JPH0611344A - Measuring method of position and attitude of moving body - Google Patents

Measuring method of position and attitude of moving body

Info

Publication number
JPH0611344A
JPH0611344A JP4112921A JP11292192A JPH0611344A JP H0611344 A JPH0611344 A JP H0611344A JP 4112921 A JP4112921 A JP 4112921A JP 11292192 A JP11292192 A JP 11292192A JP H0611344 A JPH0611344 A JP H0611344A
Authority
JP
Japan
Prior art keywords
moving body
coordinates
movement
surveying
targets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4112921A
Other languages
Japanese (ja)
Other versions
JP3247143B2 (en
Inventor
Tamotsu Nozawa
有 野沢
Akira Nakayama
中山  晃
Toru Yamamoto
亨 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aoki Corp
Original Assignee
Aoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aoki Corp filed Critical Aoki Corp
Priority to JP11292192A priority Critical patent/JP3247143B2/en
Publication of JPH0611344A publication Critical patent/JPH0611344A/en
Application granted granted Critical
Publication of JP3247143B2 publication Critical patent/JP3247143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To detect the position and attitude of a moving body with high precision and excellent efficiency by a method wherein the moving body provided with targets at three points serving as references of measurement is followed automatically by a distance-angle measuring apparatus and three-dimensional coordinate positions of the targets are determined, while the roll, yaw and pitch of the moving body are detected from the amounts of changes of coordinates. CONSTITUTION:In measurement of a position, rear reference points 2 of which the coordinates are known are used and the coordinates of an automatic tracking type distance and angle measuring apparatus 4 mounted on a following truck 3 of a shield excavator 1 are determined by measuring the rear reference points 2 by the apparatus 4. Based on the coordinates of the distance and angle measuring apparatus 4, subsequently, targets (reflective prisms) at three points provided for the excavator 1 are tracked automatically and measured and positions of the coordinates before and after movement are computed by a personal computer 6. Besides, amounts of the roll, yaw and pitch showing the attitude (tilt) of the excavator 1 are calculated from the amounts of changes of the coordinates before and after the movement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、移動体の位置・姿勢
測量方法に関するものである。さらに詳しくは、この発
明は、シールド掘進機等の移動体の位置と姿勢を高効率
で精度良く測量することのできる新しい位置・姿勢測量
の方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the position / orientation of a moving body. More specifically, the present invention relates to a new position / orientation surveying method capable of highly accurately and accurately surveying the position and posture of a moving body such as a shield machine.

【0002】[0002]

【従来の技術とその課題】近年、シールド工事や推進工
事の技術進歩にともなって、シールド掘進機を所定の計
画線に沿って進行させるための自動制御・自動計測手段
の検討が精力的に進められてきている。しかしながら、
これらの自動化のための手段には依然として問題があ
り、高効率で高精度なシールド掘進のためのさらなる改
善が求められている。また同様に移動体としての建設機
械についてもその自動運転は、労力の削減と安全性の向
上の観点から期待されているが、自動運転のための測量
システムが万全でないため、その実現は困難となってい
る。
[Prior art and its problems] In recent years, along with technological advances in shield construction and propulsion construction, we have vigorously studied automatic control and automatic measurement means for advancing a shield machine along a predetermined planned line. Has been done. However,
These means for automation are still problematic and further improvements are needed for high efficiency and high precision shield excavation. Similarly, for construction machinery as a moving body, automated driving is expected from the viewpoint of reducing labor and improving safety, but it is difficult to realize it because the surveying system for automatic driving is not perfect. Has become.

【0003】たとえばシールド掘進機の位置・姿勢の測
量方法についてみると、従来より、ピッチング、ローリ
ングの検出は傾斜計によって、またヨーイングはジャイ
ロ等によって行われている。しかしながら、これらの従
来のシールド掘進機の姿勢測量法の場合には、温度ドリ
フト、直線性、横軸感度(傾斜計の)等の制約からの誤
差が避けられず、測量精度に影響を与えていた。このた
め、その姿勢測量の精度向上には限界があった。
For example, regarding the method of measuring the position / orientation of a shield machine, conventionally, pitching and rolling are detected by an inclinometer, and yawing is performed by a gyro. However, in the case of the attitude survey method of these conventional shield machines, errors due to restrictions such as temperature drift, linearity, and horizontal axis sensitivity (of the inclinometer) are unavoidable, affecting the survey accuracy. It was Therefore, there is a limit to improving the accuracy of the attitude survey.

【0004】また、坑内に設置した基準点を元にしてト
ランシットやレベル、さらにはスチールテープ等による
手作業によって、シールド計画中心線やシールド掘進機
の位置、方向を把握することも行われているが、この方
法による場合には、測量が非効率的で、省人化、自動化
できず、しかも測量に高度な経験と技術が必要となるた
め、人材の確保も極めて難しい課題となる。また、トン
ネルが小断面になるほど精度が悪くなり、シールド掘進
機の位置、姿勢の把握にタイムラグができるという欠点
がある。
In addition, it is also possible to grasp the position and direction of the shield plan center line and shield machine by manual work using a transit, a level, and steel tape based on a reference point installed in the mine. However, when this method is used, surveying is inefficient, labor saving and automation cannot be performed, and moreover, high-level experience and technology are required for surveying. Further, the smaller the cross section of the tunnel, the worse the accuracy becomes, and there is a drawback that there is a time lag in grasping the position and orientation of the shield machine.

【0005】そこで、これらの欠点を解消し、より高効
率で、省力化も図れる手段として、シールド掘進機に3
点の輝点を設置し、これを後方のテレビカメラおよび光
波測距計からなる検出部で検出し、テレビ画像上の3点
の2次元座標位置と、測距値から位置・姿勢を求める方
法も提案されている。しかしながら、この方法の場合
は、テレビ画像の解像度に測量精度が依存し、かつ、シ
ステムも複雑である。また、装置も高価であることか
ら、現場によっては導入効果が出ない場合もある。
Therefore, as a means for solving these drawbacks, achieving higher efficiency and saving labor, the shield machine has been developed.
A method in which bright points are installed and detected by a detection unit consisting of a TV camera and a light distance meter in the rear, and the position / orientation is calculated from the two-dimensional coordinate positions of the three points on the TV image and the distance measurement values. Is also proposed. However, in this method, the survey accuracy depends on the resolution of the television image, and the system is complicated. Also, since the device is expensive, the introduction effect may not be obtained depending on the site.

【0006】従って、シールド掘進機に限られることな
く、移動体の位置・姿勢測量の共通の問題として、より
高効率で、かつ高精度であり、しかも簡便、低コストな
システムとしての新しい測量方法の実現が強く望まれて
いた。この発明は、以上の通りの事情に鑑みてなされた
ものであり、従来の方法の欠点を克服し、高効率、高精
度に移動体の位置・姿勢を測量することのできる新しい
方法を提供することを目的としている。
Therefore, a new surveying method is not limited to the shield machine, but is a common problem in the position / orientation surveying of a moving body, which is a system with higher efficiency, higher accuracy, and simple and low cost. The realization of was strongly desired. The present invention has been made in view of the above circumstances, and provides a new method capable of overcoming the drawbacks of the conventional methods and measuring the position / orientation of a moving body with high efficiency and high accuracy. Is intended.

【0007】[0007]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、自動追尾式測距測角儀により、
測量基準となる3点のターゲットを設置した移動体の移
動前のターゲットの3次元座標位置を求め、次いで移動
後のターゲットの3次元座標位置を求め、移動体の位置
を検出するとともに、移動前後の3点のターゲットの座
標変化量から移動体のローリング、ヨーイングおよび/
またはピッチングの傾斜量を検出することを特徴とする
移動体の位置・姿勢測量方法を提供する。
As a solution to the above-mentioned problems, the present invention provides an automatic tracking type distance-measuring finder.
The three-dimensional coordinate position of the target before the movement of the moving body on which the three targets serving as the surveying standards are set is obtained, and then the three-dimensional coordinate position of the target after the movement is obtained to detect the position of the moving body, and before and after the movement. The rolling, yawing and /
Alternatively, there is provided a method for measuring the position / orientation of a moving body, which is characterized by detecting a pitching inclination amount.

【0008】すなわち、この発明は、たとえば移動体と
してのシールド掘進機等の位置、姿勢等を自動測量する
ための方法であって、移動体に3点のターゲットとして
反射プリズム等を配置し、移動体の後方に設置した自動
追尾式測距測角儀、つまり反射プリズム等のターゲット
を自動的に捜し、測量する機器によって、このターゲッ
トまでの距離と角度を測量し、自身の座標をもとにこの
ターゲットの3次元座標を求めることができるものであ
る。また、自動追尾式測距測角儀を3台用いて、それぞ
れ同時に3つのプリズムを測量すれば、リアルタイムに
移動体の位置、姿勢を測量することができる。
That is, the present invention is a method for automatically measuring the position, posture, etc. of a shield machine or the like as a moving body. An automatic tracking type rangefinder installed behind the body, that is, a target such as a reflecting prism is automatically searched and the distance and angle to this target are measured by a measuring device, and based on its own coordinates. The three-dimensional coordinates of this target can be obtained. Further, by using three automatic tracking type rangefinders and measuring three prisms at the same time, the position and orientation of the moving body can be measured in real time.

【0009】測距測角儀の座標を自動的に求める方法と
しては、三角測量等により実現できる。このような測量
は、シールド工事における自動測量に限られずに、各種
の移動体、たとえば建設機械等の位置、姿勢の測量に適
用することができる。以下、実施例としてこの発明の測
量方法についてさらに詳しく説明する。
As a method of automatically obtaining the coordinates of the distance measuring and measuring instrument, triangulation or the like can be used. Such surveying is not limited to automatic surveying in shield work, but can be applied to surveying the position and orientation of various moving bodies, such as construction machinery. Hereinafter, the surveying method of the present invention will be described in more detail as an example.

【0010】[0010]

【実施例】図1にたとえば例示したように、シールド掘
進機(1)を移動体とし、その位置、姿勢を求める。ま
ず、位置の測量においては、座標が既知である後方基準
点(2)としての反射プリズムの2個を用い、シールド
掘進機(1)の後続台車(3)に取付けた、またはこれ
とは独立した自走台車に設置した自動追尾式測距測角儀
(4)によってこの後方基準点(2)を測量する。この
時の測量値と後方基準点(2)の座標より、測距測角儀
(4)の座標を算出する。
EXAMPLE As shown in FIG. 1, for example, the shield machine (1) is used as a moving body, and its position and attitude are obtained. First, in position surveying, two reflection prisms as rear reference points (2) whose coordinates are known are used, and they are attached to the trailing carriage (3) of the shield machine (1) or independent of this. The rear reference point (2) is measured by the automatic tracking type rangefinder (4) installed on the self-propelled cart. The coordinates of the range finder (4) are calculated from the measured values and the coordinates of the rear reference point (2) at this time.

【0011】次いで、この測距測角儀(4)の座標をも
とに、シールド掘進機(1)に設置した3点のターゲッ
ト(5)を測量する。これによって、ターゲット(5)
の移動前の座標を算出する。次いで、シールド掘進機
(1)の移動後についても同様にして測量し、移動後の
ターゲット(5)の座標を算出する。
Next, based on the coordinates of the distance measuring and angle measuring device (4), the three targets (5) installed on the shield machine (1) are measured. This makes the target (5)
Calculate the coordinates before moving. Next, after the shield machine (1) is moved, the same measurement is performed to calculate the coordinates of the moved target (5).

【0012】自動追尾式測距測角儀(4)には制御装置
を介してパーソナルコンピュータ(6)を連結し、計算
することができるようにする。次に、このシールド掘進
機(1)の傾きとして、ローリング、ピッチング、ヨー
イングの測量算出について説明すると、移動前のターゲ
ット(5)の座標と、移動後の座標より、回転にともな
う座標のズレ量からシールド掘進機(1)の傾きを計算
することになる。つまり、移動前の座標と移動後の座標
との変化量からローリング、ヨーイング、ピッチング量
を算出する。
A personal computer (6) is connected to the automatic tracking type range finder (4) through a control unit so that calculation can be performed. Next, as the inclination of the shield machine (1), the measurement calculation of rolling, pitching and yawing will be explained. The deviation of the coordinate due to the rotation from the coordinate of the target (5) before the movement and the coordinate after the movement. From this, the inclination of the shield machine (1) is calculated. That is, the amount of rolling, yawing, and pitching is calculated from the amount of change between the coordinates before movement and the coordinates after movement.

【0013】図2によって、この算出のための関係を示
すと、前記ターゲット(5)の3点によって構成される
1 2 3 の重心点をG(xG ,yG ,zG )とし、
移動前の3点を P1 (x1 ,y1 ,z1 ) P2 (x2 ,y2 ,z2 ) P3 (x3 ,y3 ,z3 ) 移動後のP′1 P′2 P′3 の重心点をG′(x′G
y′G ,z′G )とし、移動後の3点を、 P′1 (x′1 ,y′1 ,z′1 ) P′2 (x′2 ,y′2 ,z′2 ) P′3 (x′3 ,y′3 ,z′3 ) とすると、移動にともなう変化量は次の通りの図2表示
のものとして考えられる。
The relationship for this calculation is shown in FIG. 2. The center of gravity of P 1 P 2 P 3 constituted by the three points of the target (5) is G (x G , y G , z G ) age,
The three points before movement are P 1 (x 1 , y 1 , z 1 ) P 2 (x 2 , y 2 , z 2 ) P 3 (x 3 , y 3 , z 3 ) P ′ 1 P ′ after movement Let the center of gravity of 2 P ′ 3 be G ′ (x ′ G ,
y ′ G , z ′ G ), and the three points after movement are P ′ 1 (x ′ 1 , y ′ 1 , z ′ 1 ) P ′ 2 (x ′ 2 , y ′ 2 , z ′ 2 ) P Assuming ′ 3 (x ′ 3 , y ′ 3 , z ′ 3 ), the amount of change with movement can be considered as shown in FIG. 2 as follows.

【0014】・平行移動量(ΔxΔyΔz) ・ピッチング量 ω ・ローリング量 ψ ・ヨーイング量 κ そこで、以下の通りの計算を行うこととする。(A)平行移動量の補正 傾き(ピッチング、ローリング、ヨーイング)量の算出
のためには、まず平行移動量を補正しておく必要があ
る。この平行移動量については、 (ΔxΔyΔz)=G(xG ,yG ,zG )−G′(x′G ,y′G ,z′G ) であるから、点P′1 P′2 P′3 の平行移動量の補正
を行うと、
-Translation amount (ΔxΔyΔz) -Pitching amount ω-Rolling amount ψ-Yawing amount κ Therefore, the following calculation will be performed. (A) Correction of parallel movement amount In order to calculate the inclination (pitching, rolling, yawing) amount, it is necessary to first correct the parallel movement amount. Regarding this parallel movement amount, since (ΔxΔyΔz) = G (x G , y G , z G ) -G ′ (x ′ G , y ′ G , z ′ G ), the point P ′ 1 P ′ 2 P When correcting the translation amount of '3,

【0015】[0015]

【数1】 [Equation 1]

【0016】となる。ここで、図3に示したように、三
角形P1 2 3 と三角形P″1 P″2 P″ 3 は重心点
が同じとなり、三角形P″1 P″2 P″3 は、三角形P
1 2 3 を、重心点Gを中心としてxyz軸まわりに
ωψκだけ回転させた形となる。(B)回転量の算出 重心点Gのまわりの回転行列をRとすると、
[0016] Here, as shown in FIG.
Square P1P2P3And triangle P ″1P ″2P ″ 3Is the center of gravity
Are the same, and the triangle P ″1P ″2P ″3Is a triangle P
1P2P3Around the center of gravity G around the xyz axes
The shape is rotated by ω ψ κ.(B) Calculation of rotation amount If the rotation matrix around the center of gravity G is R,

【0017】[0017]

【数2】 [Equation 2]

【0018】となる。たとえばκψωの順に回転させた
時の回転行列をRκψωとすれば、このRκψωは、次
の通りとなる。
[0018] For example, if the rotation matrix when rotated in the order of κψω is Rκψω, this Rκψω is as follows.

【0019】[0019]

【数3】 [Equation 3]

【0020】前記の式(1)(2)(3)より次の式が
導かれる。
The following equations are derived from the above equations (1), (2) and (3).

【0021】[0021]

【数4】 [Equation 4]

【0022】また、式(4)(5)(6)より、次の式
が導かれる。
Further, the following equations are derived from the equations (4), (5) and (6).

【0023】[0023]

【数5】 [Equation 5]

【0024】この式(7)(8)(9)よりa1112
13を求める。ここで、κψωの順に回転させた時の行列
は、
From the equations (7), (8) and (9), a 11 a 12 a
Ask for 13 . Here, the matrix when rotated in the order of κψω is

【0025】[0025]

【数6】 [Equation 6]

【0026】であるから、この式(10)(11)(1
2)により、ψ、κを求める。ωは、(4)(5)
(6)式を利用して求める。(C)回転量の補正 以上のようにして、ωψκは求まるが、採用した計算式
の場合には、xyz軸の3軸のうちの1つを回転させた
時には、他の2軸もその回転量の影響を受けることにな
る。つまり、図4に示した通りとなる。
Therefore, this equation (10) (11) (1
From 2), obtain ψ and κ. ω is (4) (5)
It is obtained by using the equation (6). (C) Correction of Rotational Amount ωψκ is obtained as described above, but in the case of the adopted formula, when one of the three xyz axes is rotated, the other two axes also rotate. It will be affected by the quantity. That is, it becomes as shown in FIG.

【0027】シールド掘進機のピッチング、ローリン
グ、ヨーイング量はそれぞれ基準座標系からの傾斜量で
あるから、前記の計算式でRκψω使用時には、κ(ヨ
ーイング量)だけが基準座標系からの傾斜量であり、ψ
ωはκを補正した後の座標系の傾斜量となる。そこで、
ψ、ωについても基準座標系からの傾斜量を求めるに
は、回転行列Rとして、前記Rκψωに代えて、 ・ψを求める場合にはR=RψωκまたはRψκω、 ・ωを求める場合には、R=RωψκまたはRωκψ さらに、 ・κを求める場合として、 R=RκωψまたはRκψω を用いればよいことになる。なお、以上の例では、回転
中心を移動前の三角形の重心点としたが、この重心点に
こだわらずに、目的に合った回転中心を設定し、計算す
ることが可能でもある。
Since the pitching, rolling, and yawing amounts of the shield machine are the inclination amounts from the reference coordinate system, respectively, when Rκψω is used in the above formula, only κ (the yawing amount) is the inclination amount from the reference coordinate system. Yes, ψ
ω is the tilt amount of the coordinate system after κ is corrected. Therefore,
For ψ and ω, the amount of inclination from the reference coordinate system can be obtained by replacing the rotation matrix R with Rκψω, in the following case: R = Rψωκ or Rψκω, · ω = Rωψκ or Rωκψ Further, as a case of obtaining κ, R = Rκωψ or Rκψω may be used. In the above example, the center of rotation is the center of gravity of the triangle before the movement, but it is also possible to set and calculate the center of rotation that suits the purpose without sticking to this center of gravity.

【0028】以上の通りの算定によって、この発明の測
量方法においては、ターゲットの座標の検知によって、
従来の傾斜計を用いる方法等に比べてはるかに精度よく
測量することができる。もちろん、この発明において
は、測定、測量のための機器構成には様々な態様が可能
でもある。この発明は、これらの任意の態様を包含する
ものである。
By the above calculation, in the surveying method of the present invention, by detecting the coordinates of the target,
Measurement can be performed with much higher accuracy than the conventional method using an inclinometer. Of course, in the present invention, various configurations are possible for the equipment configuration for measurement and surveying. The present invention includes any of these aspects.

【0029】[0029]

【発明の効果】この発明の測量方法によって、高精度の
測量が可能となり、位置測量と姿勢測量のターゲットを
兼用することがきるため効率的に位置・姿勢の測量がで
きる。そして、3点の配置を最適にすれば、算定式が簡
略化され、また精度がよくなる。
According to the surveying method of the present invention, it is possible to perform highly accurate surveying, and it is possible to use both the target of position surveying and the target of posture surveying efficiently, so that the surveying of position and posture can be efficiently performed. Then, if the arrangement of three points is optimized, the calculation formula is simplified and the accuracy is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例としてのシールド掘進機にお
ける測量方法を示した断面図である。
FIG. 1 is a cross-sectional view showing a surveying method in a shield machine as an embodiment of the present invention.

【図2】座標関係図である。FIG. 2 is a coordinate relationship diagram.

【図3】平行移動量補正後の座標系図である。FIG. 3 is a coordinate system diagram after the parallel movement amount is corrected.

【図4】回転量の影響を示した座標系図である。FIG. 4 is a coordinate system diagram showing an influence of a rotation amount.

【符号の説明】[Explanation of symbols]

1 シールド掘進機 2 後方基準点 3 後続台車 4 測距測角儀 5 3点ターゲット 6 パーソナルコンピュータ 1 Shield excavator 2 Rear reference point 3 Subsequent bogie 4 Distance measuring and angle measuring instrument 5 3 point target 6 Personal computer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 自動追尾式測距測角儀により、測量基準
となる3点のターゲットを設置した移動体の移動前のタ
ーゲットの3次元座標位置を求め、次いで移動後のター
ゲットの3次元座標位置を求めて、移動体の位置を検出
するとともに、移動前後の3点のターゲットの座標変化
量から移動体の傾斜量を検出することを特徴とする移動
体の位置・姿勢測量方法。
1. A three-dimensional coordinate position of a target before movement of a moving body on which three targets serving as a surveying standard are installed is obtained by an automatic tracking type range finder. A method for measuring the position / orientation of a moving body, wherein the position of the moving body is detected and the position of the moving body is detected, and the tilt amount of the moving body is detected from the amount of coordinate change of three targets before and after the movement.
【請求項2】 移動体がシールド掘進機またはその他の
建設機械である請求項1の測量方法。
2. The surveying method according to claim 1, wherein the moving body is a shield machine or another construction machine.
JP11292192A 1992-05-01 1992-05-01 Positioning / posture surveying device for moving objects Expired - Fee Related JP3247143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11292192A JP3247143B2 (en) 1992-05-01 1992-05-01 Positioning / posture surveying device for moving objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11292192A JP3247143B2 (en) 1992-05-01 1992-05-01 Positioning / posture surveying device for moving objects

Publications (2)

Publication Number Publication Date
JPH0611344A true JPH0611344A (en) 1994-01-21
JP3247143B2 JP3247143B2 (en) 2002-01-15

Family

ID=14598824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11292192A Expired - Fee Related JP3247143B2 (en) 1992-05-01 1992-05-01 Positioning / posture surveying device for moving objects

Country Status (1)

Country Link
JP (1) JP3247143B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178615A (en) * 1994-12-21 1996-07-12 Nosakubutsu Seiiku Kanri Syst Kenkyusho:Kk Position detecting device and guide device of moving body
JP2000234929A (en) * 1999-02-15 2000-08-29 Berutekusu:Kk Interconnecting automatic position/attitude measuring system
JP2001248376A (en) * 2000-03-07 2001-09-14 Furukawa Co Ltd Device for setting reference position and direction of drill
JP2001310154A (en) * 2000-04-28 2001-11-06 Furukawa Co Ltd Apparatus for setting reference position and direction of concrete spray machine
JP2019190064A (en) * 2018-04-20 2019-10-31 株式会社安藤・間 Attitude recognition system of construction machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293115A (en) * 1986-06-12 1987-12-19 Takenaka Komuten Co Ltd Automatic measuring instrument for position and attitude of moving body
JPH0258669A (en) * 1988-08-24 1990-02-27 Shinko Arufuretsushiyu Kk Face-lifting method for outer wall of building
JPH0392712A (en) * 1989-09-05 1991-04-17 Fanuc Ltd Three-dimensional position recognition by use of image processing device and distance measuring sensor
JPH0465631A (en) * 1990-07-05 1992-03-02 Sato Kogyo Co Ltd Laser positioner and fixed point marking method using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293115A (en) * 1986-06-12 1987-12-19 Takenaka Komuten Co Ltd Automatic measuring instrument for position and attitude of moving body
JPH0258669A (en) * 1988-08-24 1990-02-27 Shinko Arufuretsushiyu Kk Face-lifting method for outer wall of building
JPH0392712A (en) * 1989-09-05 1991-04-17 Fanuc Ltd Three-dimensional position recognition by use of image processing device and distance measuring sensor
JPH0465631A (en) * 1990-07-05 1992-03-02 Sato Kogyo Co Ltd Laser positioner and fixed point marking method using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178615A (en) * 1994-12-21 1996-07-12 Nosakubutsu Seiiku Kanri Syst Kenkyusho:Kk Position detecting device and guide device of moving body
JP2000234929A (en) * 1999-02-15 2000-08-29 Berutekusu:Kk Interconnecting automatic position/attitude measuring system
JP2001248376A (en) * 2000-03-07 2001-09-14 Furukawa Co Ltd Device for setting reference position and direction of drill
JP2001310154A (en) * 2000-04-28 2001-11-06 Furukawa Co Ltd Apparatus for setting reference position and direction of concrete spray machine
JP2019190064A (en) * 2018-04-20 2019-10-31 株式会社安藤・間 Attitude recognition system of construction machine

Also Published As

Publication number Publication date
JP3247143B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
EP1019862B1 (en) Method and apparatus for generating navigation data
JP2866289B2 (en) Display method of position and attitude of construction machinery
WO2018164079A1 (en) Method for acquiring tilt sensor correction amount in construction work machinery
CN111811538A (en) Photoelectric theodolite directional calibration method based on common stars
JPS62293115A (en) Automatic measuring instrument for position and attitude of moving body
JP3940619B2 (en) Tunnel excavator position measuring device
JPH0611344A (en) Measuring method of position and attitude of moving body
JPH0843084A (en) Multifunctional measurement vehicle for tunnel
JP4175727B2 (en) Method for detecting elevation angle and turning angle of excavation boom in free section excavator
JP6905137B2 (en) Inclination sensor correction amount acquisition method for construction work machines
CN114739394A (en) Method and system for automatic navigation and positioning cutting of boom-type roadheader
CN111623821B (en) Method for detecting tunnel drilling direction, detecting deviation and determining drilling position
JP3759281B2 (en) Underground excavator position measurement device
CN112902845A (en) Track type automatic pipe jacking guiding method
JP2996521B2 (en) Shield surveying method
JP3045458B2 (en) Automatic surveying method of shield machine
JP2644155B2 (en) Automatic surveying method for position of trailing bogie of shield machine
CN114394102B (en) Calibration method of attitude sensor and running device
JPH0348116A (en) Measuring apparatus of position and attitude of digging machine of small diameter
JPH04309809A (en) Inside tunnel measuring method in tunnel excavation work
JPH07113640A (en) Method and equipment for measuring attitude of excavator by laser distance measurement
JP3295157B2 (en) Shield surveying method
KR20050076474A (en) Method for determining position of vehicle
JP4422927B2 (en) Survey method in civil engineering work
JPH0474649B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees