JPH08233575A - Method for automatically measuring position of conduct, etc., by using measuring truck - Google Patents

Method for automatically measuring position of conduct, etc., by using measuring truck

Info

Publication number
JPH08233575A
JPH08233575A JP6010995A JP6010995A JPH08233575A JP H08233575 A JPH08233575 A JP H08233575A JP 6010995 A JP6010995 A JP 6010995A JP 6010995 A JP6010995 A JP 6010995A JP H08233575 A JPH08233575 A JP H08233575A
Authority
JP
Japan
Prior art keywords
pipeline
measuring
points
target
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6010995A
Other languages
Japanese (ja)
Other versions
JP2687102B2 (en
Inventor
Hideto Abe
秀人 阿部
Shuichi Tanaka
秀一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kandenko Co Ltd
Original Assignee
Kandenko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kandenko Co Ltd filed Critical Kandenko Co Ltd
Priority to JP7060109A priority Critical patent/JP2687102B2/en
Publication of JPH08233575A publication Critical patent/JPH08233575A/en
Application granted granted Critical
Publication of JP2687102B2 publication Critical patent/JP2687102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To easily measure the position in a small-diameter conduit or tunnel with obstructed view regardless of its execution method or progress of the execution. CONSTITUTION: A railway and a plurality of targets 16 with a certain interval of distance are prepared in a tunnel 4 and a measuring truck loaded with a measuring device 12 which can measure the distance and angle of horizontal and vertical planes is placed on the railway. The trunk is stopped around the entrance of the tunnel 4, and two reference points A and B on a propulsion base line G set around the entrance of the tunnel 4 and the target 16 most nearest from the entrance are measured in remote control by the device 12, then the positional relation among the obtained three points is obtained. Further, the trunk is moved and stopped between adjoining two targets successively, and two targets 16 on the backsight or the reference points A and B and one target 16 on the foresight are measured in the same manner so as to obtain the positional relation of the three points. Finally, the accumulated data of the positional relations of respective three points obtained in such a way that the base line G is used as a reference are calculated to measure the position of the tunnel or conduit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は見通しの効かない曲線
の管路やトンネルで、無人測量を可能にする管路等の測
定法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring a pipeline or the like, which is a pipeline or a tunnel having a curved line of sight and which enables unmanned surveying.

【0002】[0002]

【従来の技術】従来見通しの効かない曲線管路やトンネ
ルでは、管路内や坑内に作業員が入り、管路やトンネル
に沿って順次測量していき、これらの管路やトンネルの
位置を測定している。しかしこれらの管路やトンネルが
小口径の場合、作業員が中に入れず、通常の測量では測
定できない。そこでジャイロを搭載した測定台車を管路
内や坑内に走らせ、測定台車の軌跡の距離や角度を測定
演算してこれらの位置を計測する非光学式位置計測法が
採られている。また別の方法として測量器を搭載した台
車を管路等の内部に走行させ、順次予め決められた各盛
り替え点(固定点)に停止させて管路内に設置したター
ゲットを視準することを繰り返えすことにより管路の位
置を計測する方法も提案されている。この方法は測量原
理は従来の方法と変わらないが、測量器を台車に載せて
遠隔操作で視準していく点が従来と異なる。
2. Description of the Related Art Conventionally, in curved pipelines and tunnels where visibility is not effective, workers enter the pipelines or pits and sequentially measure along the pipelines or tunnels to determine the positions of these pipelines or tunnels. I'm measuring. However, if these pipes and tunnels have a small diameter, they cannot be put in by workers and cannot be measured by ordinary surveying. Therefore, a non-optical position measuring method has been adopted in which a measuring trolley equipped with a gyro is run in a pipeline or inside a mine, and the distance and angle of the trajectory of the measuring trolley are measured and calculated to measure these positions. As another method, run a trolley equipped with a surveying instrument inside a pipeline, etc., and sequentially stop at each preset relocation point (fixed point) and collimate the target installed in the pipeline. A method of measuring the position of the pipeline by repeating the above is also proposed. This method does not differ from the conventional method in the principle of surveying, but differs from the conventional method in that the surveying instrument is mounted on a carriage and collimated by remote control.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記ジャ
イロを搭載した測定台車を用いる方法は、測定台車を管
路や坑内の軸線に対して常に一定位置で走らさなければ
ならず、またジャイロによる測定は測定台車を一定速度
で走行させなければならない。従って装置の設置や操作
が複雑で熟練を要し、精度上問題もあり、その上装置自
体も高価なものとなっている。また測量器を搭載した台
車を走行させて盛り替え点(固定点)で視準する方法
は、台車を遠隔操作により予め位置の決められた盛り替
え点に正確に停止させ、測量しなければならないため、
その盛り替え点として絶対的な位置を固定し得る施工後
の管路やシールド施工中の管路にしか適用できない。特
に推進工法では施工中に管路が動くため盛り替え点を固
定できず、この方法は適用できないものである。
However, in the method of using the measuring trolley equipped with the gyro, the measuring trolley must always be run at a fixed position with respect to the pipeline or the axis of the mine, and the measurement by the gyro is a measurement. The dolly must run at a constant speed. Therefore, installation and operation of the device are complicated and require skill, and there is a problem in accuracy, and in addition, the device itself is expensive. In addition, the method of running a bogie equipped with a surveying instrument and collimating it at the refill point (fixed point) requires that the bogie be accurately stopped by remote control at the refill point that has been set in advance. For,
It can be applied only to pipelines after construction that can fix the absolute position as the refill point or pipelines during shield construction. In particular, in the propulsion method, the refill point cannot be fixed because the pipeline moves during construction, and this method cannot be applied.

