JP2913042B2 - Underground excavator propulsion management surveying device - Google Patents

Underground excavator propulsion management surveying device

Info

Publication number
JP2913042B2
JP2913042B2 JP2059211A JP5921190A JP2913042B2 JP 2913042 B2 JP2913042 B2 JP 2913042B2 JP 2059211 A JP2059211 A JP 2059211A JP 5921190 A JP5921190 A JP 5921190A JP 2913042 B2 JP2913042 B2 JP 2913042B2
Authority
JP
Japan
Prior art keywords
underground
magnetic field
propulsion management
underground excavator
excavator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2059211A
Other languages
Japanese (ja)
Other versions
JPH03257320A (en
Inventor
博明 山口
正彦 山本
寛治 柴谷
昇一 坂西
哲也 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2059211A priority Critical patent/JP2913042B2/en
Publication of JPH03257320A publication Critical patent/JPH03257320A/en
Application granted granted Critical
Publication of JP2913042B2 publication Critical patent/JP2913042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,地中掘進機の地中接合用推進管理測量装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a propulsion management surveying device for underground joining of an underground machine.

[従来の技術] 従来,対向する2台の地中掘進機同士による地中接合
や1台の地中掘進機と立坑とによる地中接合は,双方の
施工線が計画線に高精度に合致することが望まれる。こ
れを正確に行わないと,余掘りの増加,掘削数量の増
加,壁内注入剤の噂加等の損失が生ずる。このような地
中接合を高精度,かつ,高効率に行うため,従来の技術
には,図示しないが,例えばトランシットなどによる坑
内推進管理測量,坑内にレーザなどのコヒーレントな光
を発生させる光学発振装置を設置し,該装置より,計画
線を照射し,シールド掘削機に取りつけた目標上の光点
を読み取りつつ,地中掘進機の偏位や偏角を求める坑内
推進管理測量,又は方位ジャイロ,圧力沈下計,傾斜計
及びセグメント長さを基準とする走行距離計を組み合わ
せ,基準位置からの相対的な位置を求める坑内推進管理
測量などが知られる。この結果,近時,長いトンネルで
あっても,地中接合誤差は100mm内程度となっている。
さらに直接的に高精度に地中接合せしめる測量方法も近
時試用されつつある。これを第2図及び第3図を参照し
て説明する。これは,例えば第2図で示されるように,
地中接合しようとする2台の地中掘進機11,12が互いに3
0〜40m程度離間して近接した際,いずれか一方の地中掘
進機から,かつ,その計画線上の基準点から他方の地中
掘進機に対し,小径ボーリングによりパイロット孔20を
穿ち,その後,いずれか一方の坑内の計画線上の基準点
P10に備えたレーザ投光器31のレーザ光32を,このパイ
ロット孔20を通して他方の坑内に設けた受光器33に照射
し,両孔の偏心や偏角などの誤差を視認する坑内推進測
量である。受光器33は,設置側の計画側の計画線上の基
準点P20上に設置されており,その受光面には,例えば
第3図に示されるように,基準点P20を中心とし,段階
的な複数個の円が描かれている。仮に両坑の計画線が同
一であれば(即ち相対偏心も相対偏角もなければ,即ち
相対誤差がなければ),レーザ光32の照射点P21は基準
点P20と一致する。ところが通常は,同図に示すよう
に,照射点P21と基準点P20とは異なるのが普通である
(即ち相対誤差がある)。そこでこの結果を基に,いず
れか一方又は両方の地中掘進機11,12を適宜操蛇して,
正確な地中接合を行うようにしている。
[Conventional technology] Conventionally, underground joining by two opposing underground excavators or underground joining by one underground excavator and a shaft, both construction lines match the planned line with high accuracy It is desired to do. Failure to do this correctly will result in losses such as increased overburden, increased drilling volume, and rumors of in-wall injection. In order to perform such underground joining with high accuracy and high efficiency, although not shown in the prior art, for example, underground propulsion management and surveying by transit, etc., optical oscillation to generate coherent light such as laser in the downhole An underground propulsion management survey or azimuth gyro that installs a device, irradiates a planning line from the device, reads the light spot on the target attached to the shield excavator, and determines the deviation and declination of the underground excavator Underground propulsion management surveying, in which a relative position from a reference position is determined by combining a pressure sinkometer, an inclinometer, and an odometer based on a segment length, is known. As a result, recently, even under long tunnels, the underground joint error is within about 100 mm.
In recent years, a surveying method for directly underground bonding with high accuracy has been used. This will be described with reference to FIGS. 2 and 3. This is, for example, as shown in FIG.
Two underground excavators 11 and 12 trying to join underground
When approaching at a distance of about 0 to 40 m, drill a pilot hole 20 from one of the underground excavators and from the reference point on the planning line to the other underground excavator by small-diameter boring. A reference point on a planning line in either mine
The underwater propulsion survey in which the laser beam 32 of the laser projector 31 provided in the P10 is irradiated through the pilot hole 20 to the light receiver 33 provided in the other well, and errors such as eccentricity and declination of both holes are visually recognized. The light receiver 33 is installed on a reference point P20 on the planning line on the installation side, and its light receiving surface has, for example, as shown in FIG. Several circles are drawn. If the planning lines of both mines are the same (that is, there is no relative eccentricity and relative declination, that is, if there is no relative error), the irradiation point P21 of the laser beam 32 coincides with the reference point P20. However, normally, as shown in the figure, the irradiation point P21 and the reference point P20 are usually different (that is, there is a relative error). Therefore, based on this result, one or both of the underground excavators 11 and 12 are appropriately steered and
We are trying to make accurate underground joints.

[発明が解決しようとする課題] しかしながら,上記従来の技術には次に掲げる欠点が
ある。地中接合の精度は,トンネルが貫通してみない限
り分からないという不便さがある。さらに言えば,上述
の通り,今日尚,地中接合に際し,100mm内程度の誤差が
生ずるということである。具体的には,以下の通りであ
る。
[Problems to be Solved by the Invention] However, the above-mentioned conventional techniques have the following disadvantages. There is an inconvenience that the accuracy of the underground connection cannot be known unless the tunnel penetrates. Furthermore, as mentioned above, there is still an error of about 100 mm or less when connecting underground today. Specifically, it is as follows.

トランシットなどによる坑内推進管理測量は,トンネ
ルが屈曲して掘削される場合,測定点を多く持つ必要が
あり,リアルタイムに測量することができないという欠
点がある。
Underground propulsion management surveying by transit or the like has the disadvantage that when a tunnel is bent and excavated, it is necessary to have many measurement points, and it is not possible to perform surveying in real time.

レーザ光による坑内推進管理測量は,計画線が屈曲し
ていると,レーザ光を目標に照射できない場合が生し,
光学発振装置を適切な位置に移設しなければならない。
しかもレーザ光を直接計画線全路に照射できないので,
目標である光学計測装置と計画線との位置関係をそれぞ
れ互いに角度や距離を測定し,その結果から計算によ
り,計画線を求めた後にシールド掘削機の偏位や偏角が
算出されることになるため,光学発振装置の移設や測定
及び計算に人手がかかり,掘進作業の能率が低下すると
いう欠点がある。
Underground propulsion management surveying using laser light may not be able to irradiate laser light to the target if the planning line is bent,
The optical oscillating device must be moved to an appropriate position.
In addition, since the laser beam cannot be directly radiated to the entire planning line,
After measuring the angle and distance between the target optical measurement device and the plan line, the deviation and angle of the shield excavator are calculated after calculating the plan line. Therefore, there is a drawback in that the transfer, measurement, and calculation of the optical oscillation device require labor and the efficiency of the excavation work is reduced.

ジャイロによる坑内推進管理測量は,累積誤差の問題
があり,長距離掘進には不向ぎであり,かつ,曲率が小
さい連続曲線に対しても同様に不向きである。
Underground propulsion management surveying using a gyro has a problem of accumulated errors, is unsuitable for long-distance excavation, and similarly unsuitable for continuous curves with small curvatures.

パイロット孔とレーザ光とによる坑内推進管理測量
は,上記〜と比較すれば,直接的測量であり,高精
度な地中接合を期待することができる。しかしながら,
パイロット孔,レーザ投光器及び受光器の設置に人手を
要するという点で,近時期待される自動化(又は省力
化)にほど遠いという欠点がある。
Underground propulsion management surveying using a pilot hole and a laser beam is a direct surveying in comparison with the above, and high-precision underground joining can be expected. However,
There is a drawback in that the installation of the pilot hole, the laser projector and the light receiver requires human labor, which is far from the automation (or labor saving) expected recently.

以上〜に共通する欠点は,人間が入れないような
坑径の地中掘削に対し,これら推進管理測量は適用でき
ないということである。
The disadvantage common to the above is that these propulsion control surveys cannot be applied to underground excavation of a pit diameter that humans cannot enter.

本発明は,上記従来の問題点に着目し,人間が入れな
いような小径の地中掘削に対しても適用することがで
き,かつ,自動化(省力化)するに好適な地中掘進機の
地中接合用推進管理測量装置を提供することを目的とす
る。
The present invention focuses on the above-mentioned conventional problems, and can be applied to underground excavation of a small diameter that humans cannot enter, and an underground excavator suitable for automation (labor saving). An object of the present invention is to provide a propulsion management surveying device for underground connection.

[課題を解決するための手段] 上記目的を達成するため,本発明に係わる地中掘進機
の地中接合用推進管理測量装置の第1は,第1図を参照
して説明すれば,一方の地中掘進機12から穿ったボーリ
ング41の先端部に磁界発生器42を設けると共に、前記一
方の地中掘進機12に対向して掘進してきた他方の地中掘
進機11の前面にマトリクス状の磁界受信機50を設けたこ
とを特徴としている。さらに,図示しないが,第2に立
坑及びこの立坑に向けて掘進する地中掘進機とのいずれ
か一方から他方に向けて穿ったボーリング41と、ボーリ
ング41の先端部に設けた磁界発生器42と、立坑及びこの
立坑に向けて掘進する地中掘進機との他方の前面に設け
たマトリクス状の磁界受信機50とを有することを特徴と
している。
[Means for Solving the Problems] In order to achieve the above object, the first of the underground joint propulsion management and surveying devices of the underground excavator according to the present invention will be described with reference to FIG. A magnetic field generator 42 is provided at the tip of a boring 41 drilled from the underground excavator 12, and a matrix is formed on the front surface of the other underground excavator 11 that has excavated in opposition to the one underground excavator 12. The magnetic field receiver 50 is provided. Further, although not shown, a boring 41 drilled from one of a shaft and an underground excavator that excavates toward the shaft, and a magnetic field generator 42 provided at the tip of the boring 41 are also shown. And a matrix-shaped magnetic field receiver 50 provided on the other front surface of the shaft and an underground machine that excavates toward the shaft.

[作用] 上記第1構成は,地中接合が対向する2台の地中掘進
機同士の場合に適用される。他側の地中掘進機11の前面
のマトリクス状の磁界受信器50は,一側の地中掘進機12
から掘進せしめたボーリング41先端部の磁界発生器42に
最も近接するマトリクス点で最も強く反応する。これを
鳥瞰図で表すことにより,オペレータは直ちに地中接合
精度をビジュアルに確認することができるようになる。
また磁界受信器50はそのマトリクスの各々の点を他側の
掘削計画線に対する座標としていつでも把握できるもの
であり,他方磁界発生器42も一側の掘削計画線に対する
座標としていつでも把握できるものである。そこでこれ
ら双方の座標系比較をすることにより,相対偏心量と相
対偏角量とを,即ち相対誤差を定量的に把握することが
できるようになる。
[Operation] The above-described first configuration is applied to the case of two underground excavators whose underground joints face each other. The matrix-shaped magnetic field receiver 50 in front of the underground excavator 11 on the other side is connected to the underground excavator 12 on one side.
The most intense reaction occurs at the matrix point closest to the magnetic field generator 42 at the tip of the boring 41 excavated from above. By expressing this in a bird's-eye view, the operator can immediately visually confirm the underground joining accuracy.
Further, the magnetic field receiver 50 can always grasp each point of the matrix as coordinates with respect to the excavation planning line on the other side, while the magnetic field generator 42 can always grasp each point as coordinates with respect to the excavation planning line on one side. . Therefore, by comparing the two coordinate systems, it is possible to quantitatively grasp the relative eccentricity and the relative eccentricity, that is, the relative error.

上記第2構成は,地中接合が1台の地中掘進機と立坑
との場合に適用したものであり、作用は上記第1構成と
同じである。
The second configuration is applied to a case where the underground connection is one underground excavator and a shaft, and the operation is the same as that of the first configuration.

[実施例] 実施例を第1図を参照して説明する。実施例は,第1
図に示すように,両掘りしてきた2台の回転掘削式シー
ルド機械11,12が互いに30〜40m程度離間して近接したと
き,一側の回転掘削式シールド機械12の前面に備えられ
た小型の圧密形掘進機(図示せず)がその所定の基準点
からボーリング41を,同回転掘削式シールド機械12の掘
削計画線と平行に繰り出してゆく。即ち,前述の通り,
近時の測量技術により,両回転掘削式シールド機械11,1
2の掘削計画線間に多少の偏心や偏角は生ずるが,この
ボーリング41の先端は,対向して掘進してきた他側の回
転掘削式シールド機械11の前面に突き当ることになる。
そしてこのボーリング41と他側の回転掘削式シールド機
械11の前面とには位置検出装置が備えられている。先ず
ボーリング41は,その先端部(詳しくは,最先端から若
干離れた所定の部位)に,磁界発生器42を内蔵してい
る。詳しくは,この磁界発生器42は1個のコイルであ
り,このコイルの磁界軸が掘削方向となるように配置し
てある。他方、他側の回転掘削式シールド機械11は,そ
の前面(または前面内部)に,マトリクス状の磁界受信
器50を配置してある。詳しくは,磁界受信器50は,縦横
複数のコイルをマトリクス状に配置したものであって,
各コイルの磁界軸が掘削方向となるように配置してあ
る。
Example An example will be described with reference to FIG. Embodiment 1
As shown in the figure, when the two excavated rotary excavating shield machines 11 and 12 are separated from each other by about 30 to 40 m and approach each other, the small rotary excavating shield machine 12 provided on the front of Of the rotary excavating shield machine 12 from the predetermined reference point of the drilling machine (not shown). That is, as mentioned above,
With recent surveying technology, both rotary drilling shield machines 11,1
Although some eccentricity and declination occur between the two excavation planning lines, the tip of the boring 41 comes into contact with the front surface of the rotary excavation type shield machine 11 on the other side which has excavated oppositely.
A position detecting device is provided on the boring 41 and the front surface of the rotary excavating shield machine 11 on the other side. First, the boring 41 has a built-in magnetic field generator 42 at its tip (specifically, a predetermined portion slightly away from the leading edge). More specifically, the magnetic field generator 42 is a single coil, and is arranged such that the magnetic field axis of the coil is in the direction of excavation. On the other hand, the rotary excavating shield machine 11 on the other side has a magnetic field receiver 50 arranged in a matrix on the front surface (or inside the front surface). Specifically, the magnetic field receiver 50 has a plurality of vertical and horizontal coils arranged in a matrix.
The coils are arranged so that the magnetic field axis of each coil is in the direction of excavation.

実施例の作用を述べる。磁界受信器50の各コイルの受
信電圧は,その中心軸の延長線が磁界発生器42のコイル
の中心軸に近いものほど大きくなる。そこでマトリクス
状のコイルの内,最も受信電圧が大きいコイルの中心軸
の延長線上に,磁界発生器42のコイルがあることにな
る。従って,磁界発生器42の座標と,磁界受信器50の各
コイルの座標とを予め準備しておけば,演算により,相
対誤差を容易に把握することができるようになる。
The operation of the embodiment will be described. The received voltage of each coil of the magnetic field receiver 50 increases as the extension of the center axis of the coil is closer to the center axis of the coil of the magnetic field generator 42. Therefore, the coil of the magnetic field generator 42 is located on an extension of the center axis of the coil having the largest received voltage among the coils in the matrix. Therefore, if the coordinates of the magnetic field generator 42 and the coordinates of each coil of the magnetic field receiver 50 are prepared in advance, the relative error can be easily grasped by calculation.

尚,実施例を利用し,磁界受信器50のマトリクスの各
出力を,マイクロコンピュータと,CRTディスプレイとに
接続することにより,相対誤差を定量的演算し,これを
ビジュアルに表示できる他,オペレータにとってもさら
に分かり易い鳥瞰図などで表示するのも容易である。
By using the embodiment and connecting each output of the matrix of the magnetic field receiver 50 to a microcomputer and a CRT display, a relative error can be quantitatively calculated and displayed visually, and the operator can be displayed visually. It is also easy to display a very easy-to-understand bird's-eye view or the like.

[発明の効果] 以上説明したように,本発明に係わる地中掘進機の地
中接合用推進管理測量装置は,第1、第2構成に違いは
あるが,これは使用条件によるものである。即ち請求項
1は,地中接合が対向する2台の地中掘進機同士の場合
に適用し,請求項2は地中接合が1台の地中掘進機と立
坑との場合に適用する。いずれにしても,一方の坑内側
にマトリクス状の磁界受信器を備え,対向する他方の坑
内側からは,先端に磁界発生器を備えたボーリングを貫
入せしめ,前記磁界受信器で前記磁界発生器の位置を検
出する構成である。これら磁界受信器も磁界発生器も,
その位置か予め判明している点,また,磁界受信器の受
信信号は扱い易い電気信号である点から,本発明を自在
に利用することもできる(例えば,CRTディスプレイ表
示)。即ち,本発明によれば,人間が入れないような小
径の地中掘削に対してもこれを適用することができ,さ
らに自動化(省力化)に寄与することが可能となる。
[Effects of the Invention] As described above, the propulsion management surveying device for underground excavation of an underground excavator according to the present invention has a difference in the first and second configurations, but this depends on the use conditions. . That is, claim 1 is applied to a case where two underground excavators are opposed to each other, and claim 2 is applied to a case where one underground joint is an underground excavator and a shaft. In any case, a matrix-shaped magnetic field receiver is provided inside one of the pits, and a boring provided with a magnetic field generator at the tip is penetrated from the other opposing pit, and the magnetic field generator is used by the magnetic field receiver. This is a configuration for detecting the position of. Both these magnetic field receivers and magnetic field generators
Since the position is known in advance and the received signal of the magnetic field receiver is an easy-to-handle electric signal, the present invention can be freely used (for example, display on a CRT display). That is, according to the present invention, the present invention can be applied to underground excavation of a small diameter that humans cannot enter, and it is possible to further contribute to automation (labor saving).

【図面の簡単な説明】[Brief description of the drawings]

第1図:地中接合が対向する2台の地中掘進機同士の斜
視図であって,かつ,本発明に係わる請求項1の地中掘
進機の地中接合用推進管理測量装置の実施例の構成図 第2図:従来技術に基づく地中接合の説切図 第3図:従来技術に基づくレーザ受光器の受光面の正面
図 11,12:地中掘進機、41:ボーリング、42:磁界癩牛器、5
0:マトリクス状磁界受信器
FIG. 1 is a perspective view of two underground excavators whose underground joints are opposed to each other, and the implementation of the propulsion management and surveying device for underground excavation of underground excavators according to claim 1 of the present invention. Example configuration diagram Fig. 2: Perspective drawing of underground bonding based on conventional technology Fig. 3: Front view of light receiving surface of laser receiver based on conventional technology 11,12: Underground excavator, 41: Boring, 42 : Magnetic field leprosy, 5
0: Matrix magnetic field receiver

フロントページの続き (72)発明者 坂西 昇一 神奈川県平塚市万田1200 株式会社小松 製作所研究所内 (72)発明者 新保 哲也 神奈川県平塚市万田1200 株式会社小松 製作所研究所内 (56)参考文献 特開 平1−247693(JP,A) 特開 昭62−5117(JP,A) 特開 平3−246483(JP,A) 特公 昭51−30972(JP,B1) (58)調査した分野(Int.Cl.6,DB名) G01C 15/00 G01V 3/08 - 3/11 E21D 9/06 - 9/10 Continuing on the front page (72) Inventor Shoichi Sakanishi 1200 Manda, Hiratsuka-shi, Kanagawa Prefecture, Komatsu Ltd.Laboratory (72) Inventor Tetsuya Shinbo 1200, Manda, Hiratsuka-shi, Kanagawa Komatsu Ltd., Laboratory (56) References 1-274769 (JP, A) JP-A-62-5117 (JP, A) JP-A-3-246483 (JP, A) JP-B-51-30972 (JP, B1) (58) Fields investigated (Int. Cl 6, DB name) G01C 15/00 G01V 3/08 -. 3/11 E21D 9/06 - 9/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一方の地中掘進機(12)から穿ったボーリ
ング(41)の先端部に磁界発生器(42)を設けると共
に、前記一方の地中掘進機(12)に対向して掘進してき
た他方の地中掘進機(11)の前面にマトリクス状の磁界
受信機(50)を設けたことを特徴とする地中掘進機の地
中接合用推進管理測量装置。
1. A magnetic field generator (42) is provided at the tip of a boring (41) drilled from one underground excavator (12), and excavates in opposition to said one underground excavator (12). A submersible underground joint propulsion management and surveying device, wherein a matrix magnetic field receiver (50) is provided in front of the other underground excavator (11).
【請求項2】立坑及びこの立坑に向けて掘進する地中掘
進機とのいずれか一方から他方に向けて穿ったボーリン
グ(41)と、ボーリング(41)の先端部に設けた磁界発
生器(42)と、立坑及びこの立坑に向けて掘進する地中
掘進機との他方の前面に設けたマトリクス状の磁界受信
機(50)とを有することを特徴とする地中掘進機の地中
接合用推進管理測量装置。
2. A boring (41) drilled from one of a shaft and an underground excavator excavating toward the shaft, and a magnetic field generator (41) provided at the tip of the boring (41). 42), and a matrix-shaped magnetic field receiver (50) provided on the other front surface of the shaft and an underground machine that excavates toward the shaft. For propulsion management surveying equipment.
JP2059211A 1990-03-08 1990-03-08 Underground excavator propulsion management surveying device Expired - Fee Related JP2913042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059211A JP2913042B2 (en) 1990-03-08 1990-03-08 Underground excavator propulsion management surveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059211A JP2913042B2 (en) 1990-03-08 1990-03-08 Underground excavator propulsion management surveying device

Publications (2)

Publication Number Publication Date
JPH03257320A JPH03257320A (en) 1991-11-15
JP2913042B2 true JP2913042B2 (en) 1999-06-28

Family

ID=13106839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059211A Expired - Fee Related JP2913042B2 (en) 1990-03-08 1990-03-08 Underground excavator propulsion management surveying device

Country Status (1)

Country Link
JP (1) JP2913042B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713312B2 (en) * 2005-11-22 2011-06-29 学校法人日本大学 Position detection system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130972A (en) * 1974-09-10 1976-03-16 Mitsubishi Electric Corp
JPH0735971B2 (en) * 1985-07-01 1995-04-19 日立建機株式会社 Position detection device for excavator
JPH0726513B2 (en) * 1988-03-30 1995-03-22 前田建設工業株式会社 How to check the excavation position of the shield machine

Also Published As

Publication number Publication date
JPH03257320A (en) 1991-11-15

Similar Documents

Publication Publication Date Title
US4646277A (en) Control for guiding a boring tool
JP2819042B2 (en) Underground excavator position detector
US5361854A (en) Laser positioning system for earth boring apparatus
JPS58710A (en) Method for determining position of cavity section continuous body excavated and device for executing said method
EP0428180B1 (en) Control system for guiding boring tools and a sensing system for locating the same
CN107461204A (en) Development machine tunnels automatic orientation system and its control method
JPS6340095A (en) Controller for underground excavator
CN207177908U (en) Development machine tunnels automatic orientation system
JP2913042B2 (en) Underground excavator propulsion management surveying device
US5107938A (en) Apparatus for detecting position of underground excavator
JP2996521B2 (en) Shield surveying method
JPH10293028A (en) Device for measuring position of underground digging machine
JP2819043B2 (en) Underground excavator position detector
JP5384890B2 (en) Soil position guidance method and soil position guidance system
JPH03257321A (en) Relative position detecting apparatus of underground excavator
JPH0226194B2 (en)
JP2913041B2 (en) Underground excavator displacement detection device
JPS62288297A (en) Method of detecting position of excavated hole
JP2819044B2 (en) Underground excavator position detector
JPS60230498A (en) Position detection apparatus of drilling machine
JP2002097895A (en) Automatic excavator for mountain tunnel
JP3062046B2 (en) Rolling measurement device and method for vertical excavator
JPH1088969A (en) Pipeline measuring device
JPH01187286A (en) Method and machine for shield construction
JPH0444072B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees