifts are required, which requires additional equipment.

(b)トランシフトによる観測者も2名必要となり、人
件豐がかさむ。
(b) Two observers are also required for transshifting, which increases the labor cost.

(c)トランシットを鉄骨柱から相当離れた場所に設け
る必要があり、特に周囲が狭い場合には、トランシフト
の設置が不可能となる。
(c) It is necessary to install the transit at a considerable distance from the steel column, making it impossible to install the transit, especially if the surrounding area is narrow.

(d)トランシフトの据付は作業が煩雑であって熟練を
要し、またFランシフト自体の垂直度が狂い易い。
(d) Installation of the trans shift is complicated and requires skill, and the verticality of the F run shift itself is likely to be disturbed.

(e))ランシフトを建物内に据付けて観測する場合、
建物に振動や揺れがあると、トランシフト計測は不正確
または不可能となる。
(e)) When observing by installing Runshift inside a building,
If the building is subject to vibration or shaking, transshift measurements may be inaccurate or impossible.

等の問題点があった。There were problems such as.

また従来、第4図に示すように、鉄骨柱Sの上部から下
げ振1)Wを垂らし、下部で定規Mにより鉄骨柱Sから
の離れ具合を測定して、鉛直度を検出する方法もあった
Conventionally, as shown in Fig. 4, there is also a method of detecting verticality by hanging a plumb swing 1) W from the top of a steel column S and measuring its distance from the steel column S using a ruler M at the bottom. Ta.

しかし、この下げ振りによる方法は、特に風速が3 m
/secを越える場合には実施不可能となり、気象情況
により作業が大きく制限され、工期に支障をきたす等の
問題点があった。
However, this method using a plumb bob is particularly difficult when the wind speed is 3 m
/sec, it becomes impossible to carry out the work, and there are problems such as the work is greatly restricted due to weather conditions and the construction period is hindered.

さらに従来、第5図に示すように、鉄骨柱Sの下部に垂
直センサーPを取付け、該垂直センサーに装着しである
望遠鏡により鉄骨柱の上部に取付けたターデフ)Qを規
準して鉄骨柱Sの鉛直度を検出するものがあった。
Furthermore, as shown in FIG. There was a device that detected the verticality of

しかしながら、この垂直センサーによる方法も、(a)
人間がX方向、Y方向に望遠鏡の向きを目で規準しなが
らターデッドの中心に合わせなければならず、作業に手
間取っていた。
However, this vertical sensor method also has (a)
A person had to visually orient the telescope in the X and Y directions and align it with the center of the tarded, which was a time-consuming task.

(b)検出されるのは、傾きだけであって、絶対変位量
は検出されない。
(b) Only the inclination is detected, and the absolute amount of displacement is not detected.

等の問題点があった。There were problems such as.

[発明の目的J 本発明は、上記従来の問題点を解決するためになされた
もので、その目的とするところは、操作が簡単で迅速に
鉛直度を検出することのできる鉛直度自動検出装置を提
供することにある。
[Object of the Invention J The present invention has been made to solve the above-mentioned conventional problems, and its purpose is to provide an automatic verticality detection device that is easy to operate and can quickly detect verticality. Our goal is to provide the following.

[発明の構成J 本発明の鉛直度自動検出装置は、固定ベースと、該固定
ベース上に配置したサーボモーターと、該サーボモータ
ーにより回転駆動されるill!!スクリューと、該1
1%スクリューに螺合して取付けられた望遠鏡ベースと
、該望遠鏡ベースに設けられた望遠鏡と、上記望遠鏡ベ
ース上で相互に直交する方向に配置された水準器と、該
水準器からの傾斜信号に基づいて上記サーボモーター駆
動用のパルス信号を発する鉛直度補正ユニットから構成
されていることを特徴とするものであり、上記望遠鏡が
、垂直筒体と水平筒体を相互に直交したL字状に構成さ
れていることを特徴とするものである。
[Structure of the Invention J The automatic verticality detection device of the present invention includes a fixed base, a servo motor disposed on the fixed base, and an ill! ! screw and said 1
A telescope base screwed onto a 1% screw, a telescope provided on the telescope base, a spirit level arranged in mutually orthogonal directions on the telescope base, and a tilt signal from the spirit horizon. The telescope is characterized in that it is comprised of a verticality correction unit that emits a pulse signal for driving the servo motor based on the telescope, and the telescope has an L-shape in which the vertical cylinder and the horizontal cylinder are orthogonal to each other. It is characterized by being configured as follows.

[実施例1 以下、本発明の一実施例について図面を参照しながら説
明する。
[Embodiment 1] Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図において、1は固定ベースであって、構築材、杭
、型枠および土留壁等の鉛直度を出すべき材料に適宜取
付は固定するようになっている。
In FIG. 1, reference numeral 1 denotes a fixed base, which is attached and fixed as appropriate to materials that require verticality, such as construction materials, piles, formwork, and retaining walls.

該固定ベース1には3つのサーボモーター2が配設され
ていて、それぞれr14!jkスクリュー3を左右の回
転方向に必要量だけ回転させるようになっている。
Three servo motors 2 are arranged on the fixed base 1, each r14! The jk screw 3 is rotated by the required amount in the left and right rotational directions.

これらの調整スクリュー3は望遠鏡ベース4を3点支持
する状態で螺合している。
These adjustment screws 3 are screwed together to support the telescope base 4 at three points.

5は望遠鏡であって、垂直筒体5aと水平筒体5bとを
相互に直交させたL字状に構成されており、その折曲部
内に反射fi6が45°の傾斜角で収められている。
Reference numeral 5 denotes a telescope, which is configured in an L-shape in which a vertical cylinder 5a and a horizontal cylinder 5b are orthogonal to each other, and a reflection fi6 is housed within the bent portion at an inclination angle of 45°. .

7は#:1lllレンズである。7 is a #:1llll lens.

8は水準器でありで、相互に直交する方向(X、Y方向
)に2@配置されている。
8 is a spirit level, which is arranged at 2@ in mutually orthogonal directions (X, Y directions).

これらの水準器8,8はいずれも、望遠鏡ベース4のX
、Y方向の傾斜状態を電気的に計測するようになってお
り、その傾斜信号aは鉛直度補正ユニット9に入力され
る。
Both of these spirit levels 8, 8 are located at the
, the tilt state in the Y direction is electrically measured, and the tilt signal a is input to the verticality correction unit 9.

該鉛直度補正ユニット9では、上記2つの傾斜信号aに
より望遠鏡ベース4の水平すなわち望遠鏡5の鉛直度を
出すための補正値を算出して、サーボモーター駆動用パ
ルス信号すを発する。
The verticality correction unit 9 calculates a correction value for determining the horizontality of the telescope base 4, that is, the verticality of the telescope 5, based on the two tilt signals a, and generates a servo motor driving pulse signal S.

上記サーボモーター3は鉛直度補正ユニット9からのサ
ーボ駆動用パルス信号すにより作動して調整スクリュー
3を回転させ、望遠鏡5に正確な鉛直度を与える。
The servo motor 3 is actuated by a servo drive pulse signal from the verticality correction unit 9 to rotate the adjustment screw 3 and give accurate verticality to the telescope 5.

本実施例装置は以上のように構成されているので、その
取扱いに際しては、PIS2図に例示するように、基礎
または既設の下層鉄骨柱11に上記鉛直度自動検出装W
110を取付ける。
Since the device of this embodiment is configured as described above, when handling it, as illustrated in PIS 2, the verticality automatic detection device W is attached to the foundation or existing lower steel column 11.
Install 110.

#42図に示す装置は、カバーが被せであるが、実質的
には第1図に示す固定ベース1を鉄骨柱11に固定する
The device shown in FIG. #42 has a cover, but essentially fixes the fixed base 1 shown in FIG. 1 to the steel column 11.

一方、上記鉄骨柱11上に建込むべき別の鉄骨柱12の
上部には、ターデッド13を取付ける。
On the other hand, a tarded 13 is attached to the upper part of another steel column 12 to be erected on the steel column 11.

尚、上記鉛直度自動検出装置10の望遠鏡5の垂直筒体
5aの中心位置と、ターデッド13の規準点の位置は、
各鉄骨柱11,12の特定位置、例えば中心線から同じ
距離になるようにセットされる。
The center position of the vertical cylinder 5a of the telescope 5 and the position of the reference point of the tarded 13 of the automatic verticality detection device 10 are as follows:
The steel columns 11 and 12 are set at specific positions, for example, at the same distance from the center line.

以上のように、鉛直度自動検出装置10とターデッド1
3のセットが完了したら、水準器8,8からの傾斜信号
aを受けて鉛直度補正ユニット9がパルス信号すを発し
、これに基づいてサーボモーター2が働いて望遠鏡ベー
ス4が水平に調整され、その結果、望遠鏡5の正確な鉛
直度が出される。
As described above, the verticality automatic detection device 10 and the tarded 1
When setting 3 is completed, the verticality correction unit 9 receives the tilt signal a from the spirit levels 8, 8, and emits a pulse signal.Based on this, the servo motor 2 operates to adjust the telescope base 4 horizontally. , As a result, accurate verticality of the telescope 5 is obtained.

この状態で、望遠鏡5の接眼レンズ7を覗か、その規準
内に上記ターデッド13の規準点が一致するように鉄骨
柱12をI11!Iして鉛直度を出す。
In this state, look through the eyepiece lens 7 of the telescope 5, or move the steel column 12 so that the reference point of the tarded 13 coincides with the reference point I11! I to find the verticality.

[発明の効果[ (1)トフンシットによる規準が不要となるため、省力
化が図れる。
[Effects of the invention] (1) Labor-saving can be achieved because standards based on tofunsit are not required.

(2)鉄骨建込、杭打膜、スライディング7オームその
他の型枠の組付、土留等の作業が精度よく迅速に行える
(2) Works such as erection of steel frames, piling membranes, sliding 7-ohm and other formwork assemblies, earth retaining, etc. can be carried out quickly and accurately.

(3)振動などで自動鉛直装、型本体が傾斜しても常に
望遠鏡の鉛直精度が保たれる。
(3) Automatic vertical adjustment ensures that the vertical accuracy of the telescope is always maintained even if the mold body is tilted due to vibrations, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図は本発明装置の一実施例を示す斜視図、第2図は
本装置による鉄骨柱の建込状況を示す斜視図、第3〜5
図は在米技術の説明図である。 1・・・固定ベース、2・・・サーボモーター、3・・
・調整スクリュー、4・・・望遠鏡ベース、5・・・望
遠鏡、5a・・・垂直筒体、5b・・・水平筒体、6・
・・反射鏡、7・・・接眼レンズ、8・・・水準器、9
・・・鉛直度補正ユニット、10・・・鉛直度自動検出
装置、11・・・下層鉄骨柱、12・・・鉄骨柱、13
・・・ターゲット、a・・・傾斜信号、b・・・サーボ
モーター駆動用パルス信号。
@ Figure 1 is a perspective view showing one embodiment of the device of the present invention, Figure 2 is a perspective view showing the construction status of a steel column by this device, and Figures 3 to 5
The figure is an explanatory diagram of technology in the United States. 1...Fixed base, 2...Servo motor, 3...
・Adjustment screw, 4...Telescope base, 5...Telescope, 5a...Vertical tube, 5b...Horizontal tube, 6.
...Reflector, 7...Eyepiece, 8...Level, 9
... Verticality correction unit, 10 ... Verticality automatic detection device, 11 ... Lower steel column, 12 ... Steel column, 13
...target, a...tilt signal, b...pulse signal for driving servo motor.

Claims (2)

【特許請求の範囲】[Claims] (1)固定ベースと、該固定ベース上に配置したサーボ
モーターと、該サーボモーターにより回転駆動される調
整スクリューと、該調整スクリューに螺合して取付けら
れた望遠鏡ベースと、該望遠鏡ベースに設けられた望遠
鏡と、上記望遠鏡ベース上で相互に直交する方向に配置
された水準器と、該水準器からの傾斜信号に基づいて上
記サーボモーター駆動用のパルス信号を発する鉛直度補
正ユニットから構成されていることを特徴とする鉛直度
自動検出装置。
(1) A fixed base, a servo motor disposed on the fixed base, an adjustment screw rotationally driven by the servo motor, a telescope base screwed onto the adjustment screw, and a telescope base mounted on the telescope base. the telescope, a level disposed on the telescope base in mutually orthogonal directions, and a verticality correction unit that emits a pulse signal for driving the servo motor based on a tilt signal from the level. An automatic verticality detection device characterized by:
(2)上記望遠鏡が、垂直筒体と水平筒体を相互に直交
したL字状に構成されでいることを特徴とする前記特許
請求の範囲第1項に記載の鉛直度自動検出装置。
(2) The automatic verticality detection device according to claim 1, wherein the telescope is configured in an L-shape in which a vertical cylinder and a horizontal cylinder are orthogonal to each other.
JP62051112A 1987-03-05 1987-03-05 Vertical installation method of building materials Expired - Lifetime JP2531950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62051112A JP2531950B2 (en) 1987-03-05 1987-03-05 Vertical installation method of building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62051112A JP2531950B2 (en) 1987-03-05 1987-03-05 Vertical installation method of building materials

Publications (2)

Publication Number Publication Date
JPS63217212A true JPS63217212A (en) 1988-09-09
JP2531950B2 JP2531950B2 (en) 1996-09-04

Family

ID=12877721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62051112A Expired - Lifetime JP2531950B2 (en) 1987-03-05 1987-03-05 Vertical installation method of building materials

Country Status (1)

Country Link
JP (1) JP2531950B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6202275B1 (en) * 1997-12-12 2001-03-20 Maglev, Inc. Precision assembly table and method
CN110104557A (en) * 2019-04-19 2019-08-09 中科院合肥技术创新工程院 A kind of architectural prefab Hoisting Position positioning adjustment device
CN112414384A (en) * 2019-08-03 2021-02-26 无锡交通建设工程集团有限公司 Measuring and positioning device and measuring and positioning method for mounting bridge prefabricated stand column

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106248061A (en) * 2016-08-08 2016-12-21 康力电梯股份有限公司 A kind of escalator assembling detection center line frame

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024160U (en) * 1973-06-28 1975-03-18
JPS50103360A (en) * 1974-01-14 1975-08-15
JPS6065870A (en) * 1983-09-19 1985-04-15 大成建設株式会社 Pillar verticality detecting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024160U (en) * 1973-06-28 1975-03-18
JPS50103360A (en) * 1974-01-14 1975-08-15
JPS6065870A (en) * 1983-09-19 1985-04-15 大成建設株式会社 Pillar verticality detecting apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6202275B1 (en) * 1997-12-12 2001-03-20 Maglev, Inc. Precision assembly table and method
US6453544B2 (en) 1997-12-12 2002-09-24 Maglev, Inc. Precision assembly table and method
CN110104557A (en) * 2019-04-19 2019-08-09 中科院合肥技术创新工程院 A kind of architectural prefab Hoisting Position positioning adjustment device
CN112414384A (en) * 2019-08-03 2021-02-26 无锡交通建设工程集团有限公司 Measuring and positioning device and measuring and positioning method for mounting bridge prefabricated stand column
CN112414384B (en) * 2019-08-03 2022-04-22 无锡交通建设工程集团有限公司 Measuring and positioning device and measuring and positioning method for mounting bridge prefabricated stand column

Also Published As

Publication number Publication date
JP2531950B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
EP3410063B1 (en) Geodetic surveying with correction for instrument tilt
US6691437B1 (en) Laser reference system for excavating machine
DE102010004517B4 (en) Optical instrument with angle display and method of operating the same
US11150087B2 (en) Angle and distance measuring method, trajectory diagram drawing method, and laser ranging system
JPH079372B2 (en) Laser light level meter
KR100878890B1 (en) Gis upgrade system
JPS6065870A (en) Pillar verticality detecting apparatus
CN115047480A (en) Underwater laser ranging system for turbid water area
JP4024719B2 (en) Electronic surveying instrument
US4136962A (en) Apparatus for orienting and maintaining the orientation of construction equipment
JPS63217212A (en) Automatic detector for perpendicularity
JP4916780B2 (en) Surveying equipment
JP2533317B2 (en) Displacement automatic detection system
KR102024238B1 (en) System for processing reflection image enhanced degree of precision by correcting error of reflection image
JP2001091249A (en) Hollow cross section measuring device
JP2007271627A (en) Work position measuring device
KR101291451B1 (en) Level measurement staff having reflection apparatus
EP0740798B1 (en) Method and apparatus for positioning construction machinery
JP2917751B2 (en) Column accuracy measurement system
CN211651588U (en) Automatic rotating device for high formwork settlement monitoring laser point cloud based on unmanned aerial vehicle
JPH0461929B2 (en)
KR100892440B1 (en) Surveying system
JPH04313013A (en) Plane type range finder/goniometer
JP2003294445A (en) Marking unit containing rangefinder
JPH0886656A (en) Inclination measuring instrument