【0004】そこでこの発明は、見通しの効かない小口
径の管路やトンネルにおいて、施工方法や施工途中を問
わず、これらの中に作業員が入らずに簡易に測定できる
管路等の位置測定法を提供し、上記課題を解決するもの
である。
Therefore, the present invention can measure the position of a pipe or the like in a small-diameter pipe or tunnel which does not have a line-of-sight, which can be easily measured regardless of the construction method or during the construction without an operator entering the pipe or the like. It provides a law to solve the above problems.

【0005】[0005]

【課題を解決するための手段】そこで請求項1項の発明
は管路内に、当該管路に沿って一本の軌道及び適宜の間
隔で複数のターゲットを夫々設け、上記軌道に水平面、
垂直面の距離及び角度を測定できる機能を有する測量器
を搭載した測定台車を載せ、この測定台車を管路の入り
口より手前で停止させて、管路の入り口に設けた推進基
線上の二つの引照点及び管路内に設けた直前のターゲッ
トを上記測量器で遠隔操作により測量してこれらの三点
の位置関係を求め、上記測定台車を上記軌道上で走行さ
せて順次隣接する二つのターゲットの間毎に測定台車を
停止させて、後視の二点のターゲット又は上記引照点及
び前視の一点のターゲットを上記と同様な方法で測量し
てこれらの三点の位置関係を求め、上記推進基線を基準
として上記各三点の位置関係のデータの累積から管路の
位置を測定する方法とした。
Therefore, the invention according to claim 1 is to provide one orbit along the duct and a plurality of targets at appropriate intervals in the duct, and to the orbit on a horizontal plane,
Place a measuring carriage equipped with a surveying instrument that has the function of measuring the distance and angle of a vertical plane, stop this measuring carriage before the entrance of the pipeline, and set it on the propulsion base line at the entrance of the pipeline. The target immediately before the illuminating point and the pipe provided in the pipeline is remotely measured by the surveying instrument to obtain the positional relationship between these three points, and the measuring carriage is made to travel on the track so that two adjacent targets are successively located. Stop the measurement carriage for each interval, to obtain the positional relationship of these three points by surveying the target of two points of the backsight or the target of the above-mentioned illuminating point and the one point of the frontsight by the same method as above, The position of the pipeline was measured by accumulating the data of the positional relationship of each of the above three points with the propulsion base line as a reference.

【0006】また請求項2項の発明は、トンネル掘進機
で土中を掘進中の管路において、掘進機の後方の管路内
に、当該管路に沿って一本の軌道及び適宜の間隔で複数
のターゲットを夫々設け、上記軌道に水平面、垂直面の
距離及び角度を測定できる機能を有する測量器を搭載し
た測定台車を載せ、この測定台車を管路の入り口付近で
停止させて、管路の入り口付近に設けた推進基線上の二
つの引照点及び管路内に設けた直前のターゲットを上記
測量器で遠隔操作により測量してこれらの三点の位置関
係を求め、上記測定台車を上記軌道上で走行させて順次
隣接する二つのターゲットの間毎に測定台車を停止させ
て、後視の二点のターゲット又は上記引照点及び前視の
一点のターゲットを上記と同様な方法で測量してこれら
の三点の位置関係を求め、上記推進基線を基準にして上
記各三点の位置関係のデータの累積から管路の位置を測
定するとともに、上記掘進機等の機軸姿勢データを用い
て、最寄りのターゲットの位置データに加算して上記掘
進先端位置を求める、管路等の自動位置測定法とした。
Further, according to the invention of claim 2, in a pipeline being excavated in the soil by the tunnel excavator, one track and an appropriate interval are provided in the pipeline behind the excavator along the pipeline. , Each of which is equipped with a plurality of targets, has a measuring carriage equipped with a surveying instrument capable of measuring the distance and angle of the horizontal and vertical planes on the orbit, and stops this measuring carriage near the entrance of the pipe, Remotely measure the two reference points on the propulsion base line provided near the entrance of the road and the target just before the pipe installed in the pipeline to obtain the positional relationship between these three points, Measure the target at two points in the backsight or the target at one of the above-mentioned illuminating point and one in the front in the same manner as above by running on the track and stopping the measurement carriage between two adjacent targets in sequence. Then the positional relationship of these three points Obtained and measured the position of the pipeline from the accumulation of the data of the positional relationship of each of the above three points with the above-mentioned propulsion baseline as a reference, and add it to the position data of the nearest target by using the machine axis attitude data of the excavator etc. Then, an automatic position measuring method for a pipe line or the like for obtaining the above-mentioned position of the excavation tip is adopted.

【0007】なお上記各請求項における管路は地中又は
地上に設置のものに限らず、さらにトンネルをも含むも
のである。また上記測定台車は自走式でもケーブルによ
る牽引でもよい。
The pipeline in each of the above claims is not limited to being installed underground or above ground, and also includes a tunnel. The measuring carriage may be self-propelled or towed by a cable.

【0008】[0008]

【作用】請求項1項の発明では、まず管路の入り口付近
で推進基線を定め、この推進基線上の任意の引照点を定
める。そしてこの入り口付近に測定台車を止めてこれを
固定し、測量器を整準し、これらの二点の引照点及び管
路内の直前のターゲットを視凖する。これにより測量器
から各引照点及び上記ターゲットまでの距離及びこれら
の点を結ぶ直線間の各夾角が得られ、これらの三点によ
り二点の引照点を結ぶ線を一辺とする三角形が形成され
る。そしてつぎの隣接するターゲットの間で測量する後
視の二点を結ぶ線を順次次の三角形の一辺として三角形
を連結していくことにより、これらの三角形と先に定め
た引照点との相対位置関係が得られる。ここで引照点
は、推進基線上の絶対位置の定められた点であるから、
上記の順次形成される三角形の位置、即ちターゲットの
位置は絶対位置として得られ、さらに予め各ターゲット
の、管路の横断面における位置を定めておけば、管路の
位置が測定できる。
According to the first aspect of the present invention, first, a propulsion base line is set near the entrance of the pipeline, and an arbitrary shining point on the propulsion base line is set. Then, stop the measuring carriage near this entrance, fix it, level the surveying instrument, and look at these two illuminating points and the immediately preceding target in the pipeline. This gives the distance from the surveying instrument to each of the illuminating points and the target, and each included angle between the straight lines connecting these points, and these three points form a triangle with one side connecting the line connecting the two illuminating points. It Then, the relative position between these triangles and the previously defined illuminating point is determined by connecting the triangles with the line connecting the two points of the backsight measured between the next adjacent targets as one side of the next triangle. Relationship is obtained. Here, the shining point is the point where the absolute position on the propulsion baseline is defined,
The positions of the triangles formed in sequence, that is, the positions of the targets are obtained as absolute positions, and the positions of the conduits can be measured if the positions of the respective targets in the transverse cross section of the conduits are determined in advance.

【0009】また請求項2項の発明では、請求項1項の
発明によって得られた管路の最先端のターゲットの位置
を求め、このターゲットに対する掘進機等の機軸姿勢デ
ータを加算して掘削機の最先端の位置が測定できる。こ
の掘進機等の機軸姿勢データは、当該掘削機に内蔵した
3軸ジャイロ又はジャイロと傾斜計との組合せにより水
平角及び鉛直角を求めることにより得られる。またこれ
に代えて、掘削機、後続の管体等を連結するため、突合
せ端の外周に沿って設けた複数のジャッキのストローク
差により求めることもできる。
Further, according to the invention of claim 2, the position of the tip of the target of the pipeline obtained by the invention of claim 1 is obtained, and the machine axis attitude data of the excavator or the like with respect to this target is added to the excavator. The most advanced position of can be measured. The machine axis posture data of the excavator or the like can be obtained by obtaining a horizontal angle and a vertical angle by a 3-axis gyro built in the excavator or a combination of a gyro and an inclinometer. Alternatively, since the excavator and the subsequent pipe body are connected to each other, the stroke difference between the plurality of jacks provided along the outer circumference of the butt end can be used for the calculation.

【0010】[0010]

【実施例】以下この発明の実施例を図について説明す
る。まずこの発明の方法に使用する装置等について説明
すると、図1に示すごとく地表面1に設けた立坑2の一
側面から掘削機3によりトンネル4を形成している。こ
のトンネル4内に、当該トンネル4に沿って図2及び図
3に示すごとく軌道5を設ける。この軌道5は適宜の支
持脚6に支持され、この上を測定台車7が走行するよう
になっている。この測定台車7は四個の車輪7aを有
し、これらの車輪7aが軌道5の断面略チャネル溝内に
挿入され、上記立坑2に設けたウインチ8及びトンネル
4内の先端に設けたウインチ9に夫々一端を巻きつけた
牽引ワイヤ10を前後に固定し、これらの牽引ワイヤ1
0を引っ張ることにより軌道5上を前進又は後退する。
そして測定台車7の後方の牽引ワイヤ10には信号伝送
ケーブルを添わせ、これを立坑2に設けた操作、演算装
置11に接続している。
Embodiments of the present invention will be described below with reference to the drawings. First, the apparatus and the like used in the method of the present invention will be described. As shown in FIG. 1, a tunnel 4 is formed by an excavator 3 from one side surface of a shaft 2 provided on the ground surface 1. In this tunnel 4, a track 5 is provided along the tunnel 4 as shown in FIGS. The track 5 is supported by appropriate supporting legs 6 on which the measuring carriage 7 travels. This measuring carriage 7 has four wheels 7a, which are inserted into the channel groove of the cross section of the track 5 and are provided with a winch 8 provided in the shaft 2 and a winch 9 provided at the tip of the tunnel 4. The pulling wires 10 each having one end wound around the
By pulling 0, it moves forward or backward on the track 5.
A signal transmission cable is attached to the pulling wire 10 at the rear of the measurement carriage 7, and this is connected to the operation / arithmetic unit 11 provided in the vertical shaft 2.

【0011】上記測定台車7には鉛直方向に及び水平方
向に回動自在となった測量器12が設けられ、この測量
器12は鉛直方向の回動及び水平方向の回動用モータを
内蔵し、また図4に示すごとく整準用の数個の回転ツマ
ミ13を回転させるモータを夫々内蔵している。また当
該測量器12のピント合わせツマミ14を回動させるモ
ータを内蔵し、さらに測量器12の視準のぞき窓にTV
カメラ15を設けている。従って作業員は遠隔箇所から
当該測量器12の整準状態を気泡や傾斜計で観察しなが
らこれらのモータを動かし、またTVカメラ15を介し
て視準する。
The measuring carriage 7 is provided with a surveying instrument 12 which is rotatable in vertical and horizontal directions. The surveying instrument 12 has a built-in motor for vertical and horizontal rotation, Further, as shown in FIG. 4, motors for rotating several leveling rotary knobs 13 are respectively incorporated. Further, a motor for rotating the focusing knob 14 of the surveying instrument 12 is built-in, and a TV is provided on the sighting window of the surveying instrument 12.
A camera 15 is provided. Therefore, the worker operates these motors while observing the leveling state of the surveying instrument 12 with a bubble or an inclinometer from a remote location, and collimates them through the TV camera 15.

【0012】またトンネル4内に適宜の間隔をあけて多
数の測量用ターゲット16を図5及び図6に示すごとく
設ける。これらのターゲット16の間隔は上記測量器1
2を隣接する二つのターゲット16の間に置いて、後方
の二点のターゲット16及び前方の一点のターゲット1
6を視準できる間隔であればよい。そして図7に示すご
とく、上記測量器12により光波17を各測量用ターゲ
ット16の前面又は後面に当てるようになっている。そ
して後述の測定によって各測量用ターゲット16の点1
6aの位置が分かるものである。
A large number of survey targets 16 are provided in the tunnel 4 at appropriate intervals as shown in FIGS. The distance between these targets 16 is the above-mentioned surveying instrument 1
2 is placed between two adjacent targets 16, and two targets 16 at the rear and one target 1 at the front are placed.
It suffices if the distance is such that 6 can be collimated. Then, as shown in FIG. 7, the surveying instrument 12 applies the light wave 17 to the front surface or the rear surface of each surveying target 16. Then, the point 1 of each survey target 16 is measured by the measurement described later.
The position of 6a is known.

【0013】つぎに上記装置を用いてこの発明の位置測
定方法を説明する。図8及び図9において、立坑2内に
推進基線Gを設ける。そして立坑2内の軌道5上の任意
のP1点にて上記測定台車7を固定し、測量器12を整
準後、推進基線G上に適宜設けた引照点A、B及びトン
ネル4内の一番手前のターゲット16のC1点を測量
し、A点、B点及びC1点を求める。この場合P1点か
らA点、B点、C1点を視準し、P1点から各点までの
距離L1、L2、L3が得られ、またP1点から各点を
結ぶ直線間の各夾角θ1、θ2が得られる。これにより
位置が既知である推進基線G上の二点の引照点を結ぶ線
ABを一辺とする三角形A、B、C1が得られ、これに
より引照点からのC1点の位置関係が求められる。これ
らの測量器12の整準操作並びに視準操作、データの演
算は遠隔、自動にて行う。
Next, the position measuring method of the present invention will be described using the above apparatus. In FIGS. 8 and 9, a propulsion base line G is provided in the vertical shaft 2. Then, the measuring carriage 7 is fixed at an arbitrary point P1 on the track 5 in the shaft 2, and after the surveying instrument 12 is leveled, one of the illuminating points A and B and the tunnel 4 which are appropriately provided on the propulsion base line G. The C1 point of the target 16 before the count is measured, and the A point, the B point, and the C1 point are obtained. In this case, points P1, A, B, and C1 are collimated to obtain distances L1, L2, and L3 from P1 to each point, and included angles θ1 between straight lines connecting each point from P1 to each point, θ2 is obtained. As a result, triangles A, B, and C1 whose sides are lines AB connecting the two points of attraction on the propulsion base line G whose position is known are obtained, and the positional relationship of the point C1 from the point of attraction is obtained. The leveling operation and collimation operation of these surveying instruments 12 and data calculation are performed remotely and automatically.

【0014】次ぎに図10に示すごとくトンネル4内の
上記ターゲット16と次ぎに隣接するターゲット16と
の間の任意のP2の位置に軌道5に沿って測定台車7を
移動させ、上記と同様に遠隔、自動にて測量器12を固
定し、整準後、後視である上記A点及びC1点と前視で
あるC2点を測量し、上記の三角形A、B、C1の一辺
AC1を共有する三角形A、C1、C2の三角形を得る
ことにより先の引照点からのC2点の位置関係が求めら
れる。以下同様の手順を繰り返し、トンネル4内の各タ
ーゲット16の点16aを求めていく。
Next, as shown in FIG. 10, the measuring carriage 7 is moved along the track 5 to an arbitrary position P2 between the target 16 and the next adjacent target 16 in the tunnel 4, and the same as above. Remotely and automatically fix the surveying instrument 12 and, after leveling, measure the points A and C1 which are the backsight and the points C2 which are the frontsight, and share one side AC1 of the above triangles A, B and C1. By obtaining the triangles A, C1, and C2 to be obtained, the positional relationship of the point C2 from the previous focusing point can be obtained. The same procedure is repeated thereafter to obtain the point 16a of each target 16 in the tunnel 4.

【0015】この様に図9及び図10において、上記各
Pn点から後視の二点及び前視の一点を順次視準してい
けば三角形A、B、C1が求まり、この三角形の一辺
A、C1を共用する三角形A、C1、C2、またこの三
角形の一辺C1、C2を共有する三角形C1、C2、C
3、さらにこの三角形の一辺C2、C3を共有する三角
形C2、C3、C4が順次求まる。なお以上の測定原理
は簡略のため平面について説明したものであるが、実際
には縦断面においても同様の測定を同時に行い、そのデ
ータを加味することにより立体空間中に存在する三角形
として求まるものである。この様にして次々として連続
した三角形が立体的に形成され、後視の二点を結ぶ線を
順次共有して行くことにより、各三角形の位置関係が得
られ、上記の引照点の位置から前視となるターゲット1
6の点16a(図10ではC1乃至C4)の位置が求ま
る。そこでトンネル4の横断面における各ターゲット1
6の位置を予め定めておけば、トンネル4の位置が測定
できる。
Thus, in FIG. 9 and FIG. 10, triangles A, B, and C1 are obtained by sequentially collimating two points of the backsight and one point of the fronts from each Pn point, and one side A of the triangle is obtained. , C1 sharing the same, and triangles C1, C2, C sharing one side C1, C2 of the triangle.
3. Further, triangles C2, C3, C4 sharing one side C2, C3 of this triangle are sequentially obtained. Note that the above measurement principle is explained using a plane for the sake of simplicity, but in reality, the same measurement is also performed on the longitudinal section, and by adding the data, it can be obtained as a triangle existing in the three-dimensional space. is there. In this way, continuous triangles are formed three-dimensionally one after another, and by sequentially sharing the line connecting the two points of backsight, the positional relationship of each triangle can be obtained, and Target 1 to be seen
The positions of the six points 16a (C1 to C4 in FIG. 10) are obtained. So each target 1 in the cross section of the tunnel 4
If the position of 6 is determined in advance, the position of the tunnel 4 can be measured.

【0016】またこの様にしてトンネル4の先端までの
位置が測定できるが、図11に示すごとく、この先の掘
削機3の先端は、当該掘削機3及び内部に機器を設置し
た管体17、18、19があるため、上記の測量による
方法では測定出来ない。そこでこれらの掘削機3及び後
続の内部に機器等を設置した管体17、18、19があ
る場合は、上記方法で最先端の管体20端の点Cn−1
及びCnの位置を求め、この位置から管体20の管軸
(機軸)の方向を得、以降管体19、18、17及び掘
削機3の管軸又は機軸の方向が得られる。従って各管体
20、19、18、17及び掘削機3相互の成す角度θ
11、θ12、θ13、θ14及び各管体の寸法データ
より、各管体19、18、17及び掘削機3の管軸(機
軸)先端部の点D1、D2、D3、D4の座標点が得ら
れる。
Further, the position up to the tip of the tunnel 4 can be measured in this way, but as shown in FIG. 11, the tip of the excavator 3 ahead of this is the pipe body 17 in which the excavator 3 and equipment are installed inside. Since there are 18 and 19, it cannot be measured by the above-mentioned surveying method. Therefore, when there are pipes 17, 18, and 19 in which equipment and the like are installed inside the excavator 3 and the following, a point Cn-1 at the end of the most advanced pipe 20 is obtained by the above method.
And Cn are obtained, the direction of the pipe axis (machine axis) of the pipe body 20 is obtained from this position, and thereafter, the direction of the pipe axis or the machine axis of the pipe bodies 19, 18, 17 and the excavator 3 is obtained. Therefore, the angle θ formed by each pipe 20, 19, 18, 17 and the excavator 3 is
The coordinate points of points D1, D2, D3, D4 of the pipes 19, 18, 17 and the tip of the pipe axis (machine axis) of the excavator 3 are obtained from the dimension data of 11, θ12, θ13, θ14 and the pipes. To be

【0017】これらの上記機軸又は管軸の方向はこれら
に搭載した、平面角及び鉛直角の偏位を計測できる三軸
ジャイロ、又は平面角用ジャイロと鉛直角用傾斜計(加
速度計)を組み合わせても測定できる。またこの他に各
管体17、18、19、20及び掘削機3を連結するた
め、これらの各突合せ端部外周に沿って複数個設けた各
ジャッキのストローク差にて上記θ11等を求める方法
もある。
The direction of the above machine axis or tube axis is mounted on them, and a three-axis gyro capable of measuring deviation of a plane angle and a vertical angle, or a combination of a plane angle gyro and a vertical angle inclinometer (accelerometer). Can be measured. In addition, in order to connect the pipes 17, 18, 19, 20 and the excavator 3 to each other, a method for obtaining the above-mentioned θ11 and the like by the stroke difference of each jack provided in plural along the outer circumference of each butt end. There is also.

【0018】なお上記実施例では測定台車7を牽引ワイ
ヤ10で引っ張って走行させているが、これに限らず測
定台車は自走式としてもよく、また無線で操作するもの
でも良い。さらに当該測定台車7を軌道上で停止させ、
ターゲットを視準する際、当該測定台車7を軌道上で固
定しなければならないが、この固定方法は適宜のもので
良く、例えば上記車輪7aのシャフトの両側端を外方に
突出させて、軌道の両側の外枠に押し当てて固定するス
タビライザー方式のものでも良い。
In the above embodiment, the measuring carriage 7 is pulled by the pulling wire 10 for traveling, but the measuring carriage is not limited to this and may be a self-propelled type or may be operated wirelessly. Furthermore, stop the measurement carriage 7 on the track,
When collimating the target, the measurement carriage 7 must be fixed on the track, but this fixing method may be any suitable method, for example, by projecting both ends of the shaft of the wheel 7a to the outside, It may be a stabilizer type that is pressed against the outer frames on both sides to be fixed.

【0019】[0019]

【発明の効果】請求項1項の発明においては、トンネル
や地上、地中設置の管路の位置測定において、管路又は
トンネル内に軌道及び複数のターゲットを設け、上記軌
道に沿って測量器を移動させて測定すれば良く、その際
軌道は定位置に設けなくても良い。また測量器を停止さ
せるべき盛替点を予め設置する必要がなく、またその位
置に測量器を正確に停止させる必要もないので、容易に
位置測定ができる。また遠隔での自動操作による測定が
でき、測定作業が容易かつ安全となる。さらに作業員の
入れない小口径の管路やトンネル、曲がりくねった管路
やトンネル等の位置測定に便利である。しかもこれらの
管路やトンネルにおいて、施工方法や施工途中を問わ
ず、簡易に測定できるものである。
According to the present invention, in measuring the position of a tunnel, a ground, or a pipeline installed on the ground, a track and a plurality of targets are provided in the pipeline or the tunnel, and a surveying instrument is provided along the track. May be moved for measurement, and the orbit does not have to be provided at a fixed position. In addition, since it is not necessary to previously set the exchanging point at which the surveying instrument should be stopped and the surveying instrument need not be accurately stopped at that position, the position can be easily measured. In addition, measurement can be performed by remote automatic operation, and the measurement work becomes easy and safe. Furthermore, it is convenient for measuring the positions of small diameter pipes and tunnels that do not allow workers, and winding pipes and tunnels. Moreover, in these pipes and tunnels, it is possible to easily measure regardless of the construction method or the construction process.

【0020】また請求項2項の発明は、上記請求項1項
の発明の効果に加え、掘削中の管路又はトンネルにおけ
る掘進機等の先端位置は従来の測量法では測定が容易で
はなかったが、この発明ではこの様な見通しのきかない
箇所でも容易に計測できるものである。
In addition to the effect of the invention of claim 1, it is not easy to measure the tip position of the excavator or the like in the pipeline or tunnel during excavation by the conventional surveying method. However, according to the present invention, it is possible to easily measure even in such a place where the line of sight cannot be seen.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の方法に使用するトンネル及び立坑内
の設備の概略を示す断面側面図である。
FIG. 1 is a cross-sectional side view schematically showing a tunnel and equipment in a shaft used in the method of the present invention.

【図2】この発明の方法に使用するトンネル内の軌道及
び測定台車を示す断面側面図である。
FIG. 2 is a sectional side view showing a track and a measurement carriage in a tunnel used in the method of the present invention.

【図3】この発明の方法に使用するトンネル内の軌道及
び測定台車を示す断面正面図である。
FIG. 3 is a sectional front view showing a track and a measurement carriage in a tunnel used in the method of the present invention.

【図4】この発明の方法に使用する測量器の概略側面図
である。
FIG. 4 is a schematic side view of a surveying instrument used in the method of the present invention.

【図5】この発明の方法に使用するターゲットの設置状
態を示す側面図である。
FIG. 5 is a side view showing an installed state of a target used in the method of the present invention.

【図6】この発明の方法に使用するターゲットの設置状
態を示す正面図である。
FIG. 6 is a front view showing an installed state of a target used in the method of the present invention.

【図7】この発明の方法に使用するターゲットの拡大側
面図である。
FIG. 7 is an enlarged side view of a target used in the method of the present invention.

【図8】この発明の方法における測量器による最初の視
準を示す側面図である。
FIG. 8 is a side view showing the first collimation by the surveying instrument in the method of the present invention.

【図9】この発明の方法における測量器による最初の視
準を示す平面図である。
FIG. 9 is a plan view showing the first collimation by the surveying instrument in the method of the present invention.

【図10】この発明の方法における測量原理を示す概略
平面図である。
FIG. 10 is a schematic plan view showing a surveying principle in the method of the present invention.

【図11】この発明の方法における掘進機及び後続の管
体等の先端位置を計測する原理を示す概略平面図であ
る。
FIG. 11 is a schematic plan view showing the principle of measuring the tip positions of the excavator and the subsequent pipe body in the method of the present invention.

【符号の説明】[Explanation of symbols]

2 立坑 3 掘進機 4 トンネル 5 軌道 7 測定台車 10 牽引ワイヤ 12 測量器 16 ターゲッ
ト 17 管体 G 推進基線
2 Vertical shaft 3 Excavator 4 Tunnel 5 Orbit 7 Measuring carriage 10 Traction wire 12 Surveyor 16 Target 17 Pipe G Propulsion baseline

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 管路又はトンネル内に、当該管路等に沿
って一本の軌道及び適宜の間隔で複数のターゲットを夫
々設け、上記軌道に水平面、垂直面の距離及び角度を測
定できる機能を有する測量器を搭載した測定台車を載
せ、この測定台車を管路等の入り口付近で停止させて、
管路等の入り口付近に設けた推進基線上の二つの引照点
及び管路等内に設けた直前のターゲットを上記測量器で
遠隔操作により測量してこれらの三点の位置関係を求
め、上記測定台車を上記軌道上で走行させて順次隣接す
る二つのターゲットの間毎に測定台車を停止させて、後
視の二点のターゲット又は上記引照点及び前視の一点の
ターゲットを上記と同様に測量してこれらの三点の位置
関係を求め、上記推進基線を基準として上記各三点の位
置関係データの累積から管路等の位置を測定することを
特徴とする、測定台車による管路等の自動位置測定法。
1. A function capable of measuring a distance and an angle between a horizontal plane and a vertical plane on the track by providing a single track and a plurality of targets at appropriate intervals along the line in the pipeline or the tunnel. Place a measurement trolley equipped with a surveying instrument with, and stop this measurement trolley near the entrance of a pipeline,
The two reference points on the propulsion base line provided near the entrance of the pipeline, etc. and the target just before the pipeline provided in the pipeline etc. were measured remotely by the above surveying instrument to obtain the positional relationship between these three points. The measurement carriage is run on the track, and the measurement carriage is stopped for each interval between two adjacent targets, and two targets in the backsight or one point in the foresight and the foresight are targeted in the same manner as above. Measuring the positional relationship between these three points by measuring, and measuring the position of the pipeline etc. from the accumulation of the positional relationship data of each of the above three points with the above-mentioned propulsion base line as a reference Automatic position measurement method.
【請求項2】 トンネル掘進機で土中を掘進中の管路又
はトンネルにおいて、掘進機の後方の管路等内に、当該
管路等に沿って一本の軌道及び適宜の間隔で複数のター
ゲットを夫々設け、上記軌道に水平面、垂直面の距離及
び角度を測定できる機能を有する測量器を搭載した測定
台車を載せ、この測定台車を管路等の入り口付近で停止
させて、管路等の入り口付近に設けた推進基線上の二つ
の引照点及び管路等内に設けた直前のターゲットを上記
測量器で遠隔操作により測量してこれらの三点の位置関
係を求め、上記測定台車を上記軌道上で走行させて順次
隣接する二つのターゲットの間毎に測定台車を停止させ
て、後視の二点のターゲット又は上記引照点及び前視の
一点のターゲットを上記と同様に測量してこれらの三点
の位置関係を求め、上記推進基線を基準として上記各三
点の位置関係のデータの累積から管路等の位置を測定す
るとともに、上記掘進機等の機軸姿勢データを用いて、
最寄りのターゲットの位置データに加算して上記掘進先
端位置を求めることを特徴とする、測定測定台車による
管路等の自動位置測定法。
2. In a pipeline or tunnel which is being dug into the soil by a tunnel excavator, one track and a plurality of suitable intervals are provided in the pipeline or the like behind the excavator along the pipeline. Each target is provided with a measuring carriage equipped with a surveying instrument capable of measuring the distance and angle of the horizontal plane and the vertical plane on the track, and the measuring carriage is stopped near the entrance of the pipeline, etc. The two illuminating points on the propulsion base line near the entrance of the car and the target just before it installed in the pipeline etc. were remotely measured by the survey instrument to obtain the positional relationship of these three points, and Stop the measurement carriage between each of the two adjacent targets that are run on the track in sequence, and measure the two-point target of the backsight or the target of the above-mentioned illuminating point and one point of the frontsight in the same manner as above. Find the positional relationship of these three points, While measuring the position of the pipeline and the like from the accumulation of the positional relationship data of each of the three points with the propulsion base line as a reference, using the machine axis attitude data of the excavator and the like,
An automatic position measuring method for a pipeline or the like by a measuring and measuring cart, which is characterized by adding the position data of the nearest target to obtain the above-mentioned excavation tip position.
JP7060109A 1995-02-24 1995-02-24 Automatic position measurement method for pipes, etc. by measuring cart Expired - Fee Related JP2687102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7060109A JP2687102B2 (en) 1995-02-24 1995-02-24 Automatic position measurement method for pipes, etc. by measuring cart

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7060109A JP2687102B2 (en) 1995-02-24 1995-02-24 Automatic position measurement method for pipes, etc. by measuring cart

Publications (2)

Publication Number Publication Date
JPH08233575A true JPH08233575A (en) 1996-09-13
JP2687102B2 JP2687102B2 (en) 1997-12-08

Family

ID=13132624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7060109A Expired - Fee Related JP2687102B2 (en) 1995-02-24 1995-02-24 Automatic position measurement method for pipes, etc. by measuring cart

Country Status (1)

Country Link
JP (1) JP2687102B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209093A (en) * 2010-03-30 2011-10-20 Fujita Corp Measuring method
CN103046933A (en) * 2012-12-08 2013-04-17 中铁十二局集团有限公司 Shield station-crossing tunneling and station parallel construction method
EP2256456B1 (en) * 2009-05-26 2015-12-23 Emschergenossenschaft Measurement of underground structures in particular for underground tunnelling
CN110030431A (en) * 2019-04-30 2019-07-19 中国十七冶集团有限公司 A kind of Curve Pipe Jacking jacking posture method for correcting error

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106840066A (en) * 2017-01-13 2017-06-13 武汉大学 A kind of long distance tunnel internal precision horizontal control network net type

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446365A (en) * 1990-06-13 1992-02-17 Canon Inc Developing device
JPH04309809A (en) * 1991-04-05 1992-11-02 Pub Works Res Inst Ministry Of Constr Inside tunnel measuring method in tunnel excavation work
JPH05248861A (en) * 1991-10-14 1993-09-28 Aoki Corp Shield surveying method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446365A (en) * 1990-06-13 1992-02-17 Canon Inc Developing device
JPH04309809A (en) * 1991-04-05 1992-11-02 Pub Works Res Inst Ministry Of Constr Inside tunnel measuring method in tunnel excavation work
JPH05248861A (en) * 1991-10-14 1993-09-28 Aoki Corp Shield surveying method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256456B1 (en) * 2009-05-26 2015-12-23 Emschergenossenschaft Measurement of underground structures in particular for underground tunnelling
EP2256457B1 (en) * 2009-05-26 2017-05-17 Emschergenossenschaft Measurement of underground structures, in particular for underground tunnelling, with consoles
JP2011209093A (en) * 2010-03-30 2011-10-20 Fujita Corp Measuring method
CN103046933A (en) * 2012-12-08 2013-04-17 中铁十二局集团有限公司 Shield station-crossing tunneling and station parallel construction method
CN110030431A (en) * 2019-04-30 2019-07-19 中国十七冶集团有限公司 A kind of Curve Pipe Jacking jacking posture method for correcting error

Also Published As

Publication number Publication date
JP2687102B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
JP2687102B2 (en) Automatic position measurement method for pipes, etc. by measuring cart
JP2016079678A (en) Survey system for shield tunnel segment
JPH0550687B2 (en)
JP3124780B2 (en) Shield surveying method
JP2515424B2 (en) Shield survey method
JP2912497B2 (en) Shield surveying method
JP6669590B2 (en) Positioning method of shield machine
JP3943050B2 (en) Surveying robot cart
JPH0875463A (en) Excavation confirming and measuring method for shield machine
JP4164429B2 (en) Propulsion excavator and excavator position calculation method
JPH0727564A (en) Measuring device for position and attitude of excavator
JP2572930B2 (en) Propulsion method
JPH01142193A (en) Position measuring method in method of pipe burying construction
JPS61130814A (en) Automatic position measurement by self-propelling gyrocar method
JP3407174B2 (en) Non-drilling measuring device
JP2007046278A (en) Small diameter pipe jacking method
JPH04309809A (en) Inside tunnel measuring method in tunnel excavation work
JP3542146B2 (en) Survey method of shield machine
JP3180172B2 (en) Surveying device for shield machine and its surveying method
JPS63305208A (en) Method for searching route shape of embedded pipeline
JPH09243365A (en) Position detecting device, surveying method, and digging-direction control system
JPH05288548A (en) Shield surveying method
JPS6332089A (en) Pipe embedding construction method by robot
WO1997008429A1 (en) Method and apparatus for measuring position and attitude of tunnel boring machine
JP2688690B2 (en) Surveying system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees