JPH0727564A - Measuring device for position and attitude of excavator - Google Patents

Measuring device for position and attitude of excavator

Info

Publication number
JPH0727564A
JPH0727564A JP11983893A JP11983893A JPH0727564A JP H0727564 A JPH0727564 A JP H0727564A JP 11983893 A JP11983893 A JP 11983893A JP 11983893 A JP11983893 A JP 11983893A JP H0727564 A JPH0727564 A JP H0727564A
Authority
JP
Japan
Prior art keywords
excavator
surveying
pipe
attitude
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11983893A
Other languages
Japanese (ja)
Inventor
Tamotsu Nozawa
有 野沢
Toshiharu Horinaka
俊治 堀中
Mitsuhiro Wada
光弘 和田
Shinji Kawashima
神治 河島
Takahiro Yamazaki
貴弘 山崎
Hiroki Takahashi
弘樹 高橋
Kentaro Hamada
賢太郎 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morimoto Corp
Original Assignee
Morimoto Gumi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morimoto Gumi Corp filed Critical Morimoto Gumi Corp
Priority to JP11983893A priority Critical patent/JPH0727564A/en
Publication of JPH0727564A publication Critical patent/JPH0727564A/en
Pending legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE:To measure the position and attitude of an excavator in the jacking method automatically, quickly, and accurately with a detecting device arranged in a surveying tube behind the excavator. CONSTITUTION:A vertical line laser is rotated, the included angle between a plurality of light receivers A1, A2 installed in an excavator 1 is measured based on the direction and position of a surveying tube 2 behind the excavator 1, thereby the direction and position of the excavator 1 can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はトンネルの掘削推進工
法において、掘進機および掘進機後方に配置する測量管
の相対方位ならび相対位置を検出する推進工法における
掘進機の位置および姿勢の計測装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring the position and orientation of a machine in a propulsion method for detecting the relative azimuth and relative position of a machine and a surveying pipe arranged behind the machine in a tunnel excavation method. It is a thing.

【0002】[0002]

【従来の技術】都市部における地下工事が頻繁な今日、
推進工法は小口径トンネルを地表を開削することなく施
工する有力な手段であることは、推進工事の件数が年々
増加している現状から明らかである。最近は推進管を挿
入する立坑のための用地の確保も困難になってきてお
り、中間立坑の少ない曲線線形トンネルが計画される場
合が増えてきている。どのような工事においても、計画
線通りに施工することは極めて重要であり、その確認と
して測量作業を行うわけであるが、推進工事の場合、直
線では管の先端にある掘進機の位置の確認を立坑より見
通して行うことができるが、曲線の場合見通しが効かな
いのが測量上の最大の難点といえる。
[Prior Art] Today, when underground construction is frequent in urban areas,
It is clear from the current situation that the number of propulsion works is increasing year by year, because the propulsion method is a powerful means of constructing small-diameter tunnels without excavating the ground surface. Recently, it has become difficult to secure a site for a vertical shaft into which a propulsion pipe is inserted, and a curved linear tunnel with few intermediate vertical shafts is increasingly planned. It is extremely important to carry out the work according to the planned line in any work, and survey work is performed as confirmation of it.However, in the case of propulsion work, the position of the excavator at the tip of the pipe is checked in a straight line. It is possible to view from the vertical shaft, but in the case of a curved line the visibility is not effective, which can be said to be the greatest difficulty in surveying.

【0003】従来の曲線線形トンネルの測量方法として
は、推進管内において、立坑と掘進機が同時に見通せる
地点を選択して測量機械を据え、この中継点を介してト
ンネル先端位置の測量などを行っていた。
As a conventional survey method for a curved linear tunnel, a surveying machine is installed by selecting a point in the propulsion pipe where the vertical shaft and the excavator can be seen at the same time, and the tunnel tip position is surveyed through this relay point. It was

【0004】[0004]

【発明が解決しようとする課題】上述した従来の曲線線
形トンネルの測量作業は、人間が管内を移動する必要性
を伴うから、悪環境の中での作業が苦渋であるばかりで
なく、時間もかかり効率も悪い。その上、測量中継点が
配置される管の周辺の地盤は不安定な状態であるのが普
通であり、これが測量精度にも悪影響を与える。さら
に、管内にしばしば掘削土を圧送するための設備が配置
されるため見通しもよくない。それどころか、人間が管
内を移動するのに不十分な口径のトンネルも少なくな
い。このような問題を克服するため、施工中の管の線形
を決定する管理上の重要点である掘進機およびその直後
に配置される推進管の現在位置および姿勢を自動的に、
迅速かつ正確に測量する手段が求められていた。
The above-described conventional curved linear tunnel surveying work is not only difficult to perform in a bad environment because it requires a human to move inside the pipe, and it takes time. It is inefficient and inefficient. Moreover, the ground around the pipe where the survey relay point is placed is usually in an unstable state, which adversely affects the survey accuracy. In addition, the visibility is not good because equipment for pumping the excavated soil is often placed in the pipe. On the contrary, there are many tunnels with insufficient diameters for humans to move inside the pipe. In order to overcome such problems, the current position and attitude of the excavator and the propulsion pipe placed immediately after it, which is an important point in management that determines the alignment of the pipe during construction, are automatically calculated.
There was a need for a quick and accurate means of surveying.

【0005】以上のような状況の中で、測量作業を自動
化するために、トンネルの線形をレートジャイロなどの
方位検出機および移動距離検出装置を一体にまとめて管
内を走行させ先端位置を計測する方法などが提案されて
きている。しかし、これらの方法は施工設備が多数配置
されている掘進機周辺においては走行空間が確保でき
ず、最終的に必要な掘進機およびその後方の推進管の位
置および姿勢を計測するには不十分な点が多いと言う問
題点があった。
Under the circumstances as described above, in order to automate the surveying work, the direction of the tunnel is integrated with a direction detector such as a rate gyroscope and a moving distance detector to travel in the pipe to measure the tip position. Methods have been proposed. However, these methods cannot secure a running space around the excavator where many construction equipments are arranged, and are not sufficient to measure the finally required position and attitude of the excavator and the propulsion pipe behind it. There was a problem that there were many points.

【0006】[0006]

【課題を解決するための手段】上述の問題点を解決する
ため本発明においては、掘進機の方位と位置を、掘進機
後方の測量管の方位と位置に基づき、鉛直ラインレーザ
ーを回転させて掘進機内に設置した複数個の受光器間の
挟角を計測することによって求めるようにして掘進機の
位置および姿勢の計測装置を構成する。
In order to solve the above-mentioned problems, in the present invention, the vertical line laser is rotated based on the azimuth and position of the excavator based on the azimuth and position of the surveying pipe behind the excavator. A measuring device for the position and orientation of the excavator is configured so as to be obtained by measuring the included angle between a plurality of light receivers installed in the excavator.

【0007】[0007]

【作用】本発明装置は上述のように構成したから、この
装置を用いることにより、掘進機の後方に位置する測量
管の位置および姿勢をもとに、掘進機軸線の相対方位な
らびに掘進機の基準点の位置が自動的に、容易かつ迅速
に求められる。掘進機と後続の測量管の位置と姿勢を管
理することは、工事の品質管理上極めて重要であり、従
って本装置は掘進機操作者が計画線通りに掘進機を運転
する上で有力な情報を提供することができる。また、測
量作業者を苦渋作業から開放できるばかりでなく、工事
の全体的な品質向上に貢献することができる。
Since the device of the present invention is configured as described above, by using this device, the relative azimuth of the machine axis and the machine direction of the machine are determined based on the position and attitude of the surveying pipe located behind the machine. The position of the reference point is automatically, easily and quickly determined. Controlling the position and attitude of the excavator and the subsequent survey pipe is extremely important for the quality control of the construction.Therefore, this device is useful information for the excavator operator to operate the excavator as planned. Can be provided. Moreover, not only can the surveying worker be relieved of the troublesome work, but it can also contribute to the improvement of the overall quality of the construction.

【0008】[0008]

【実施例】以下、図面について本発明の実施例を説明す
る。図1はこの掘進機の位置および姿勢の計測装置の構
成部材と、その配置を示すもので、図中1は掘進機、2
は後続の測量管で、3は推進管である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the constituent members of the position and attitude measuring device of this machine and its arrangement.
Is a subsequent survey pipe, and 3 is a propulsion pipe.

【0009】掘進機1の天井には、2個の受光器A1,A
2 を前後方向の軸線に沿ってできるだけ距離をおいて配
置すると共に、測量管2の天井の後端にも受光器A3
配置する。また測量管2内に前記受光器A1,A2,A3
レーザーを回転照射する掘進機位置姿勢検出装置Bと、
この掘進機位置姿勢検出装置Bの制御部4を設ける。
On the ceiling of the excavator 1, two light receivers A 1 , A
2 is arranged as much as possible along the axis of the front-rear direction, and the photodetector A 3 is also arranged at the rear end of the ceiling of the survey tube 2. Further, an excavator position / orientation detecting device B for rotating and irradiating the light receivers A 1 , A 2 , and A 3 with laser in the surveying pipe 2,
The control unit 4 of the excavator position / orientation detection device B is provided.

【0010】図2は掘進機位置姿勢検出装置Bの側断面
図で、図3は図2のC矢視図である。図中5はベースプ
レート、6はこのベースプレート5に取り付けたケー
ス、7はこのケース6内に設けたモータ、8はモータ7
の鉛直軸7aに設けた回転テーブル、9はこの回転テー
ブル8に取り付けたレーザー光源、10はこのレーザー光
源9から鉛直面に沿って扇状に発射される鉛直ラインレ
ーザーである。
2 is a side sectional view of the excavator position / orientation detecting device B, and FIG. 3 is a view taken in the direction of arrow C in FIG. In the figure, 5 is a base plate, 6 is a case attached to the base plate 5, 7 is a motor provided in the case 6, and 8 is a motor 7.
A rotary table provided on the vertical shaft 7a of the above, a laser light source 9 attached to the rotary table 8, and a vertical line laser 10 emitted from the laser light source 9 in a fan shape along the vertical plane.

【0011】また11はモータ7の後方のケース6内に配
置した角度検出装置で、モータ7よりベルト伝動装置12
によって回転が伝えられ、回転角が検出されるようにな
っている。また13はケース6の後方のベースプレート5
に取り付けた距離変位計で、13a はその距離計測ワイヤ
ーであり、このワイヤー13a はカバー14に設けたガイド
ローラ15を介して受光器Aに接続されている。したがっ
てこの距離変位計6によって回転軸7aと受光器A間の距
離を常時検出することができる。
Reference numeral 11 denotes an angle detecting device arranged inside the case 6 behind the motor 7, and is a belt transmission device 12 from the motor 7.
The rotation is transmitted by and the rotation angle is detected. 13 is the base plate 5 behind the case 6.
13a is a distance measuring wire attached to the receiver, and the wire 13a is connected to the light receiver A through a guide roller 15 provided on the cover 14. Therefore, the distance displacement meter 6 can always detect the distance between the rotary shaft 7a and the light receiver A.

【0012】受光器Aは、その前面に窓を有しており、
そこにレーザー光を照射すると電気信号を発信する構造
になっている。また、この実施例においては装置の寸法
を抑えるため、ベルト伝動装置12のように同期プーリお
よびベルトを回転角伝達機構として用いているが、これ
はモータ7と角度検出装置11を同一の回転軸上に配置し
て直接回転角を伝達する構造にしてもよい。
The light receiver A has a window on its front surface,
It has a structure that emits an electric signal when it is irradiated with laser light. Further, in this embodiment, in order to reduce the size of the device, a synchronous pulley and a belt are used as a rotation angle transmission mechanism like the belt transmission device 12, but this uses the motor 7 and the angle detection device 11 on the same rotation shaft. It may be arranged above to directly transmit the rotation angle.

【0013】以下に図4および図5を用いて角度検出の
手順を説明する。図1および図4に示すとおり、受光器
1,A2 およびA3 の配置は、受光器A3 を掘進機位置
姿勢検出装置Bを設けた測量管2内の後方に測量管2の
軸線に沿って配置し、受光器A1 とA2 は計測対象であ
る円筒形の掘進機1内の2点に、その軸線に沿って、な
るべく距離をおいて設置する。このような受光器A1,A
2,A3 の配置を採用することにより掘進機1の軸線方向
を測量管2の軸線方向を基にして精度よく検出すること
が可能になる。
The procedure of angle detection will be described below with reference to FIGS. 4 and 5. As shown in FIGS. 1 and 4, the photodetectors A 1 , A 2 and A 3 are arranged such that the photodetector A 3 is located behind the surveying pipe 2 provided with the excavator position and attitude detection device B and the axis line of the surveying pipe 2 is located behind the surveying device 2. The light receivers A 1 and A 2 are installed at two points in the cylindrical excavator 1 to be measured, along the axis thereof, with a distance as much as possible. Such a light receiver A 1 , A
By adopting the arrangement of 2 and A 3 , it becomes possible to accurately detect the axial direction of the machine 1 based on the axial direction of the surveying pipe 2.

【0014】図5は、角度検出の動作手順を示すフロー
チャートである。動作開始時、ラインレーザー10(図2
参照)は任意に定める初期方位を向いており、動作を開
始すると回転テーブル8は定められた回転方向に回転を
はじめる。まず、ラインレーザー10は測量管2内の後方
の受光器A3 を通過し、その時点での回転角を該角度検
出装置11により計測してこれを基準方向とする。回転テ
ーブル8はさらに同じ方向に回転を続け、受光器A2
レーザー10を感光する時点で、その回転角を計測し、さ
らに回転を続けて受光器A3 が受光する時点での回転角
を計測する。3個の受光器A1,A2,A3 の検出を完了す
ると、回転テーブル8は反転し定められた初期方位に戻
って回転を停止する。最後に受光器A2 を検出した回転
角と基準方向の回転角の差分を取って角度b(図4参
照)とし、また受光器A1 を検出した回転角と基準方向
の回転角の差分を取って角度aとして演算を行い、その
結果を出力して角度計測動作を完了する。もちろん、回
転テーブル8を反転させずに同一方向に回転を続けても
よいし、またこの一連の動作を複数回繰り返して標本を
収集し検出角度の平均値を取ってもよい。
FIG. 5 is a flow chart showing an operation procedure for angle detection. At the start of operation, the line laser 10 (Fig. 2
(Refer to FIG. 3) is oriented in an arbitrarily determined initial direction, and when the operation is started, the rotary table 8 starts to rotate in a predetermined rotational direction. First, the line laser 10 passes through the rear photodetector A 3 in the surveying tube 2, the rotation angle at that time is measured by the angle detection device 11, and this is used as the reference direction. The rotary table 8 continues to rotate in the same direction, the rotation angle is measured at the time when the photodetector A 2 exposes the laser 10, and the rotation angle is measured at the time when the photodetector A 3 continues to rotate and receives light. measure. When the detection of the three light receivers A 1 , A 2 and A 3 is completed, the rotary table 8 is reversed to return to the defined initial direction and stop the rotation. Finally, the difference between the rotation angle detected by the light receiver A 2 and the rotation angle in the reference direction is taken as the angle b (see FIG. 4), and the difference between the rotation angle detected by the light receiver A 1 and the rotation angle in the reference direction is calculated. Then, the calculation is performed as the angle a, and the result is output to complete the angle measurement operation. Of course, the rotation table 8 may be continuously rotated in the same direction without being inverted, or the series of operations may be repeated a plurality of times to collect a sample and obtain the average value of the detected angles.

【0015】鉛直面ラインレーザーを用いることから、
検出角度aおよびbは、掘進機位置姿勢検出装置Bの回
転軸線D(図2参照)を鉛直軸線とし、この鉛直軸線に
直交する面を水平面とした極座標系における方向角であ
ることがわかる。すなわち、受光器Aがレーザー光源9
と異なる高さにあっても、受光器位置および装置Bの回
転軸位置を該水平面に投影し互いに直線で結んだ方向線
の基準方向に対する方位角が検出できる。ここで基準方
向とは、受光器A3 の位置を同様に水平面に投影し、装
置Bの回転軸線Dと水平面が交差する点とを結んだ直線
により定められる方向である。
Since the vertical line laser is used,
It can be seen that the detection angles a and b are direction angles in a polar coordinate system in which the rotation axis D (see FIG. 2) of the excavator position / orientation detection device B is the vertical axis and the plane orthogonal to this vertical axis is the horizontal plane. That is, the light receiver A is the laser light source 9
Even if the height is different from the above, the azimuth angle of the direction line of the light receiver position and the rotation axis position of the device B projected on the horizontal plane and connected by straight lines with respect to the reference direction can be detected. Here, the reference direction is a direction defined by a straight line that projects the position of the light receiver A 3 onto a horizontal plane and connects the rotation axis D of the device B and the point where the horizontal plane intersects.

【0016】以上の計測動作は制御部4によって統御さ
れる。この制御部4には掘進機位置姿勢検出装置B、受
光器A1,A2,A3 のほか掘進機1の軸線方向および測量
管2の軸線方向を計算するための計器等が接続される。
図7に、制御部4に接続される掘進機1および測量管2
の傾斜を検出する各々の傾斜計E1 およびE2 、電源1
6、主コンピュータ17および主コンピュータ17と制御部
4を結ぶ通信回線18を示す。制御部4は主コンピュータ
17より計測開始命令等を受信して角度計測を行い、その
結果を距離変位計13および傾斜計E1 、E2 の読み値と
ともに主コンピュータ17へ返送する。
The above measuring operation is controlled by the control unit 4. The machine 4 is connected to the control unit 4 in addition to the excavator position / orientation detecting device B, the photodetectors A 1 , A 2 , and A 3 , and the like, for measuring the axial direction of the excavator 1 and the survey tube 2. .
In FIG. 7, a machine 1 and a surveying pipe 2 connected to the control unit 4
Inclinometers E 1 and E 2 for detecting the inclination of the power source 1
6, a main computer 17 and a communication line 18 connecting the main computer 17 and the control unit 4 are shown. The control unit 4 is the main computer
A measurement start command or the like is received from 17 to measure the angle, and the result is returned to the main computer 17 together with the readings of the distance displacement meter 13 and the inclinometers E 1 and E 2 .

【0017】図6は、本計測装置の全体動作手順の一例
を示すもので、このフローチャートに示すように、電源
16を投入すると制御部4は装置全体の初期化を行い、主
コンピュータ17により計測命令を受信するまで距離変位
計13および傾斜計E1,E2 を連続的に読み取って標本の
平均値の計算を行い、計測命令が受信された時点で既述
の角度計測を行い、その結果を距離変位計13および傾斜
計E1,2 の読み値の平均値とともに返送する。
FIG. 6 shows an example of the overall operation procedure of this measuring apparatus. As shown in this flowchart, the power supply
When the control unit 4 is turned on, the control unit 4 initializes the entire device, and continuously reads the distance displacement meter 13 and the inclinometers E 1 and E 2 until the main computer 17 receives a measurement command and calculates the average value of the sample. The angle measurement described above is performed when the measurement command is received, and the result is returned together with the average value of the readings of the distance displacement meter 13 and the inclinometers E 1 and E 2 .

【0018】主コンピュータ17では、これらの計測結果
をもとに、測量管2の軸線方向に基づいた掘進機1の軸
線方向の計算および掘進機1の基準点、すなわち掘進機
1の頭点および同尾点の位置座標を計算する。図8の平
面図によってその計算方法を簡単に説明する。図におい
て、掘進機位置姿勢検出装置Bの回転軸点Mを鉛直水平
座標系の原点とし、該点Mと受光器A3 で求められる後
方基準点Rを結んだ方向を−X軸に取り、該X軸に直交
する水平面上の軸をY軸に取った左手系直交座標系を定
める。図上においては、受光器A2 に相当する計測点を
F、受光器A1に相当する計測点をGと呼ぶ。さらに、
水平角aおよびbは本装置により計測される方向角であ
る。また、距離r1 は距離変位計13で求められ、距離r
2 は受光器A1,A2 を設置した時点で定められる。ここ
で、該座標系において計測点FおよびGの座標を求め
る。
On the basis of these measurement results, the main computer 17 calculates the axial direction of the excavator 1 based on the axial direction of the surveying pipe 2 and the reference point of the excavator 1, that is, the head point of the excavator 1 and Calculate the position coordinates of the same point. The calculation method will be briefly described with reference to the plan view of FIG. In the figure, the rotation axis point M of the excavator position / orientation detection device B is taken as the origin of the vertical horizontal coordinate system, and the direction connecting the point M and the rear reference point R obtained by the light receiver A 3 is taken as the −X axis, A left-handed orthogonal coordinate system in which a Y-axis is an axis on a horizontal plane orthogonal to the X-axis is defined. In the figure, the measurement point corresponding to the light receiver A 2 is called F, and the measurement point corresponding to the light receiver A 1 is called G. further,
Horizontal angles a and b are directional angles measured by this device. Further, the distance r 1 is obtained by the distance displacement meter 13, and the distance r
2 is determined when the light receivers A 1 and A 2 are installed. Here, the coordinates of the measurement points F and G in the coordinate system are obtained.

【0019】計測点Fの座標は次式にて簡単に求められ
る。
The coordinates of the measuring point F can be easily obtained by the following equation.

【数1】XF=r1 ×cos(a), YF=r1 ×sin(a) 計測点Gの座標を求めるには、まず内角cを求め、次に
距離r3 を算定する。内角cは、正弦定理により次式に
て計算される。
## EQU1 ## XF = r 1 × cos (a), YF = r 1 × sin (a) In order to obtain the coordinates of the measuring point G, first the interior angle c is obtained, and then the distance r 3 is calculated. The internal angle c is calculated by the following formula according to the sine theorem.

【数2】 距離r3 もまた正弦定理により次式を用いて計算でき
る。
[Equation 2] The distance r 3 can also be calculated by the sine theorem using the following equation.

【数3】 ここから計測点Gの座標は次式のように簡単に計算でき
る。
[Equation 3] From here, the coordinates of the measurement point G can be easily calculated as in the following equation.

【数4】XG=r3 ×cos(b), YG=r3 ×sin(b) この計算方法は一般にワイズ・バッハ三角法と呼ばれて
いる。
XG = r 3 × cos (b), YG = r 3 × sin (b) This calculation method is generally called Wise-Bach trigonometry.

【0020】以上のような計算を行うことにより、受光
器A1,A2 によって定められる掘進機1内の2点の座標
がわかるので、これらを結ぶ線の方向と掘進機1の軸線
方向の相対角度をあらかじめ測量しておくことにより、
計測時の掘進機1の軸線方向が算出できることは明白で
ある。また、以上においては掘進機1、測量管2が傾斜
した場合の補正方法の説明を省略したが、すでに述べた
ように、掘進機1および測量管2の両体に傾斜計を設置
し計測を行うことにより傾斜補正が可能になることは容
易に理解できる。
By performing the above calculation, the coordinates of the two points in the excavator 1 determined by the light receivers A 1 and A 2 can be known. Therefore, the direction of the line connecting them and the axial direction of the excavator 1 can be determined. By measuring the relative angle in advance,
It is clear that the axial direction of the machine 1 at the time of measurement can be calculated. Further, although the description of the correction method when the excavator 1 and the surveying pipe 2 are tilted is omitted in the above, as described above, the inclinometers are installed on both the excavator 1 and the surveying pipe 2 to perform the measurement. It can be easily understood that the inclination correction can be performed by performing the correction.

【0021】また、掘進機1の軸線の移動量と、あらか
じめ測量した掘進機1の基準点、すなわち掘進機1の頭
点H(図8参照)および尾点Tの初期座標とを用いて座
標変換計算を行うことにより、計測時の掘進機1の基準
点の座標が計算できることは言うまでもない。以上の計
算処理は主コンピュータ17を用いて行ってもよいし、ま
た制御部4の動作プログラム中に組み込んでもよい。い
ずれの場合も計算処理は瞬時に行われるので、人力によ
る測量作業と比べ極めて短時間に測量作業を完了させる
ことができる。
Coordinates are calculated using the movement amount of the axis of the excavator 1 and the reference points of the excavator 1 measured in advance, that is, the initial coordinates of the head point H (see FIG. 8) and the tail point T of the excavator 1. It goes without saying that the coordinate of the reference point of the excavator 1 at the time of measurement can be calculated by performing the conversion calculation. The above calculation process may be performed by using the main computer 17 or may be incorporated in the operation program of the control unit 4. In either case, the calculation process is performed instantaneously, so that the surveying work can be completed in an extremely short time compared to the surveying work by human power.

【0022】[0022]

【発明の効果】本発明装置は上述のように構成したか
ら、この装置を用いることにより、掘進機1の後方に位
置する測量管2の位置および姿勢をもとに、掘進機1の
軸線の相対方位ならびに掘進機1の基準点の位置が自動
的に、容易かつ迅速に求められる。掘進機1と後続の測
量管2の位置と姿勢を管理することは、工事の品質管理
上極めて重要であり、従って本装置は掘進機1の操作者
が計画線通りに掘進機1を運転する上で有力な情報を提
供することができる。したがって本発明によれば、測量
作業者を苦渋作業から解放できるばかりでなく、工事の
全体的な品質向上に貢献することができるというすぐれ
た効果が得られる。
Since the device of the present invention is configured as described above, by using this device, the axis line of the excavator 1 can be determined based on the position and attitude of the surveying pipe 2 located behind the excavator 1. The relative azimuth and the position of the reference point of the excavator 1 are automatically and easily and quickly obtained. It is extremely important to control the position and attitude of the excavator 1 and the subsequent surveying pipe 2 in terms of quality control of construction. Therefore, in this device, the operator of the excavator 1 operates the excavator 1 according to the planned line. Can provide powerful information above. Therefore, according to the present invention, not only the surveying worker can be freed from the troublesome work, but also an excellent effect that it can contribute to the improvement of the overall quality of the construction can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の構成部材の配置説明図である。FIG. 1 is an explanatory view of the arrangement of constituent members of the device of the present invention.

【図2】掘進機位置姿勢検出装置の側断面図である。FIG. 2 is a side sectional view of the excavator position and attitude detection device.

【図3】図2のC矢視図である。FIG. 3 is a view on arrow C in FIG.

【図4】計測点の配置図である。FIG. 4 is an arrangement diagram of measurement points.

【図5】角度計測動作手順を示すフローチャートであ
る。
FIG. 5 is a flowchart showing an angle measurement operation procedure.

【図6】全体動作を示すフローチャートである。FIG. 6 is a flowchart showing the overall operation.

【図7】本発明装置の線図的構成説明図である。FIG. 7 is a diagrammatic explanatory view of a device of the present invention.

【図8】本発明の位置姿勢計算の原理説明図である。FIG. 8 is a diagram illustrating the principle of position / orientation calculation according to the present invention.

【符号の説明】[Explanation of symbols]

1 掘進機 2 測量管 3 推進管 A,A1,2,A3 受光器 B 掘進機位置姿勢検出装置 4 制御部 5 ベースプレート 6 ケース 7 モータ 8 回転テーブル 9 レーザー光源 10 鉛直ラインレーザー 11 角度検出装置 12 ベルト伝動装置 13 距離変位計 13a 距離計測ワイヤー 14 カバー 15 ガイドローラ D 回転軸線 E1,E2 傾斜計 16 電源 17 主コンピュータ 18 通信回線 M 回転軸点 R 後方基準点 F 受光器A2 に相当する計測点 G 受光器A1 に相当する計測点 a,b 水平角 c 内角 r1,r2,r3 距離1 excavator 2 surveying pipe 3 propulsion pipe A, A 1, A 2 , A 3 light receiver B excavator position and attitude detector 4 control unit 5 base plate 6 case 7 motor 8 rotary table 9 laser light source 10 vertical line laser 11 angle detection Device 12 Belt transmission device 13 Distance displacement meter 13a Distance measuring wire 14 Cover 15 Guide roller D Rotation axis E 1 , E 2 Inclinometer 16 Power supply 17 Main computer 18 Communication line M Rotation axis point R Rear reference point F Receiver A 2 Corresponding measurement point G Measurement point corresponding to photodetector A 1 a, b Horizontal angle c Interior angle r 1 , r 2 , r 3 Distance

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河島 神治 大阪府大阪市北区天満2−1−33 株式会 社松村組内 (72)発明者 山崎 貴弘 大阪府大阪市天王寺区夕陽丘町4−11 株 式会社森本組内 (72)発明者 高橋 弘樹 東京都中央区日本橋本町3−3−6 ワカ 末ビル 三菱建設株式会社内 (72)発明者 浜田 賢太郎 兵庫県西宮市池田町9−18 株式会社新井 組内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinji Kawashima 2-1-33, Tenma Kita-ku, Osaka City, Osaka Prefecture Matsumura Gumi (72) Inventor Takahiro Yamazaki 4-Yuoka-cho, Tennoji-ku, Osaka City, Osaka Prefecture 11 Incorporated company Morimoto Gumi (72) Inventor Hiroki Takahashi 3-3-6 Nihonbashi Honcho, Chuo-ku, Tokyo Wakasue Building Mitsubishi Construction Co., Ltd. (72) Inventor Kentaro Hamada 9-18 Ikeda-cho, Nishinomiya-shi, Hyogo Stock Company Arai Group

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 掘進機の方位と位置を、掘進機後方の測
量管の方位と位置に基づき、鉛直ラインレーザーを回転
させて掘進機内に設置した複数個の受光器間の挟角を計
測することによって求めることを特徴とする掘進機の位
置および姿勢の計測装置。
1. The vertical line laser is rotated to measure the included angle between a plurality of light receivers installed in the machine, based on the direction and the position of the machine, based on the direction and the position of the surveying pipe behind the machine. A device for measuring the position and orientation of an excavator characterized by being obtained by
JP11983893A 1993-05-21 1993-05-21 Measuring device for position and attitude of excavator Pending JPH0727564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11983893A JPH0727564A (en) 1993-05-21 1993-05-21 Measuring device for position and attitude of excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11983893A JPH0727564A (en) 1993-05-21 1993-05-21 Measuring device for position and attitude of excavator

Publications (1)

Publication Number Publication Date
JPH0727564A true JPH0727564A (en) 1995-01-27

Family

ID=14771512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11983893A Pending JPH0727564A (en) 1993-05-21 1993-05-21 Measuring device for position and attitude of excavator

Country Status (1)

Country Link
JP (1) JPH0727564A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178480A (en) * 1995-12-22 1997-07-11 Kido Kensetsu Kogyo Kk Measuring device in jacking method and measuring method
CN103546001A (en) * 2013-11-11 2014-01-29 中国水利水电第七工程局有限公司 Rotor hoisting and positioning device of hydro-generator and positioning method thereof
CN107741200A (en) * 2017-11-15 2018-02-27 西安科技大学 Two planar lasers for boom-type roadheader are to penetrating pose measurement system and method
JP2018109311A (en) * 2017-01-04 2018-07-12 大成建設株式会社 Method for predicting natural ground situation and device for imaging tunnel interior
US11033878B2 (en) 2017-02-07 2021-06-15 Clariant Catalysts (Japan) K.K. Agent for removing halogen gas, method for producing same, method for removing halogen gas with use of same, and system for removing halogen gas
CN114910028A (en) * 2022-01-13 2022-08-16 中铁二十四局集团有限公司 Measurement and calculation method for box culvert jacking attitude

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198772A (en) * 1982-05-14 1983-11-18 Kubota Ltd Detection for position of moving material
JPS62289717A (en) * 1986-06-09 1987-12-16 Shimizu Constr Co Ltd Position detecting method for shielded drilling machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198772A (en) * 1982-05-14 1983-11-18 Kubota Ltd Detection for position of moving material
JPS62289717A (en) * 1986-06-09 1987-12-16 Shimizu Constr Co Ltd Position detecting method for shielded drilling machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178480A (en) * 1995-12-22 1997-07-11 Kido Kensetsu Kogyo Kk Measuring device in jacking method and measuring method
CN103546001A (en) * 2013-11-11 2014-01-29 中国水利水电第七工程局有限公司 Rotor hoisting and positioning device of hydro-generator and positioning method thereof
JP2018109311A (en) * 2017-01-04 2018-07-12 大成建設株式会社 Method for predicting natural ground situation and device for imaging tunnel interior
US11033878B2 (en) 2017-02-07 2021-06-15 Clariant Catalysts (Japan) K.K. Agent for removing halogen gas, method for producing same, method for removing halogen gas with use of same, and system for removing halogen gas
CN107741200A (en) * 2017-11-15 2018-02-27 西安科技大学 Two planar lasers for boom-type roadheader are to penetrating pose measurement system and method
CN114910028A (en) * 2022-01-13 2022-08-16 中铁二十四局集团有限公司 Measurement and calculation method for box culvert jacking attitude

Similar Documents

Publication Publication Date Title
CN109931072A (en) Tunneling machine cutting control device, method and cantilever excavator
JP3418682B2 (en) Integrated surveying system for tunnels
US6480289B1 (en) Position measuring apparatus and optical deflection angle measuring apparatus for underground excavators
JPH0772472B2 (en) Horizontal deviation measuring device for underground excavator
JP2007017318A (en) Base line measuring system and base line measuring technique
JPH0727564A (en) Measuring device for position and attitude of excavator
JP3723661B2 (en) Underground excavator position measurement device
JP2003262090A (en) Position measuring device for tunnel excavator
JP2004138422A (en) Method of surveying in tunnel hole and system of surveying in tunnel hole
JP3759281B2 (en) Underground excavator position measurement device
JP3864102B2 (en) Coordinate measurement method of excavation line in propulsion excavation method
JP2996521B2 (en) Shield surveying method
JP2688690B2 (en) Surveying system
JP2572930B2 (en) Propulsion method
JP2005337826A (en) Method and apparatus for laser marking
JPH1088969A (en) Pipeline measuring device
JP4477209B2 (en) Direction angle measuring device for construction machinery
WO1997008429A1 (en) Method and apparatus for measuring position and attitude of tunnel boring machine
JP4422927B2 (en) Survey method in civil engineering work
KR200191599Y1 (en) Dredging system using differential global positioning system
JP3511405B2 (en) Excavation confirmation survey method of shield machine
JPH09126774A (en) Method and device for measuring position and posture of tunnel machine
JPH05288548A (en) Shield surveying method
JP2913043B2 (en) Underground excavator laser equipment
JP2002090141A (en) Method and device for measuring leader position