JPH0550687B2 - - Google Patents

Info

Publication number
JPH0550687B2
JPH0550687B2 JP24768884A JP24768884A JPH0550687B2 JP H0550687 B2 JPH0550687 B2 JP H0550687B2 JP 24768884 A JP24768884 A JP 24768884A JP 24768884 A JP24768884 A JP 24768884A JP H0550687 B2 JPH0550687 B2 JP H0550687B2
Authority
JP
Japan
Prior art keywords
angle
rod
excavation head
tunnel
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24768884A
Other languages
Japanese (ja)
Other versions
JPS61126412A (en
Inventor
Jusuke Nakano
Sadao Sugimoto
Hitoshi Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24768884A priority Critical patent/JPS61126412A/en
Publication of JPS61126412A publication Critical patent/JPS61126412A/en
Publication of JPH0550687B2 publication Critical patent/JPH0550687B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、トンネル築造工法において、掘削ヘ
ツド推進中のトンネル軌跡を簡易かつ正確に測定
することのできるトンネル軌跡測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a tunnel trajectory measuring device that can easily and accurately measure a tunnel trajectory during propulsion of an excavation head in a tunnel construction method.

[従来の技術] 従来のこの種の装置には電磁コイルまたはレー
ザ光を使用するものがある。電磁コイルを使用す
るものは掘削ヘツドの中に電磁コイルを取付け、
この電磁コイルから発射された磁界を地上の受信
コイルで受け、この受信レベルの強弱により掘削
ヘツドの位置を検知して、トンネル軌跡を算出す
るものであるが、土被りが大きいと磁界の減衰が
大きく、受信コイルによる受信が不可能となり、
適用トンネル土被りに制限がある。また、作業員
が路上で、受信コイルによる検知作業を行うた
め、安全の確保が困難となる。一方、レーザ光を
使用するものは発進立坑より掘削ヘツドに向かつ
てレーザ光を照射し、掘削ヘツドに取付けてある
受光ダイオード等で構成するターゲツトによつて
前記レーザ光を受け、その受光位置により掘削ヘ
ツドの位置を測定するものであるが、トンネルの
曲率半径が小さいと、レーザ光が出来上がりのト
ンネル壁で遮断されて、測定不可能となるため、
曲率半径の小さい掘削軌跡には適用できないとい
う欠点があつた。
[Prior Art] Some conventional devices of this type use electromagnetic coils or laser light. For those that use electromagnetic coils, install the electromagnetic coil inside the excavation head,
The magnetic field emitted from this electromagnetic coil is received by a receiving coil on the ground, and the position of the excavation head is detected based on the strength of this reception level and the tunnel trajectory is calculated. However, if there is a large amount of earth cover, the magnetic field will attenuate. large, making reception by the receiving coil impossible,
There are restrictions on the applicable tunnel earth cover. Furthermore, since workers perform detection work using the receiving coil on the road, it is difficult to ensure safety. On the other hand, those that use laser light emit a laser beam from the starting shaft toward the excavation head, receive the laser beam through a target consisting of a light-receiving diode, etc. attached to the excavation head, and excavate according to the receiving position. This method measures the position of the head, but if the radius of curvature of the tunnel is small, the laser beam will be blocked by the finished tunnel wall, making measurement impossible.
The drawback was that it could not be applied to excavation trajectories with a small radius of curvature.

[発明が解決しようとする問題点] この発明は、上記の問題点、すなわち、トンネ
ル土被りや、掘削軌跡の曲率半径による装置適用
制限の問題を解決し、また同時に、計測作業に伴
う作業員の安全を確保しようとするためのもので
ある。
[Problems to be Solved by the Invention] This invention solves the above-mentioned problems, that is, the problem of equipment application limitations due to tunnel overburden and the radius of curvature of the excavation trajectory. The aim is to ensure the safety of the public.

[問題点を解決するための手段] 上記問題点を解決するために、この発明は、管
と等長のロツドを管に固定し、掘削ヘツドとロツ
ドの両端部に角度検出部を固定し、掘削ヘツド及
び各ロツドの角度検出部どうしを継手部で連結
し、継手部の連結機構の移動量を角度検出部が測
定することで各ロツドおよび掘削ヘツドのなす角
度を求め、この角度と前記管の長さとからトンネ
ル軌跡を求めることを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention fixes a rod having the same length as the pipe to the pipe, fixes angle detection parts to both ends of the excavation head and the rod, The angle detection parts of the excavation head and each rod are connected to each other by a joint part, and the angle detection part measures the amount of movement of the coupling mechanism of the joint part to find the angle formed by each rod and the excavation head. It is characterized by finding the tunnel trajectory from the length of .

[作 用] 上記手段によれば、掘削ヘツドとロツドの両端
部に固定されている角度検出部どうしが継手部で
連結され、継手部の連結機構の移動量を角度検出
部が測定することで各管および掘削ヘツドのなす
角度を常に正確に検知することができる。そし
て、この角度測定データに後述する統計処理を施
すことによつて、トンネル軌跡を連続的にかつ正
確に測定することができる。
[Function] According to the above means, the angle detection parts fixed to both ends of the excavation head and the rod are connected by the joint part, and the angle detection part measures the amount of movement of the coupling mechanism of the joint part. The angle formed by each pipe and drilling head can always be accurately detected. Then, by subjecting this angle measurement data to statistical processing to be described later, the tunnel locus can be measured continuously and accurately.

[実施例] 以下、図面に基づいて本発明の実施例を説明す
る第1図〜第5図において、1−1〜1−5はロ
ツド、2−1〜2−10は角度検出部、3−1〜
3−5は継手部、4は回線切替部、5はデータ処
理部、6は4芯シールド線、7は2芯シールド
線、8は掘削ヘツド、9は鋼管、10は発進立
坑、11は鋼管推進装置、12〜18は掘進地
点、19(第5図)は到達立坑である。
[Embodiment] Hereinafter, in FIGS. 1 to 5 for explaining embodiments of the present invention based on the drawings, 1-1 to 1-5 are rods, 2-1 to 2-10 are angle detection units, and 3 -1~
3-5 is a joint part, 4 is a line switching part, 5 is a data processing part, 6 is a 4-core shielded wire, 7 is a 2-core shielded wire, 8 is a drilling head, 9 is a steel pipe, 10 is a starting shaft, 11 is a steel pipe A propulsion device, 12 to 18 are excavation points, and 19 (Fig. 5) is a reaching shaft.

第1図において、まず掘削ヘツド8が発進立坑
10に入れられ、鋼管推進装置11によつて地中
に押し出され、次に、鋼管9が1つずつ発進立坑
10に入れられ、鋼管推進装置11によつて地中
に押し出されていく。この場合、先頭側の数本の
鋼管9の内周面頂上部には、ロツド1−1〜1−
5と、角度検出部(これは例えばロータリ−エン
コーダからなる)2−1〜2−10とが、推進に
先立つて順次固定される。まず、掘削ヘツド8の
後端部に、角度検出部2−1が固定されるととも
に、先頭の鋼管9の内周面にロツド1−1が固定
され、そのロツド1−1の先端に角度検出部2−
2が固定される。そして、角度検出部2−1,2
−2は、継手部材3aと、相互に直交配置されて
いるピン3b,3bとからなる継手部3−1によ
りヒンジ連結される。そして、角度検出部2−1
に連結する継手部3−1の水平配置されたピン3
bが回転することにより、その回転量から角度検
出部2−1が掘削ヘツド8の鉛直方向の回転角度
を測定し、角度検出部2−2に連結している継手
部3−1の鉛直配置されたピン3bが回転するこ
とにより、その回転量から角度検出部2−2が掘
削ヘツド8の水平方向の回転角度を測定するよう
になつている。
In FIG. 1, the excavation head 8 is first put into the starting shaft 10 and pushed underground by the steel pipe propulsion device 11, then the steel pipes 9 are put into the starting shaft 10 one by one, and the steel pipe propulsion device 11 It is pushed underground by the In this case, rods 1-1 to 1-
5 and angle detecting sections 2-1 to 2-10 (which consist of rotary encoders, for example) are sequentially fixed prior to propulsion. First, an angle detection section 2-1 is fixed to the rear end of the excavation head 8, and a rod 1-1 is fixed to the inner peripheral surface of the leading steel pipe 9, and the angle detection section 2-1 is fixed to the tip of the rod 1-1. Part 2-
2 is fixed. And angle detection parts 2-1, 2
-2 is hingedly connected by a joint portion 3-1 consisting of a joint member 3a and pins 3b, 3b arranged orthogonally to each other. And angle detection section 2-1
The horizontally arranged pin 3 of the joint part 3-1 connected to
b rotates, the angle detection section 2-1 measures the vertical rotation angle of the excavation head 8 from the amount of rotation, and determines the vertical arrangement of the joint section 3-1 connected to the angle detection section 2-2. As the pin 3b rotates, the angle detection section 2-2 measures the rotation angle of the excavation head 8 in the horizontal direction from the amount of rotation.

同様に、第3図に示すように、ロツド1−1の
後端部と、ロツド1−2の先端部とには、水平配
置されたピン3bの回転により鋼管9の鉛直方向
の回転角度を検出する角度検出部2−3と、鉛直
配置されたピン3bの回転により鋼管9の水平方
向の回転角度を検出する角度検出部2−4とが継
手部3−2を介して連結されている。また他のロ
ツド1−2〜1−5も同様に連結され、各継手部
3−1〜3−5が鋼管9の継目の位置にくるよう
になつている。なお、ロツド1を鋼管9に固定す
るには、上記継手部3を鋼管9にボルト止めすれ
ばよい。また、鋼管9…の長手方向に各ロツド1
−2〜1−5が固定されているので、各鋼管9に
とともにロツド1−2〜1−5が移動していけ
ば、隣接する鋼管9,9の交角が大きくなつて
も、ロツド(例えば、ロツド1−2,1−3間)
を連結する継手部3−2はその動きに追従してい
く。
Similarly, as shown in FIG. 3, the vertical rotation angle of the steel pipe 9 is set at the rear end of the rod 1-1 and the tip of the rod 1-2 by the rotation of a horizontally arranged pin 3b. An angle detecting section 2-3 for detecting the angle and an angle detecting section 2-4 for detecting the horizontal rotation angle of the steel pipe 9 by rotation of a vertically arranged pin 3b are connected via a joint section 3-2. . Further, the other rods 1-2 to 1-5 are connected in the same manner, so that the joint portions 3-1 to 3-5 are located at the joints of the steel pipes 9. Incidentally, in order to fix the rod 1 to the steel pipe 9, the joint portion 3 may be bolted to the steel pipe 9. In addition, each rod 1 in the longitudinal direction of the steel pipe 9...
Since the rods 1-2 to 1-5 are fixed, if the rods 1-2 to 1-5 move together with each steel pipe 9, even if the intersection angle between adjacent steel pipes 9 and 9 becomes large, the rods (for example, , between rods 1-2, 1-3)
The joint portion 3-2 that connects the two follows the movement.

こうして、各鋼管9がなす角度は、上記角度検
出部2−1〜2−10によつて検出され、4芯シ
ールド線6によつて回線切替部4に供給され、回
線切替部4で時分割または周波数多重化された
後、2芯シールド7を介してデータ処理部5に送
られる。なお、上記回線切替部4は掘削ヘツド8
内に納められ、データ処理部5は発進立坑10に
設置されている。
In this way, the angle formed by each steel pipe 9 is detected by the angle detection sections 2-1 to 2-10, and is supplied to the line switching section 4 through the 4-core shielded wire 6, and is time-divided by the line switching section 4. Alternatively, after being frequency multiplexed, it is sent to the data processing section 5 via the two-core shield 7. Note that the line switching section 4 is connected to the excavation head 8.
The data processing unit 5 is installed in the starting shaft 10.

次に第1図、第4図、第5図を用いて本装置に
よるトンネル軌跡測定方法を説明する。鋼管9は
第1図に示すように、鋼管推進装置11によつて
前面に押し出され、これに伴い第4図に示すよう
に、掘削ヘツド8の先端位置が掘進地点13から
18の順に移動していき、これと同時にロツド1
−1〜1−5、角度検出部2−1〜2−10も同
時に移動していく。この時、各掘進地点12〜1
8における角度検出部2−1〜2−10の角度測
定データが、回線切替部4を経由してデータ処理
部5へ送信され、ここで記憶される。例えば、第
4図において、掘削ヘツド8の先端が掘進地点1
8に達した時点では(同図ニ)、掘進地点13の
角度測定データとして、角度検出部2−9の角度
測定データが、掘進地点14の角度測定データと
して、角度検出部2−7,2−8の角度測定デー
タがそれぞれデータ処理部5に記憶される等々で
ある。この後、同一掘進地点における角度測定デ
ータをデータ処理部5で加算平均してその地点に
おける鋼管継ぎ目の交角とする。例えば掘削ヘツ
ド8が掘進地点18に達した時点で、掘進地点1
3における鋼管継目の交角は、角度検出部2−1
〜2−10の角度測定データを平均して求め、掘
進地点15における鋼管の交角は、角度検出部2
−1〜2−6の角度測定データを平均して求め
る。そして、座標軸x,y,z軸を第5図のよう
に定め、上記のようにして求めた、鋼管9の継ぎ
目の交角の、発進立坑10から数えてi番目の水
平成分をθHi、鉛直成分をθviとし、θHiについて
はx軸を基準として右回転を、θviについてはx
軸を基準として上方向を正とし、鋼管長をLとす
ると、発進立坑10から推進されたN番目の鋼管
9の先端の座標値xN,yN,zNは以下の式から
求まる。
Next, a tunnel locus measurement method using this apparatus will be explained using FIGS. 1, 4, and 5. As shown in FIG. 1, the steel pipe 9 is pushed forward by the steel pipe propulsion device 11, and as a result, the position of the tip of the excavation head 8 moves in order from the excavation point 13 to 18, as shown in FIG. At the same time, Rod 1
-1 to 1-5 and angle detection units 2-1 to 2-10 also move at the same time. At this time, each excavation point 12-1
The angle measurement data of the angle detection units 2-1 to 2-10 in 8 is transmitted to the data processing unit 5 via the line switching unit 4 and stored there. For example, in FIG. 4, the tip of the excavation head 8 is at the excavation point 1.
8 (d), the angle measurement data of the angle detection unit 2-9 as the angle measurement data of the excavation point 13 is transmitted to the angle detection units 2-7, 2 as the angle measurement data of the excavation point 14. -8 angle measurement data are respectively stored in the data processing unit 5, and so on. Thereafter, the data processing unit 5 adds and averages the angle measurement data at the same excavation point to determine the intersection angle of the steel pipe joints at that point. For example, when the excavation head 8 reaches the excavation point 18, the excavation point 1
The intersection angle of the steel pipe joints in 3 is determined by the angle detection unit 2-1.
The intersection angle of the steel pipes at the excavation point 15 is determined by averaging the angle measurement data of ~2-10.
-1 to 2-6 angle measurement data are averaged. Then, the coordinate axes x, y, and z are determined as shown in Fig. 5, and the i-th horizontal component, counted from the starting shaft 10, of the intersection angle of the joints of the steel pipes 9, obtained as described above, is θHi, and the vertical component is is θvi, θHi is clockwise rotation with respect to the x axis, and θvi is x
Assuming that the upward direction is positive with respect to the axis and the length of the steel pipe is L, the coordinate values xN, yN, and zN of the tip of the Nth steel pipe 9 propelled from the starting shaft 10 can be found from the following equation.

xN=Nj=1 (L×cos(jk=1 θvk) ×cos(jk=1 θHk)) yN=Nj=1 (L×cos(jk=1 θvk) ×sin(jk=1 θHk) zN=Nj=1 (L×sin(jk=1 θvk)) こうして、求めた各点を接続すればトンネル軌
跡を得ることができる。
xN= Nj=1 (L×cos( jk=1 θvk) ×cos( jk=1 θHk)) yN= Nj=1 (L×cos( jk=1 θvk) sin( jk=1 θHk) zN= Nj=1 (L×sin( jk=1 θvk)) Thus, by connecting each of the obtained points, a tunnel locus can be obtained.

[発明の効果] 以上説明したようにこの発明は、角度検出部を
両端に固定したロツドを管に取り付け、掘削ヘツ
ドと各ロツドの角度検出部どうしを継手部で連結
し、該継手部の連結機構の移動量を角度検出部が
測定することによつて、角度測定データから連続
的かつ正確にトンネル軌跡を計測できるようにし
たので、トンネル土被りや掘進軌跡の曲率半径に
よる装置適用制限がなく、また計測作業に伴う作
業員の安全の確保が容易に行える利点が得られ
る。
[Effects of the Invention] As explained above, the present invention includes attaching a rod with an angle detection section fixed to both ends to a pipe, connecting the excavation head and the angle detection sections of each rod with a joint section, and connecting the joint section. By using the angle detection unit to measure the amount of movement of the mechanism, the tunnel trajectory can be measured continuously and accurately from the angle measurement data, so there are no restrictions on device application due to tunnel earth cover or the radius of curvature of the excavation trajectory. In addition, there is an advantage that it is easy to ensure the safety of workers involved in measurement work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す平面
図、第2図、第3図はロツド1と角度検出部2と
の接続関係を示す図で、第2図は正面図、第3図
は斜視図、第4図はトンネル軌跡の測定方法を説
明するための図、第5図は座標軸説明図である。 1……ロツド、2……角度検出部、3……継手
部、3a……継手部材、3b……ピン、4……回
線切替部、5……データ処理部、8……掘削ヘツ
ド、9……鋼管。
FIG. 1 is a plan view showing the configuration of an embodiment of the present invention, FIGS. 2 and 3 are views showing the connection relationship between the rod 1 and the angle detection section 2, and FIG. The figure is a perspective view, FIG. 4 is a diagram for explaining the method of measuring the tunnel locus, and FIG. 5 is a diagram for explaining the coordinate axes. 1... Rod, 2... Angle detection section, 3... Joint section, 3a... Joint member, 3b... Pin, 4... Line switching section, 5... Data processing section, 8... Excavation head, 9 ...Steel pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の管を順次推進しながら、トンネルを築
造していくトンネル築造工法において、前記管と
等長で、該管に固定された複数本のロツドと、掘
削ヘツドの後端部と各ロツドの両端部にそれぞれ
固定され、かつ掘削ヘツド若しくは各ロツドの後
端部に固定されたものと隣接する他のロツドの前
端部に固定されたものとが継手部により水平及び
鉛直方向に移動自在に連結されているとともに、
該継手部の連結機構の移動量により前記管ならび
に掘削ヘツドの水平方向及び鉛直方向の回転角度
を測定する角度検出部と、該角度検出部からの角
度測定データを時分割もしくは周波数多重する回
線切替部と、当該回線切替部からの角度測定デー
タを演算処理するデータ処理部とから構成され、
前記管および掘削ヘツドが前進するに従い、各掘
進位置における角度測定データを逐次前記データ
処理部に記憶し、前記角度測定データに基づい
て、隣接する前記管の継ぎ目の交角を算出し、前
記交角と管の長さとから前記掘削ヘツド推進中の
トンネル軌跡を測定することを特徴とするトンネ
ル軌跡測定装置。
1 In a tunnel construction method in which a tunnel is built by sequentially propelling multiple pipes, a plurality of rods are fixed to the pipes and have the same length, and the rear end of the excavation head and each rod are connected to each other. Each rod is fixed to both ends, and the one fixed to the rear end of the excavation head or each rod and the one fixed to the front end of another adjacent rod are connected by a joint so as to be movable in the horizontal and vertical directions. In addition to being
An angle detection unit that measures the horizontal and vertical rotation angles of the pipe and the excavation head based on the amount of movement of the coupling mechanism of the joint, and a line switch that time-division or frequency multiplexes the angle measurement data from the angle detection unit. and a data processing unit that performs arithmetic processing on the angle measurement data from the line switching unit,
As the pipe and the excavation head move forward, the angle measurement data at each excavation position is sequentially stored in the data processing section, and based on the angle measurement data, the intersection angle between the joints of the adjacent pipes is calculated, and the intersection angle and the intersection angle are calculated. A tunnel trajectory measuring device characterized in that the tunnel trajectory is measured while the excavation head is being propelled based on the length of the pipe.
JP24768884A 1984-11-22 1984-11-22 Measuring instrument for tunnel track Granted JPS61126412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24768884A JPS61126412A (en) 1984-11-22 1984-11-22 Measuring instrument for tunnel track

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24768884A JPS61126412A (en) 1984-11-22 1984-11-22 Measuring instrument for tunnel track

Publications (2)

Publication Number Publication Date
JPS61126412A JPS61126412A (en) 1986-06-13
JPH0550687B2 true JPH0550687B2 (en) 1993-07-29

Family

ID=17167161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24768884A Granted JPS61126412A (en) 1984-11-22 1984-11-22 Measuring instrument for tunnel track

Country Status (1)

Country Link
JP (1) JPS61126412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115493562A (en) * 2022-09-06 2022-12-20 滕州城建集团有限公司 Building engineering is with straightness detection device that hangs down

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552093A (en) * 1991-08-26 1993-03-02 Kido Kensetsu Kogyo Kk Curve jacking method
JP3610460B2 (en) * 2001-11-29 2005-01-12 株式会社 渡守建設 Measuring device, measuring method, propulsion trajectory management device, and propulsion trajectory management method for propulsion trajectory and propulsion posture in propulsion shield method
JP4641330B2 (en) * 2005-06-07 2011-03-02 特定非営利活動法人 国際レスキューシステム研究機構 Traveling robot self-position identification system, human body position identification system and robot following system using the same
JP2008014738A (en) * 2006-07-05 2008-01-24 San Shield Kk Angle measuring device used for position measurement of excavator, and jacking method of excavator
JP4526523B2 (en) * 2006-09-27 2010-08-18 株式会社東京計測 Link type displacement meter measuring device
JP5360389B2 (en) * 2009-03-19 2013-12-04 寿子 出口 Rail displacement meter
JP2011075569A (en) * 2010-10-02 2011-04-14 International Rescue System Institute Flexible sensor tube
CN104515499B (en) * 2014-12-26 2016-11-16 盐城工学院 Section Survey of Inland River Channel system and measuring method thereof
CN110108243B (en) * 2019-05-24 2024-01-19 浙江中南绿建科技集团有限公司 Device and method for detecting quality of intersecting opening

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115493562A (en) * 2022-09-06 2022-12-20 滕州城建集团有限公司 Building engineering is with straightness detection device that hangs down

Also Published As

Publication number Publication date
JPS61126412A (en) 1986-06-13

Similar Documents

Publication Publication Date Title
US4774470A (en) Shield tunneling system capable of electromagnetically detecting and displaying conditions of ground therearound
JPH0321045B2 (en)
JPH0550687B2 (en)
CA2089105A1 (en) Borehole laser cavity monitoring system
JPH0772472B2 (en) Horizontal deviation measuring device for underground excavator
JP3780836B2 (en) Control method of marking device for mountain tunnel
CN108180347B (en) Underground pipeline measuring equipment and using method thereof
CN113063613A (en) Shield tunnel model test device based on cross laser three-dimensional deformation measurement
US5107938A (en) Apparatus for detecting position of underground excavator
JP2687102B2 (en) Automatic position measurement method for pipes, etc. by measuring cart
JP3224004B2 (en) Drilling tube tip location method
JPH10293028A (en) Device for measuring position of underground digging machine
JP2823973B2 (en) Segment for shield machine and construction measuring method using the same
JP2913042B2 (en) Underground excavator propulsion management surveying device
JPH02145910A (en) Detection of position for shielding machine
JPH03251788A (en) Apparatus for measuring position of shield excavator
JP3813012B2 (en) Propulsion device with radar
JP2748151B2 (en) Excavation tip position detection method in underground drilling method
CN117514151A (en) Magnetic positioning method for resisting magnetic interference and drilling device
RU2114300C1 (en) Method for determining position of well creating device
JP2688690B2 (en) Surveying system
JP2673830B2 (en) Underground excavator position detection method
JPS63305208A (en) Method for searching route shape of embedded pipeline
JPH0446365B2 (en)
RU2114299C1 (en) Method for determining position of device for creating wells